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resulted in a poor speedup for the DDM as well as for other architectures. This
poor locality was tamed by restructuring its distribution of work from being
static to being dynamic. The restructuring also increased MP3D's communica-
tion locality. Communication locality was also enhanced for Cholesky by adding
hierarchical knowledge to its dynamical scheduler. Finally, the importance of the
attraction memory was shown to increase with a larger data set.

The conclusion is that a COMA can successfully execute shared-memory
applications written with a di�erent architecture in mind. Further improvements
can be obtained by small modi�cation to the applications to better suit the
unique properties of a COMA.
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cache-miss rates as the problem set is increased for the studied applications.
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Fig. 8. The e�ects of the large attraction memories increase with the size of the data
set. Here, the behavior of a small data set (to the left) is compared to larger data
sets (to the right) for some applications. For the MP3D applications, the number of
particles is increased while the number of space cells is held constant.

6 Related Work

The hierarchical DDM and its protocol have several similarities with the archi-
tectures proposed by Wilson [Wil86], and Goodman [GW88]. The problem of
maintaining coherence in hierarchical systems is addressed in the Wilson. The
Goodman proposal has a network built by a grid of buses. A node snoops two
buses and has two assignments in that architecture. First it is a processing node
and secondly it acts as a directory. The DDM is di�erent in its use of transient
states in the protocol, its lack of physically shared memory, and its storage of
state information but no data in the network (higher level caches). It is also
di�erent in that it handles replacement in such a way that at least one copy of
all the data in the caches is always guaranteed, and thus the shared memory is
not needed. Recently, the commercial machine KSR1 was released [BFKR92]. It
is similar to the DDM being a hierarchical COMA, but has a much larger item
size and longer remote access delay than the DDM prototype.

7 Conclusion

A detailed execution-driven simulator of the DDM has been developed to study
its behavior when executing real applications. Programs from the SPLASH suite,
developed for a UMA architecture, with the largest bearable problem size were
used to evaluate the DDM. Good speedup was reported for two of the three stud-
ied SPLASH applications, demonstrating a COMA's ability to adapt to static as
well as dynamic scheduling. The poor locality of the third application, MP3D,
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Application Cholesky:bcsstk15 bcsstk14 bcsstk14-H MATRIX
(large matrix) (small) (hier.sched.) 500x500

Topology 1�1 8�2 2�8�2 2�8�2 2�8�2 8�4

Hit rate Dcaches (%) 87 88 89 96 96 92
Hit rate in AM (%) 100 81 74 6 24 98
Node miss rate (%) - 2.3 2.8 3.8 3.2 0.16

Busy rate:M bus (%) 27 63 60 70 60 55
Busy rate:DDM bus (%) - 57 66 80 70 4
Busy rate:Top bus (%) - - 49 70 41 -

Speedup/#Processors 1/1 10.6/16 17/32 9.6/32 11/32 29.1/32

Fig. 7. Statistics for matrix programs. The unit delay is for bcsstk14.

The blocking algorithm is yet another example of part of the working set
being attracted and worked on locally, resulting in increased speedup and low
communication. The algorithm has a block size larger than the data cache, re-
sulting in extensive use of the AM. The work space is about 3 Mbytes. It shows
a speedup close to ideal on a DDM (Figure 7), generating extremely little com-
munication. An even more optimal design would be to do the blocking in two
levels, with very large blocks kept in the AMs, and smaller blocks read to the
data caches.

5.2 What About a Larger Problem Size?

We have used the largest problem sizes that our patience could bear, i.e., a
simulation time of about one day per run. Still, the problem size was far from
realistic in many cases. We tried to compensate for this by exploring what would
happen to the architecture when the data set was increased. The nature of a
COMA, with large resources for \second-level caches," makes the DDM less
sensitive to the small-cache e�ect. Actually, it is �rst when a realistic problem
size is used that a COMA really starts to pay o�. Figure 8 shows the trends of
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Fig. 6. Dynamic behavior of the hit rate in one attraction memory over time for the
original MP3D and the modi�ed version MP3D-DIFF on the topology 2x8x2. The
move phases of the last four simulation steps can easily be identi�ed by their higher hit
rates. The �rst step includes the cold-start e�ect and takes longer time. The execution
time of the last four steps represents the steady-state behavior of the simulation. The
improvement of MP3D-DIFF by about three times comes partly from an increased hit
rate in the processor caches from 86 percent to 92 percent (not shown here).

report good behavior for the small matrix because of a hit rate of 96 percent
in the Dcache, a node miss rate of around 4 percent. However, simulating the
larger matrix, usually neglected, would have resulted in an 11 percent node miss
rate without a second-level cache instead of the achievable 2.8 percent.

Cholesky-H The scheduler part of Cholesky has been modi�ed so that each
cluster also has its own task queue, and task migration is hierarchical. Initially,
all tasks reside in one global task queue. All processors retrieve jobs from the
global queue and put newly created jobs in their local cluster queues. When the
global queue is empty, the processors start retrieving tasks from their cluster
queues. When the cluster queue is empty, a processor �rst looks for jobs in its
binary brother cluster.1 Secondly, the two binary cousins are checked for tasks,
etc. Not only are tasks kept local to a bus this way, but the probability of
retrieving a job related to one the clusters previously worked on is higher. The
most notable di�erence between bcsstk14 and bcsstk14-H in Figure 7 is that
the tra�c on the top bus has decreased, even though the execution speed is
about 10 percent faster. The reported speedup is relative to the execution of the
unmodi�ed program on a single processor.

Matrix is a program multiplying two 500-by-500 matrices using a blocking
algorithm[LRW91]. The blocking algorithm is interesting, since it tries to make
the most e�ective use of caches. Once a portion of a matrix (a block) has been
read to a cache, it is used many times before being replaced with a new block.

1 Calculated by toggling the least signi�cant bit of the processor ID.



Rewriting the same code for a NUMA involves adding one extra layer of indirec-
tion in accesses to the particle data and explicitly copying particle states between
the local memories. The move phase now shows an improved speedup. The move
phase that accounted for 93 percent of execution time on a uniprocessor now oc-
cupies around 50 percent of execution time on 32 processors. Improving speedup
above 32 processors means optimizing the other phases, since they now are the
dominant part of the execution.

MP3D-DIFF somewhat improves the communication locality of the applica-
tion. Adjacent space cells are handled by adjacent processors. This improves the
locality in the di�usion of particles. As the number of processors increase while
the number of space cells is constant, a negative e�ect on the node miss rate
can be expected, since the number of space cells per processor decreases, with
increased particle di�usion as a result.

The steady-state execution speed of the modi�ed MP3D-DIFF is about three
times that of the originalMP3D on 32 processors. The number of remote accesses
is decreased to about 10 percent of the original number. An earlier version of
MP3D-DIFF had each particle represented by 44 bytes, resulting in a fair amount
of false sharing, so that two processors wrote to di�erent parts of the same
cache line and therefore appeared to share data, resulting in conicting writes.
The false sharing disappeared when each particle instead was made 48 bytes to
better suit our 16-bytes cache line. The e�ect of false sharing can be studied as
MP3D-DIFF-FS in Figure 5, where all the di�erent runs are compared. Figure 6
compares the hit rates in the AM of the MP3D and MP3D-DIFF.

Work on improving the cache behavior for MP3D has also been reported
by Cheriton et al. [CGM90]. In that study, machines with small caches were
used. Such machines are not practical when applying this method to real-sized
problems.

Reported speedups for MP3D-DIFF and MP3D-DIFF-FS are relative to the
execution of the original MP3D on a single processor.

Cholesky factorizes a sparse positive de�nite matrix. The matrix is divided
into supernodes that are put in a global task queue to be picked up by any
processor. Locks are used for the task queue and for modi�cations in the matrix.
We have used two input matrices as input to the program. The large matrix
bcsstk15 occupies 800 kbytes unfactored and 7.7 Mbytes factored. Bcsstk 15 has
a speedup of about 17 using 32 processors and seems to have potential for more
speedup on larger DDMs (Figure 7). The smaller matrix bcsstk14, which yields
a worse speedup, has been reported for the unit delay. Its input matrix occupies
420 kbytes unfactored and 1.4 Mbytes factored. Its speedup on 32 processors is
9.6.

From the numbers in Figure 7 it is interesting to note that the larger matrix
not only has a better speedup, but also produces less tra�c. It is divided into
larger supernodes than the smaller matrix, resulting in more local execution per
communication unit.

This application really highlights the danger of drawing general conclusions
based on a small data set. Any architecture with small �rst-level caches would



resulting in poor scalability on the DDM, as well as for other architectures.
MP3D is normally run for many simulation steps. To avoid cold-start e�ects in
our tables, we present the steady-state behavior of the last four simulation steps.
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Application MP3D {DIFF-FS {DIFF
Topology 1�1 2�8�2 2�8�2 2�8�2 4�8�2

Hit rate Dcaches (%) 80 86 90 92 93

Hit rate in AM (%) 100 40 53 88 76
Node miss rate (%) - 8.4 5.0 1 1.7
Busy rate: M Bus (%) 40 86 76 54 53

Busy rate:DDM bus (%) - 88 83 24 29
Busy rate:Top bus(%) - 66 60 13 36
Speedup/#Processors 1/1 6/32 13/32 19/32 27/64

Fig. 5. Speedup for MP3D with 75000 particles at steady state, i.e., the execution time
of steps two through �ve. The unit-delay curve is for 3000 particles.

MP3D-DIFF is a modi�ed version of the program, where a better hit rate is
achieved [And91]. The distribution of particles over processors is based here on
their current location in space [SWG91]; in other words, all particles in the same
space cells are handled by the same processor. The update of both a particle's
state and its space-cell state is now local to one processor. When a particle is
moved across a processor border, its data is handled by a new processor; i.e.,
the particle data di�uses to the attraction memory of the new processor. This
modi�cation involves adding some 30 extra lines of code.

The move phase of MP3D is now optimized, since most operations are local
to the processors. Only the di�usion of particles accross cells generates tra�c.
E�ciently supporting such a di�usion of the major data structure requires a
COMA architecture. In a COMA, the particle data that occupy the major part
of the physical memory are allowed to move freely among attraction memories.
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Data Set 192 molecules 384 mols.
Topology 1�1 8�4 2�8�4 64�1 2�8�4 4� 8� 4

Hit rate Dcaches (%) 99 99 99 99 98.9 98.9
Hit rate in AM (%) 100 50 44 12 65 58

Node miss rate (%) - 0.5 0.6 0.9 0.4 0.5
Busy rate:M bus (%) 2 21 31 32 26 37
Busy rate:DDM bus (%) - 24 39 80 30 40

Busy rate:Top bus(%) - - 25 - 20 53
Speedup/#Processors 1/1 28.7/32 52/64 (39.5/64) 53/64 95/128

Fig. 4. The speedup for WATER with 384 molecules running two time steps. The
unit delay is reported for 288 molecules and does not include cold-start e�ects. DASH
simulates 512 molecules.

MP3D simulates the pressure and temperature around an object ying at
high speed through the upper atmosphere. The primary data objects are particles
(air molecules) moving around in a 3-dimensional \wind tunnel," represented by
space-cell objects. The simulation is performed in discrete time steps, in which
each molecule is moved according to its velocity and possible collision with other
molecules, the ying object, and the boundaries. The algorithm is parallelized
by statically dividing the particles among processors such that each processor
moves the same particles each time.

Moving a particle involves updating the state of the particle and the state of
the space cell where the molecule currently resides; in other words, all processors
write to all space cells, resulting in poor locality. Between each move phase, some
administrative phases are performed, like moving or removing particles from the
entrance of the wind tunnel and calculating collision probabilities for each space
cell. Simulating 75,000 particles and 14x24x7 space cells results in a total work
space of about 4 Mbytes.

MP3D is normally run with the whole memory �lled with data objects,
mostly particles. The algorithm has poor locality, especially in its \move phase",



in the graphs are self-relative, i.e., compared to the execution time for 1 � 1.
A hit is de�ned as a read or write that can be completed without stalling the
processor. The hit rates for instructions in the processor caches and the AMs
are close to 100 percent for all con�gurations and applications. The numbers
reported for the data cache (Dcache) and AM hits are for data only. The node
miss rate, de�ned as the ratio of accesses missing in both the Dcache and the
AM, is also for data only.

We present our results in graphs where speedup is a function of the number
of processors. For comparison, we also show the linear speedup (Speedup =
#Processors) and the algorithmic speedups (UNIT DELAY) reported by Singh
et al. [SWG91], i.e., the maximum speedup on an ideal architecture.

The architecture modeled in this study di�ers slightly from the �rst DDM
prototype. The processor caches in the simulator are 16 kbytes, compared to
64 kbytes in the prototype. This partly compensates for the small problem size
in the simulation. The attraction memory modeled is two-way set-associative us-
ing the last-accessed-memory technique [Hag92], while the prototype implements
a true two-way set-associative or direct mapped attraction memory. The associa-
tive state memory is modeled as if it was implemented by dual-ported memory
rather than interleaved between the two buses. We do not model contention for
writes back to the associative state memory.

For comparison, we also show the speedup for the DASH prototype [Len91]
for cases where the numbers reported are for comparative problem sizes. Al-
though these numbers are from real|not simulated|prototype hardware the
problem size is about the same as for our simulations. The DASH prototype is
built from clusters of four 33 MHz MIPS R3000 processors. Each processor has
write-through 64 kbytes instruction and data caches and a uni�ed second-level
cache of 256 kbytes. The DASH prototype implements release consistency.

5.1 Application Performance

Water is an N-body molecular dynamics application that evaluates forces and
potentials in a system of water molecules in the liquid state. It has a static
scheduler and uses barriers for synchronization. Water is simulated running two
time steps and 192/384 molecules.

The working set is only 320/640 kbytes. The execution time of this applica-
tion is O(n2) to the number of molecules, so simulating a real-sized working set is
di�cult. The small working set results in an extremely good hit rate in the data
cache. Misses in the data cache are caused mostly by invalidation misses [HS89],
which the AM can do nothing about. The speedup shown for WATER in Figure 4
is almost ideal. Some statistics are presented in Figure 4. Note the di�erence in
the AM hit rate between 64� 1 and 2� 8� 4. The processors in a cluster share
data in their common AM, resulting in an increased hit rate for the four proces-
sors. Note, too, the decreased node miss rate when the data set is doubled to 384
molecules. Running this application with real-sized working sets will continue to
provide impressive hit rates for large attraction memories.



addresses. On a TLB fault, all necessary transactions from the MMU are sent
to the DDM network. New translations from virtual pages to physical pages
are created on demand from a randomized free list to make the behavior more
realistic. No penalty is added for \reading from disk" since we assume that all
pages are already in the machine when the simulation starts. The DDM initially
has empty caches and AMs. The �rst read request for each datum is sent to a
special AM, which makes all necessary transactions for returning the value.

The simulation model is instrumented with counters of hardware events, pe-
riodically sampled into a large statistics �le. The technique has been used to
simulate up to 128 processors running programs of up to 2 CPU minutes simu-
lated time. The simulation currently runs the programs 2000 times slower than
execution on a single SPARC station. The number of simulated processors has a
small e�ect on the slow down if the application simulated has an ideal speedup,
which allows for large machines running large applications to be studied.

5 Simulated Performance of the DDM Prototype

The SPLASH [SWG91] programs represent applications used in an engineering
computing environment. They are written in C and use the synchronization
primitives provided by the Argonne National Laboratory (ANL) macro package.
They were developed for the Encore Multimax, a UMA architecture with small
caches tied by a single bus to a single shared memory. The original versions of
the programs are used.

Three programs from Stanford Parallel Applications for Shared Memory
(SPLASH), MP3D, Water, and Cholesky are reported here. We have identi-
�ed MP3D as the toughest one for a COMA which makes it interesting to
study [Hag92], while Cholesky andWater, appeared midway among the SPLASH
applications. They are interesting since they represent two di�erent program be-
haviors. Water is statically scheduled with barrier synchronization, and Cholesky
is dynamically scheduled and uses a task queue as its means of synchronization.
MP3D was also studied in two rewritten versions to make better use of the data
di�usion ability of a COMA. A modi�ed Cholesky using a hierarchical scheduler
was also simulated exploring the hierarchical property of the DDM. Finally, a
matrix multiplication program was studied.

The results we present are for DDMs with only two or fewer hierarchical
levels and clusters of processors at the leaves, classi�ed by their branch factor
from top to bottom T � I � C, or T �C, where:

T is the branch factor at the top DDM bus,
I is the branch factor at the intermediate DDM bus, and,
C stands for number of processor in one cluster, sharing an M bus.

Many di�erent protocols for the DDM have been designed [HLH91, LHH91].
Here, we use the simplest protocol providing sequential consistency [HHW90].

For con�gurations 1�1 and 4�1, the DDM network has not been simulated.
Instead, a 100 percent hit rate in the AM is assumed. The speedups presented



4 Simulation Technique

Inspired by the Tango simulator at Stanford [DGH90], we have developed an ef-
�cient execution-driven simulation method that models the parallel applications
as if they were running on a real physical implementation of the architecture.

The parallel applications are developed in, or ported to, C to run on a SUN
SPARC station as multiple processes sharing memory under SUN-OS. A modi-
�ed gcc compiler, Abstract Execution (AE) [Lar90], is used to produce processes
that not only execute the programs, but also produce a stream of information
when doing so. The level of detail in the information stream is selectable, and
for this study has been the full address trace of both instructions and data. AE
was originally made to produce trace �les from uni-processor execution. In our
system the streams of information from the di�erent processes are sent to di�er-
ent inputs of a simulation process, modeling the target architecture, as shown in
�gure 3. The streams serve as models of the processors. The execution speed of
each process is determined by how fast the information in its stream is consumed
by the simulated architecture, stalling the application process if necessary, mak-
ing the relative execution speed between the processes that of their execution
on the target architecture. Synchronization between the application processes is
performed by ordinary shared-memory primitives, i.e., locks and barriers, in the
shared memory.
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Fig. 3. The structure of execution-driven simulation.

Our simulationmodel is parameterized with data from our ongoing prototype
project, and accurately describes its behavior. Part of the virtual memory system
has been modeled, and MMUs make the translation from virtual to physical



lacked the possibility of connecting yet another master board to the M bus. Tad-
pole Technology, U.K., had a design TP881V that suited us, marked with the
dashed line in Figure 2. The TP881V consists of two VME-sized cards: a proces-
sor module card with four processors, their eight caches and 32 Mbytes DRAM,
and a base module card with SCSI and Ethernet interfaces. The extra function-
ality required by a DDM node �ts on one card designed at SICS. We can �t six
DDM nodes with a total of 24 processors and 192 Mbytes attraction memory,
power, and directory into a VME rack with 21 slots. The directories are yet
not designed, but could be implemented using the described DDM design with
small modi�cations. With an integration higher than the one used in our proto-
type, eight processor clusters will �t in a box rather than six. Up to a two-level
DDM can rely on buses. The second-level split buses connecting eight clusters
are 30 cm long. A DDM of three levels must rely on point-to-point connections
at its top. Each point-to-point link is about 60 cm long.

3.4 Performance

We decided on a conservative bus design initially, since pushing bus speed is not
a primary research goal. The DDM bus in the prototype operates at 20 MHz,
with a 32-bit data bus and a 16-bit address bus. It uses drivers developed for the
Future bus for all parallel signals, such as address and data. A new transaction
starts every fourth cycle, i.e., a transaction frequency of 5 Mtransactions/s. It
provides a moderate bandwidth of about 80 Mbytes/s.

A speci�ed latency of a memory system is not necessarily equal to the number
of cycles a processor has to stall. The scoreboard mechanism of the MC88100
makes the processor stall only if the register is read before the value of the load
has arrived. Similarly, a slow write will not necessarily stall the processor. Here
we specify the latency as the number of cycles elapsing between the issue of the
load, and when the register can be read.

Read accesses from the CMMU to the attraction memory take seven cycles
per cache line, and write accesses to the attraction memory take eleven cy-
cles. To these numbers must be added an extra latency of four cycles for going
through the processor caches. The best case latencies at no contention for di�er-
ent accesses can be found in the table below. Latencies for remote accesses are
represented by two number: latency in a one level DDM / latency in a two-level
DDM if the transaction has to go to the top bus.

Latency in the DDM Prototype [Processor Cycles]

CPU Cache Cache miss, AM in state:
access hit Exclusive Shared Invalid
read 2 11 11 60/115
write 2 15 35/60 70/145



item identi�er space. The higher order bits of the item identi�ers are stored as
address tags in the associative state memory (ASM).

A direct-mapped AM has a speci�c item always mapped to the very same
location, so there is no need to compare tags before we know in which set an
item should reside if it is there. We can assume that a transaction will succeed
and start a read line before approval from the MBP is received. A CMMU that
has already read three words can be forced to restart before reading the fourth,
and last, word of a cache line. The MBP can therefore wait until the very last
cycle before deciding whether to force a retry or not. This allows for state lookup
and data transfer to overlap. In most situations, the delay of accessing the ASM
will be completely hidden, adding no extra latency to the functionality of the
AM, i.e., no wait states are inserted by the MBP.

The MBP compares the address tag bits stored in the ASM to the higher
order bits of the item identi�er on the M bus and the state stored in the ASM
is checked; e.g., a read request to a present item in the Shared state is approved,
resulting in no actions. If the transaction was not approved, e.g., a read request
to state Invalid, the MBP:

1. asserts the retry signal, forcing the CMMU to release the M bus,
2. sets the address tag bits in the ASM to the higher bits of the item identi�er,
3. changes the item's state to Reading, and,
4. puts a read request in the output above bu�er.

When the data reply eventually comes back, the memory above protocol
(MAP):

1. puts the data part of the transaction in the DI,
2. puts a write line transaction in the OB containing the item identi�er, and,
3. changes the item's state to Shared.

The output below bu�er has the highest priority on the M bus and gets
the M bus next. It writes the contents of the DI to the item's location in the
attraction memory. When the CMMU repeats its request again, it will not be
interrupted by the memory below protocol. It can be noted that this method
turns the M bus into a split-transaction bus, i.e., it is released between the
original request and its completion. A write transaction on the M bus to an item
in an inappropriate state is intercepted by a retry in a similar way by the memory
below protocol, and necessary actions are taken. Therefore, from the viewpoint
of the M bus, the rest of the DDM looks like yet another CMMU, only slower
and noisier.

3.3 Building on Tadpole TP881V

In an attempt to save development e�ort and time, we searched for commer-
cially available board systems implementing most of the desired functionality.
We evaluated all known board systems based on the 88000 family. Most systems



associative state memory (ASM), containing the state and the address tag for
each item in the node, as shown in Figure 2.

The MBP checks each transaction on the M bus for validity. If it is a read

of an Invalid item, for example, the MBP asserts the retry signal. The retry
signal makes the current CMMU bus master stop and release the bus, while the
MBP initiates necessary actions for retrieving the requested item. The arbitra-
tion between the CMMUs is round-robin, allowing other CMMUs to access the
memory while the data is being retrieved. The DDM node also hosts the output
above FIFO (OA) for transactions bound for the DDM bus. The OA contains
the transaction code and the item identi�er of the transaction, but no data. The
MAP can access the M bus by putting an M bus transaction in the output below
FIFO (OB). The OB only contains address and transaction code. Transactions
on the M bus from the OB have the data FIFOs data in (DI) or data out (DO) as
an implicit source or destination. Data is retrieved from the node's data memory
and put in the DO by a read line from the OB. Data is written from DI to the
node's memory by putting a write line from the OB.
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Fig. 2. DDM implementation consisting of two DDM nodes based on the 88000 family.

3.2 Implementing the Attraction Memory and its Protocol

There are several ways an AM and its protocol can be implemented based on
the functionality of the retry signal.

Here, we describe a direct-mapped implementation of the AM, i.e., a one-
way set-associative implementation. The location of data in the node's memory
is determined by looking at the lower bits of its item identi�er. The address space
of the memory is mapped over and over again sequentially to cover the whole



the request reaches a level in the hierarchy where a directory, containing a copy
of the item, is selected to answer the request. The selected directory changes the
state of the item to Answering (A), marking an outstanding request from above,
and retransmits the read request on its lower bus. Transient states R and A in
the directories mark the request's path through the hierarchy like unrolling a
red thread while walking in a maze [HomBC]. When the request �nally reaches
an attraction memory with a copy of the item, its data reply simply follows the
red thread back to the requesting node, changing all the states along the path
to Shared (S).
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  I
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  S
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R A
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Dirs:

Dirs:
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Fig. 1. A read request from processor Px has found its way to a copy of the item in
the attraction memory of processor Py. Its path is marked with states Reading and
Answering (R and A), which will guide the data reply back to processor Px.

3 DDM Prototype Overview

There are two projects currently working on DDM architectures. A link-based
DDM based on Transputers is being developed at the University of Bristol [RW91].
This simulation study models a second, bus-based, DDM currently being built
at the Swedish Institute of Computer Science based on Motorola MC88100 pro-
cessors [HLH92]. The MC88100 has a combined cache and memory management
unit (CMMU) chip MC88204 interfaced to a memory bus called M bus. The
CMMU use a copy-back cache-coherence protocol similar to the write-once pro-
tocol [Goo83]. Each CMMU snoops all transactions on the M bus, and may stop
a master by asserting a retry signal on the bus. The master immediately stops,
backs o� the bus, and turns into a slave with the need to arbitrate for the bus
again. The CMMU that received the snoop hit is granted the bus and can update
the memory during the next cycle.

3.1 Interfacing the DDM Node and the M bus

A DDM node contains the memory below protocol (MBP), and the memory

above protocol (MAP) state machines, implementing the DDM protocol, and an



However, a NUMA version of the same program would give a similar behavior,
since the data is attracted to the using processor regardless of the address. A
COMA will also adapt to and perform well for programs with a more dynamic,
or semi-dynamic scheduling. The work space migrates according to its usage
throughout the computation. Programs can be optimized for a COMA to take
this property into account in order to create better locality.

2.1 The Data Di�usion Machine

The Data Di�usion Machine (DDM) [WH88] is a hierarchical COMA with its
directory information distributed in the network. Between each level in the hier-
archy sit state memories, called Directories (as shown in Figure 1). The directory
is a set-associative status memory, which keeps information for all the items in
the attraction memories below it, but contains no data. The directories can an-
swer questions such as \Is this item below me?" or \Does this item exist outside
my subsystem?" They guide read requests to a copy of the data and keep coher-
ence tra�c as local as possible. The lowest level bus in the hierarchy connects
several DDM nodes. A DDM node contains one attraction memory and one or
more processors.

The coherence protocol of the DDM [HHW90] attracts requested data to the
attraction memories, controls the coherence among di�erent copies of the same
data, and makes sure that the last copy of a data is not lost on replacement.

The hierarchy as described here has a single top bus which easily could
become the bottleneck of the system. This bottleneck can be widened by using
several top buses, each one responsible for a speci�c address domain, e.g., even
and odd. The topmost directories are also split into di�erent address domains,
and thus the transaction frequency is increased [Hag92].

The memory overhead, i.e., the extra memory required to implement the
attraction memories and the directories, is surprisingly low. It has been calcu-
lated to 5 percent for a 32-processor DDM and 16 percent for a 256-processor
DDM [HLH92].

2.2 A Protocol Example: Multilevel Read

Figure 1 shows an example of a multilevel read. Originally, the item studied
existed in state shared (S) in the attraction memories of processors Py and Pz.
The directories above them also had the item in state shared. The directory
common to Py and Pz right underneath the top bus had the item in state
exclusive (E), since its subsystem contained all existing copies of the item. All
other directories and attraction memories had the item in state invalid (I).

At this point, a read request by processor Px cannot be ful�lled by its local
local attraction memory, which puts the requested item in state Reading (R)
and transmits the read request on the DDM bus. The read request cannot be
satis�ed by the subsystems connected to the bus, and the next higher directory
retransmits the read request onto the next higher bus. The directory also changes
the item's state to Reading (R), marking the outstanding request. Eventually,



2 Background

Existing architectures with shared memory are typically computers with one
common bus connecting the processors to the shared memory, such as computers
manufactured by Sequent, SUN and Encore, or with distributed shared memory,
such as the BBN Buttery and the IBM RP3.

Systems based on a single bus su�er from bus saturation and therefore typ-
ically have only some tens of processors, each one with a local cache. The con-
tents of the caches are kept coherent by a cache-coherence protocol, in which
each cache snoops the tra�c on the common bus and prevents any inconsisten-
cies from occurring [Ste90]. The architecture provides a uniform access time to
the whole shared memory, and is therefore called uniform memory architecture
(UMA).

In architectures with distributed shared memory, known as non-uniform
memory architectures (NUMA), each processor node contains a portion of the
shared memory; consequently access times to di�erent parts of the shared ad-
dress space can vary. NUMAs often have networks other than a single bus, and
the network delay to di�erent nodes might vary. The earlier NUMAs did not
have coherent caches, and left the problem of coherence to the programmer. Re-
search activities today are striving toward coherent NUMAs with directory-based
cache-coherence protocols, e.g. Dash [LLG+90] and Alewife [CKA91]. Programs
can be optimized for NUMAs by statically partitioning the work and data. Given
a partitioning where the processors make the most of their accesses to their part
of the shared memory, a better scalability than for UMAs can be achieved.

In cache-only memory architectures (COMAs), the memory organization is
similar to that of NUMA in that each processor holds a portion of the shared
memory space. However, the partitioning of data between the memories is not
static, since all distributed memories are organized as large (second-level) caches.
The task of such a memory is twofold. Besides being a large (second-level) cache
for the processor, it may also contain some data from the shared address space
that the processor never has accessed, i.e., it is a cache and a virtual part of
the shared memory at the same time. We call this intermediate form of mem-
ory Attraction Memory (AM). A coherence protocol will attract the data used
by a processor to its attraction memory. The coherence unit, comparable to a
cache-line, is moved around by the protocol and is called an item. On a memory
reference, a virtual address is translated into an item identi�er. The item iden-
ti�er space is logically the same as the physical address space of conventional
machines, but there is no permanent mapping between an item identi�er and a
physical memory location. Instead, an item identi�er corresponds to a location
in an attraction memory, whose address tag matches the item identi�er. Actually
there are cases where multiple attraction memories could have matching items.

COMA provides a programming model identical to that of shared-memory
architectures, but does not require static distribution of execution and memory
usage in order to run e�ciently. Running an optimized NUMA program on a
COMA architecture would result in a NUMA-like behavior, since the work spaces
of the di�erent processors would migrate to their local attraction memories.
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Abstract. Large-scale multiprocessors su�er from long latencies for re-
mote accesses. Caching is by far the most popular technique for hiding
such delays. Caching not only hides the delay, but also decreases the net-
work load. Cache-Only Memory Architectures (COMA), have no physi-
cally shared memory. Instead, all the memory resources are invested in
caches, enabling in caches of the largest possible size. A datum has no
home, and is moved by a protocol between the caches according to its
usage. Furthermore, it might exist in multiple caches. Even though no
shared memory exists in the traditional sense, the architecture provides
a shared memory view to a processor, and hence also to the programmer.
The simulation results of large programs running on up to 128 proces-
sors indicate that the COMA adapts well to existing shared memory
programs. They also show that an application with a poor locality can
bene�t by adopting the COMA principle of no �xed home for data, re-
sulting in a reduction of execution time by a factor three.

1 Introduction

Simulation is a core technology for research in the computer architecture �eld.
It is important to evaluate architectural ideas using large realistic programs and
problem sizes. This study presents a simulation study of one implementation of
the Data Di�usion Machine (DDM) [HLH92]. The DDM is a shared memory
multiprocessor, but its organization is quite di�erent from other architectures in
that its memory system comprises of only caches.

In this study, we wanted to see how well the DDM adapted to existing shared
memory applications written with a completely di�erent architecture in mind.
We developed an execution-driven simulation environment, which can run par-
allel programs written in C. The applications used in this study come from
the Stanford Parallel Applications for Shared Memory (SPLASH) [SWG91]. A
detailed architecture model describes the prototype DDM, currently being im-
plemented at SICS. It allows us to study the behavior of the prototype and
to collect statistics one cannot gather in a real implementation. However, the
simulation model has a slowdown of approximately 2000 times, which limits the
practical problem size of the studied programs. To compensate for this, we var-
ied the data set for the application, and found that the bene�ts from the DDM
architecture increased with the size of the data set.

The simulation of the DDM shows encouraging behavior for the studied pro-
grams. In this paper we present our simulation method, the performance of the
DDM, and some internal dynamic statistics.


