Abstract
Users of geographic databases that integrate spatial data represented in vector and raster models, should not perceive the differences among the data models in which data are represented, nor should they be forced to apply different concepts depending on the model in which spatial data are represented. A crucial aspect of spatial query languages for such integrated systems is the need mechanisms to process queries about spatial relations in a consistent fashion. This paper compares topological relations between spatial objects represented in a continuous (vector) space of ρ2 and a discrete (raster) space of ℤ2. It applies the 9-intersection, a frequently used formalism for topological spatial relations between objects represented in a vector data model, to describe topological relations for bounded objects represented in a raster data model. We found that the set of all possible topological relations between regions in ρ2 is a subset of the topological relations that can be realized between two bounded, extended objects in ℤ2. At a theoretical level, the results contribute toward a better understanding of the differences in the topology of continuous and discrete space. The particular lesson learnt here is that topology in ρ2 is based on coincidence, whereas in ℤ2 it is based on coincidence and neighborhood. The relevant differences between the raster and the vector model are that an object's boundary in ℤ2 has an extent, while it has none in ρ2; and in the finite space of ℤ2 there are points between which one cannot insert another one, while in the infinite space of ρ2 between any two points there exists another one.
This work was partially supported by grants from Intergraph Corporation. Jayant Sharma was supported by a University Graduate Research Assistantship (UGRA) from the University of Maine. Additional support from NSF for the NCGIA under grant No. SES 88-10917 is gratefully acknowledged.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
P. Alexandroff (1961) Elementary Concepts of Topology. Dover Publications, Inc., New York, NY.
S. K. Chang, Q. Y. Shi, and C. W. Yan (1987) Iconic Indexing by 2-D Strings. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-9(6): 413–428.
V. Chávtal (1979) A Greedy Heuristic for the Set-Covering Problem. Mathematics of Operations Research 4(3): 233–235.
E. Clementini, P. di Felice, and P. van Oosterom (1993) A Small Set of Formal Topological Relationships Suitable for End-User Interaction, in: D. Abel and B. Ooi (Eds.), Third International Symposium on Large Spatial Databases, SSD '93, Singapore. Lecture Notes in Computer Science. Springer-Verlag, New York, NY.
S. Dutta (1991) Topological Constraints: A Representational Framework for Approximate Spatial and Temporal Reasoning, in: O. Günther and H.-J. Schek (Eds.), Advances in Spatial Databases—Second Symposium, SSD '91, Zurich, Switzerland. Lecture Notes in Computer Science 525, pp. 161–180, Springer-Verlag, New York, NY.
M. Egenhofer (1991) Reasoning about Binary Topological Relations, in: O. Günther and H.-J. Schek (Eds.), Advances in Spatial Databases — Second Symposium, SSD '91, Zurich, Switzerland. Lecture Notes in Computer Science 525, pp. 143–160, Springer-Verlag, New York, NY.
M. Egenhofer and R. Franzosa (1991) Point-Set Topological Spatial Relations. International Journal of Geographical Information Systems 5(2): 161–174.
M. Egenhofer and J. Herring (1990) A Mathematical Framework for the Definition of Topological Relationships. Fourth International Symposium on Spatial Data Handling, Zurich, Switzerland, pp. 803–813.
M. Egenhofer and J. Herring (1991) Categorizing Binary Topological Relationships Between Regions, Lines, and Points in Geographic Databases. Technical Report, Department of Surveying Engineering, University of Maine, Orono, ME (submitted for publication).
M. Egenhofer and J. Herring (1991) High-Level Spatial Data Structures for GIS. in: D. Maguire, M. Goodchild, and D. Rhind (Eds.), Geographical Information Systems, Volume 1: Principles. pp. 227–237, Longman, London.
M. Egenhofer and J. Sharma (1992) Topological Consistency. Fifth International Symposium on Spatial Data Handling, Charleston, SC., pp. 335–343.
M. J. Egenhofer and K. K. Al-Taha (1992) Reasoning About Gradual Changes of Topological Relationships. in: A. U. Frank, I. Campari, and U. Formentini (Eds.), Theories and Models of Spatio-Temporal Reasoning in Geographic Space, Pisa, Italy. Lecture Notes in Computer Science 639, pp. 196–219, Springer-Verlag, New York.
M. Ehlers, G. Edwards, and Y. Bedard (1989) Integration of Remote Sensing with Geographic Information Systems: A Necessary Evolution. Photogrammetric Engineering & Remote Sensing. 55(11): 1619–1627.
A. Frank (1992) Qualitative Spatial Reasoning about Distances and Directions in Geographic Space. Journal of Visual Languages and Computing 3(4): 343–371.
A. Frank (1992) Spatial Concepts, Geometric Data Models and Data Structures. Computers and Geosciences 18(4): 409–417.
A. Frank and D. Mark (1991) Language Issues for GIS. in: D. Maguire, M. Goodchild, and D. Rhind (Eds.), Geographical Information Systems, Volume 1: Principles. pp. 147–163, Longman, London.
R. Franzosa and M. Egenhofer (1992) Topological Spatial Relations Based on Components and Dimensions of Set Intersections. SPIE's OE/Technology '92-Vision Geometry, Boston, MA.
J. Freeman (1975) The Modelling of Spatial Relations. Computer Graphics and Image Processing. 4: 156–171.
C. Freksa (1992) Temporal Reasoning Based on Semi-Intervals. Artificial Intelligence 54: 199–227.
C. Freksa (1992) Using Orientation Information for Qualitative Spatial Reasoning. in: A. U. Frank, I. Campari, and U. Formentini (Eds.), Theories and Models of Spatio-Temporal Reasoning in Geographic Space, Pisa, Italy. Lecture Notes in Computer Science 639, pp. 162–178, Springer-Verlag, New York.
M. Goodchild (1992) Geographical Data Modeling. Computers and Geosciences 18(4): 401–408.
T. Hadzilacos and N. Tryfona (1992) A Model for Expressing Topological Integrity Constraints in Geographic Databases. in: A. U. Frank, I. Campari, and U. Formentini (Eds.), Theories and Models of Spatio-Temporal Reasoning in Geographic Space, Pisa, Italy. Lecture Notes in Computer Science 639, pp. 252–268, Springer-Verlag, New York.
N. W. Hazelton, L. Bennett, and J. Masel (1992) Topological Structures for 4-Dimensional Geographic Information Systems. Computers, Environment, and Urban Systems 16(3): 227–237.
G. Herman (1990) On Topology as Applied to Image Analysis. Computer Vision, Graphics, and Image Processing 52:409–415.
D. Hernández (1991) Relative Representation of Spatial Knowledge: The 2-D Case, in: D. Mark and A. Frank (Eds.), Cognitive and Linguistic Aspects of Geographic Space, pp. 373–385, Kluwer Academic Publishers, Dordrecht.
J. Herring (1991) The Mathematical Modeling of Spatial and Non-Spatial Information in Geographic Information Systems. in: D. Mark and A. Frank (Eds.), Cognitive and Linguistic Aspects of Geographic Space. pp. 313–350, Kluwer Academic Publishers, Dordrecht.
S. de Hoop and P. van Oosterom (1992) Storage and Manipulation of Topology in Postgres. Third European Conference on Geographical Information Systems, EGIS '92. Munich, Germany, pp. 1324–1336.
S.-Y. Lee and F.-J. Hsu (1992) Spatial Reasoning and Similarity Retrieval of Images Using 2D C-String Knowledge Representation. Pattern Recognition 25(3): 305–318.
Y. Leung, M. Goodchild, and C.-C. Lin (1992) Visualization of Fuzzy Scenes and Probability Fields. Fifth International Symposium on Spatial Data Handling, Charleston, SC, pp. 480–490.
D. Mark and M. Egenhofer (1992) An Evaluation of the 9-Intersection for Region-Line Relations. GIS/LIS '92, San Jose, CA.
D. Peuquet (1988) Representations of Geographic Space: Toward a Conceptual Synthesis. Annals of the Association of American Geographers 78(3): 375–394.
S. Pigot (1991) Topological Models for 3D Spatial Information Systems. in: D. Mark and D. White (Eds.), Autocarto 10, Baltimore, MD, pp. 368–392.
D. Randell, Z. Cui, and A. Cohn (1992) A Spatial Logic Based on Regions and Connection. Principles of Knowledge Representation and Reasoning, KR '92, Cambridge, MA, pp. 165–176.
A. Rosenfeld (1979) Digital Topology. American Mathematical Monthly 86: 621–630.
T. Smith and K. Park (1992) Algebraic Approach to Spatial Reasoning. International Journal of Geographical Information Systems 6(3): 177–192.
E. Spanier (1966) Algebraic Topology. McGraw-Hill Book Company, New York, NY.
P. Svensson and H. Zhexue (1991) Geo-SAL: A Query Language for Spatial Data Analysis, in: O. Günther and H.-J. Schek (Ed.), Advances in Spatial Databases—Second Symposium, SSD '91, Zurich, Switzerland. Lecture Notes in Computer Science 525, pp. 119–140, Springer-Verlag, New York, NY.
A. Vince and C. Little (1989) Discrete Jordan Curve Theorems. Journal of Combinatorial Theory Series B 47: 251–261.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1993 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Egenhofer, M.J., Sharma, J. (1993). Topological relations between regions in ρ2 and ℤ2 . In: Abel, D., Chin Ooi, B. (eds) Advances in Spatial Databases. SSD 1993. Lecture Notes in Computer Science, vol 692. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56869-7_18
Download citation
DOI: https://doi.org/10.1007/3-540-56869-7_18
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-56869-8
Online ISBN: 978-3-540-47765-5
eBook Packages: Springer Book Archive