Skip to main content

Analysing a contingency table with Kohonen maps: A factorial correspondence analysis

  • Conference paper
  • First Online:
New Trends in Neural Computation (IWANN 1993)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 686))

Included in the following conference series:

Abstract

The Kohonen self-organizing algorithm is a powerful tool to achieve a categorization of vectorial stochastic data into classes. Many researchers use it to get a preliminary reduction of the data complexity in numerous application fields. They address some problems which are usually solved by means of statistical methods like Classification, or Principal Component Analysis. In this paper, we propose to extend this approach to another data analysis method: the simultaneous analysis of two qualitative variables which are crossed in a contingency table.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. BENZECRI J.P.: L'analyse des Données, T. 2, L'Analyse des Correspondances, Dunod, Paris, 1973

    Google Scholar 

  2. BLAYO F., DEMARTINES P.: Data analysis: How to compare. Kohonen neural networks to other techniques? In Proceedings of IWANN 91, Prieto od., Lectures Notes in Computer Science, Springer-Verlag, 469–476, 1991

    Google Scholar 

  3. BOUTON C., PAGES G.: Self-Organization and convergence of the one-dimensional Kohonen algorithm with non uniformly distributed stimuli. To appear in Stochastic Processes and their Applications, 1993

    Google Scholar 

  4. COTTRELL M., FORT J.C.: Etude d'un algorithme d'auto-organisalion. Annales de l'Institut Henri Poincaré, Vol. 23, #1, 1–20, 1987

    Google Scholar 

  5. ERWIN E., OBERMAYER K., SCHULTEN K.: Convergence properties of self-organizing maps. In Artificial Neural Networks, Kohonen T. et al eds, Vol. I, North-Holland, 409–414, 1991

    Google Scholar 

  6. HERTZ J., KROGH A., PALMER R.G.: Introduction to the Theory of Neural Computation. Lecture Notes Vol.1, Santa Fe Institute, Addison-Wesley, 1991

    Google Scholar 

  7. KOHONEN T.: Self-Organization and Associative Memory. 3rd Edit. Springer-Verlag, 1989

    Google Scholar 

  8. KOHONEN T.: The Self-Organizing Map. Proc. of the IEEE, Vol. 78, #9, 1464–1480, 1990

    Google Scholar 

  9. LEBART L., MORINEAU A., WARWICK K.M.: Multivariate Descriptive Statistical Analysis: Correspondence Analysis and Related Techniques for Large Matrices. John Wiley, 1984

    Google Scholar 

  10. RITTER H., MARTINETZ T., SCHULTEN K.: Neural Computation and Self-Organizing Maps: An Introduction. Addison-Wesley, Reading, 1992

    Google Scholar 

  11. VARFIS A., VERSINO C.: Clustering of socio-economic data with Kohonen maps. Proc. 3'rd Int. Workshop on Parallel Applications in Statistics and Economics(PASE), Prague, Dec. 1992

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Joan Cabestany Alberto Prieto

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cottrell, M., Letremy, P., Roy, E. (1993). Analysing a contingency table with Kohonen maps: A factorial correspondence analysis. In: Mira, J., Cabestany, J., Prieto, A. (eds) New Trends in Neural Computation. IWANN 1993. Lecture Notes in Computer Science, vol 686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56798-4_164

Download citation

  • DOI: https://doi.org/10.1007/3-540-56798-4_164

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56798-1

  • Online ISBN: 978-3-540-47741-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics