
Verification of Real-Time Systems Using PVS*

N. Shankar
Computer Science Laboratory

SRI International
Menlo Park CA 94025

Phone: +1 (415)859-5272
shankar@csl.sri.com

Abstract. We present an approach to the verification of the real-time
behavior of concurrent programs and describe its mechanization using
the PVS proof checker. Our approach to real-time behavior extends pre-
vious verification techniques for concurrent programs by proposing a sim-
ple model for real-time computation and introducing a new operator for
reasoning about absolute time. This model is formalized and mechanized
within the higher-order logic of PVS. The interactive proof checker of
PVS is used to develop the proofs of two illustrative examples: Fischer's
real-time mutual exclusion protocol and a railroad crossing controller.

1 I n t r o d u c t i o n

Time is used in several ways in computing to ensure, for instance, that tasks are
scheduled in a timely manner, deadlines are met, processes are synchronized, and
race conditions are avoided. Since real-time systems are often used in critical
contexts, it is important to rigorously demonstrate that certain crucial require-
ments are satisfied by the system. We extend existing verification frameworks
for concurrent programs such as temporal logic [Pnu77], the temporal logic of
actions (TLA) [Lam90], and Unity [CM88] to handle real-time behavior. We in-
troduce a new operator whose value at any state in a computation for a given
condition corresponds to the time that has elapsed since the condition last held
in the computation. With this new operator, conventional reasoning techniques
can be applied to demonstrate the real-time behavior of programs. Our approach
to the verification real-time systems is similar to some existing proposals but,
to our knowledge, none of these proposals has yet been employed in mechanized
verification. Also, the model of computation we employ is simple in contrast to
previous models of real-time computation. We have mechanically verified some

* This work was supported by National Aeronautics and Space Administration Langley
Research Center and the US Naval Research Laboratory under contract NAS1-18969
and by the US Naval Research Laboratory contract N00015-92-C-2177. Connie Heit-
meyer (NRL) suggested the railroad crossing example. Sam Owre (SRI) assisted with
the use of PVS. The helpful comments of John Rushby (SRI), Jayadev Misra (Uni-
versity of Texas at Austin), Ralph Jeffords (Locus, Inc.), Jens Skakkebmk (Technical
University of Denmark), and the anonymous referees are gratefully acknowledged.

281

simple real-time protocols using PVS [OILS92], a general-purpose specification
and verification environment based on higher-order logic.

There are numerous real-time extensions to propositional temporal logics
that can be applied to the verification of finite-state systems with real-time
constraints. A large class of problems can be handled in this manner. Alur and
Henzinger [AH91] survey the above variants of temporal logic from the point
of view of expressiveness and decidability. Real-time logic (RTL) [JM86] is an
extension of the traditional approach to formalizing time with an occurrence
function that records the time when an event occurs for the i'th time. The
Duration Calculus (DC) [CttR92] is a very expressive interval temporal logic
that can be used to reason about time-varying quantities. Skakkebmk, lZavn,
Rischel, and Chaochen [SRKC92] illustrate the use of the duration calculus for
specifying and verifying a realistic railroad crossing controller.

We are interested here in an approach to real-time that extends more conven-
tional approaches to the verification of state transition systems. In this regard,
Lamport's Temporal Logic of Actions (TLA) [Lam90] and Chandy and Misra's
Unity logic [CM88] are both elegant logics dealing with state transition systems.
Unity is a simplified temporal logic (with no nesting of temporal operators) for
nondeterministic state transition systems. It provides a small set of useful tempo-
ral operators that can be applied only to assertions on states and not on entire
temporal formulas as is the case in temporal logic. TLA is a modification of
temporal logic; it avoids the next-state operator and replaces it with a notion of
action that is a binary relation between adjacent states. Real-time extensions to
these logics have been discussed in the past. Abadi and Lamport [AL91] present
what they call "an old-fashioned recipe for real time" where they model time
within TLA using a special process that increments the value of time in discrete
steps. Special counter variables that track the value of time are used to spec-
ify timing constraints. Schneider, Bloom, and Marzullo [SBMgl] have extended
Proof Outline Logic to handle real time. The logic contains control predicates to
indicate where the control is in a program. Theyemploy an operator that records
the time when a control predicate last became true. Carruth and Misra [CM92]
employ a similar extension to Unity where for any assertion P, P (read "punch
P") records the absolute time at which P last went from being false to true. In
this approach, P is initially equal to the time in the initial state if P is true in
the initial state, otherwise, P is some negative value (since time ranges only over
nonnegative values). Maler, Manna, and Pnueli [MMP91] introduce a duration
operator 6, where for a temporal formula r the value of 6(r at any state s in
an execution of a program is the largest time duration ending in s for which r
has continuously held. If r is false at state s, then the value of *(r at s is 0.

These latter approaches are straightforward extensions of conventional rea-
soning techniques. The work we describe here is along the lines of these latter
approaches to real-time system behavior. We present a computational model
that includes a notion of real time. This model is embedded in the higher-order
logic of PVS but could also be applied to temporal logic, TLA, or Unity. Either
of the punch or the duration operators could have been used in our verification,

282

but we employ a new operator for reasoning about real-time behavior and illus-
trate its use with the examples of Fischer's mutual exclusion protocol [Lam87]
and a railroad crossing controller. Like the punch operator above, this new op-
erator, called since, operates on assertions. The value of [P[(read "since P") at
a given state in a program execution is the time that has elapsed since P last
held. For any P, the value of IPI in the initial state of the computation is arbi-
trarily set to some positive value (say 1) since there is no previous state where
P held and the initial value of Time is 0. Proofs involving the punch or the
duration operators can easily be recast in terms of the since operator, and vice-
versa. The since operator is inspired by, and is somewhat a generalization of,
the counter variables used by Abadi and Lamport [AL91], so that IPI provides
a counter that measures elapsed time for any given P without requiring explicit
counters to be introduced. The main claim of this paper, however, is that it is
feasible to undertake mechanical verification of real-time protocols using a sim-
ple computational model and a straightforward extension of existing techniques
for concurrent program verification.

2 Modeling and Proving Properties of Real-time Systems

We now state the computational model that we use to describe real-time systems.
Intuitively, a state is taken to be a mapping of program variables to values. A
trace is defined to be a infinite sequence of states. Each program variable maps a
given state to the value of the variable in that state. Time is a special program
variable whose value is not modified by a program. For our purpose, the value of
Time ranges over the non-negative rational numbers. A behavior is a trace where
the value of Time is non-decreasing and eventually increases above any bound
(non-Zeno 2) [AL91]. A rooted behavior is a behavior where the initial value of
Time is 0. A program identifies a set of rooted behaviors. A specification also
identifies a set of behaviors so that a program is also a kind of specification. A
program satisfies a specification if the set of behaviors given by the program is
a subset of the behaviors identified by the specification.

A state predicate is a predicate on states. A program is typically given in
terms of an initialization state predicate and a set of atomic actions. Each atomic
action is a binary relation between states. In any behavior satisfying a given pro-
gram, the initial state must satisfy the initialization predicate and each pair of
adjacent states must satisfy one of the atomic actions of the program. Specifi-
cations are often stated in terms of invariance assertions: a state predicate P is
invariant over a behavior if it holds of each state in the behavior. To show that
a program satisfies an invariant, it is typical to use induction over the states of
an arbitrary behavior satisfying the program.

There are a few small differences here with respect to previous approaches to
modeling time. In the work of Abadi and Lamport [AL91], there is an explicit
process that increments time so that ordinary actions themselves take no time,

2 The non-Zeno constraint is not used in any of the proofs in this paper.

283

but time-increment actions are interleaved with ordinary actions. The approach
of Maler, Manna, and Pnueli [MMP91] (based on that of Henzinger, Manna,
and Pnueli [HMP91]) similarly does not permit time and state to both change
in any single atomic action but interleaves time and state changes. They also
associate with each program transition, lower and upper bounds on the time
that a transition can be continuously enabled and not taken. The reasons for
these restrictions are somewhat technical but we feel that they make the model
complicated and contribute little to the formalization. The lower and upper
bounds on actions ought to be part of the program specification and not part of
the computational model.

We concentrate here on the verification of invariance properties. Time-
bounded versions of certain liveness properties can also be expressed as invari-
ance properties. For notational convenience , state predicates are written with
references to state Suppressed. The property that the value of the variable z in
a state is at least two greater than than the value of variable y is stated as
z > y + 2. An initialization assertion has 'the form initially{P}. An invariant
assertion on the state predicate P is stated as invariant;[P}. To prove that
invar iant{P} holds of a program with initialization predicate init and atomic
actions S~, we show that init D P and that the Hoare assertion {P}S~{P} holds
for each atomic action Si.

Some additional axioms about 'since P ' or]P] are needed to capture real-
time behavior. The first axiom asserts that the initial value [P[for any state
predicate P is 1. Any positive initial value of [P[would be fine (as long as it
is the same for every state predicate P) since this guarantees for example that
the value of Ifalsel at any state is always greater than the value of Time at that
state. This makes it clear that there is never a previous state where false held
since such a state would have a negative Time value.

init ially{IP [= 1}, for all P. (init)

The second axiom asserts that if P is true in the precondition of an atomic
action, then the value of [P[in the postcondition is equal to the delay for the
action.

{r = Time ^ P } S {[P[= Time - r}, for all P. (s tep l)

Note that the value of [PI in the postcondition does not depend on whether P is
true or false in the postcondition state; it only depends on the prior part of the
computation. With the above axiom, the difference between the postcondition
and precondition times (i.e., the delay for the action) is equal to the value of
[t rue 1 in the postcondition state.

The third axiom asserts that if P is false in the precondition of an action,
then the postcondition value of [P] is got by adding the delay for the action to
the precondition value of [P[.

{r = T ime h t = IF] A - ,P} S {IF[= t + (Time - r)}, for all P. (step2)

With the since operator and the above axioms, conventional techniques can
be used to establish the correctness of programs that exhibit real-time behavior.

284

The next two sections illustrate the use of the above formalization of real-time
state transition systems with the examples of a mutual exclusion protocol and
a railroad crossing controller.

3 An Example: Fischer's Mutua l Exclus ion Protocol

We now discuss the informal use of the above formalization of state transition
systems in verifying a simple protocol that exploits real time. This protocol is
described by Lamport [Lam87] and at tr ibuted to Michael Fischer. We use the
Unity notation to informally present the protocol but we are not directly using
the Unity logic. Also, unlike Unity, we are not placing any fairness constraints on
the transitions. An arbitrary number of processes are represented by the positive
natural numbers of the type posna t below. To each process i , there is a program
counter PC(i) . There is a program variable x which controls the entry into the
critical section. The program counters are initially set to i n i t , and the value of
x is initially 0. This simplified version of the protocol omits any exit action from
the critical section or a recovery action upon failure to enter the critical section.
We prove that this protocol guarantees that no two processes are simultaneously
in their critical section. In the protocols below, each process can take one of three
actions labeled:

T r y (i) : Takes process i from the i n i t to the t r y s ta te if x is 0.
W a i t (i) : Takes process i from the t r y state to the wai t state while setting x

to • There is an upper bound of h i on the amount of time that a process
spends in its t r y state, and a lower bound of lo on the amount of t ime a
process spends in its wa i t state, where h i < lo.

Cs (i) : Takes process i from the wai t state into its critical section cs provided
x is equal to i .

Progra~n mutex

declare x : na t , PC: [posnat -> { i n i t , t r y , wait, cs}]
ini t ial ly x = 0 I[([[i : posnat :: PC(i) = i n i t)
assign

(~i : posnat ::

PC(i) := try

x, PC(i) := i, wait

PC(i) := cs

>
end {mutex}

if x = 0 A PC(i) = init

if PC(i) = try

if x = i A PC(i) = wait

Two timing invariants are associated with timing constraints on the actions. 3
Note that the variables i, ' j , and k in the assertions below range over positive

3 These constraints are presented as axioms in this proof but they are more appropri-
ately viewed as a part of the program.

285

natural numbers. The first axiom associates an upper bound hi with the time
that any process spends in its t r y state by bounding the time that has elapsed
since the process was last in its previous i n i t state.

A x i o m 3.1

invar ian t{Vi : PC(i) = t r y D IPC(i) = i n i t l < hi} .

The second timing axiom associates a lower bound lo with the amount of time
separating the t r y state and a subsequent es state of any process. The axiom as
actually stated is more complicated than necessary but has the effect of asserting
that the t r y state must occur at least l o time units prior to any cs state of a
process.

A x i o m 3.2

invar ian t{Vi : PC(i) = cs D IPC(i) = waitJ + io _<]Pc(i) = t ry l} .

Note that we require

hi < 1o. (1)

We now informally argue that the mutex protocol guarantees each process
mutually exclusive access to its critical section. We prove that the protocol sat-
isfies a number of invariants that lead to the statement of mutual exclusion.
Some of these invariants are proved directly by induction on the behaviors satis-
fying the mutex program, whereas others are derived consequences of previously
proved invariants. The first invariant asserts that whenever the value of x is i ,
then PC(i) = t r y was last observed to be true no earlier than when x was last
observed to be 0. This invariant is obviously true since the T r y (i) action sets
the value of x to i , where i is positive.

Lemma 3.3

invar ian t{Vi : x = i D IPC(i) = t r y [_< Ix = 01}.

Proof. The invariant is established by induction over a possible program trace.
Initially, the antecedent is false. The action T r y (j), for any j , trivially preserves
the invariant since it ensures that x is equal to 0 thus falsifying the antecedent.
Stated as a Hoare formula, we have

{ t rue} T ry (i) {x ---- 0}.

The action Wai t (j), for i • j , preserves the invariant by falsifying the
antecedent. For the W a i t (i) action,, we get two cases. If x = 0 holds in the
precondition, we have by (s t e p 1) that

{x -- o} w a i t (i) { p c (i) = try(= Ix = ol = Itruel},

286

and hence the conclusion. If x = 0 is false in the precondition, we have by
(s t e p l) and (s tep2) that

{x # o ^ x - Ix = ol}
~ait(i)

{IPc(i) = try l = Itruel _< (X + Itruel) = Ix = ol}.

The action Cs (j) , for i ~ j preserves the invariant by falsifying the an-
tecedent since x = j in this case. For the action Cs(i) , we have by (s tep2)
that

{Y -- [PC(i) = t r y I _< Ix = 0[= X}
c,(i)

{(Y + I t rue D - IPC(i) = t r y I < Ix = 01 - (X +]truel) }.

m
The next invariant is another obvious consequence of the mutex program. It

asserts that if a process is in its t r y state, then x was equal to 0 more recently
than when the process was last in its i n i t state.

L e m m a 3.4

invar iant{Vi: PC(i) = t r y D Ix = Ol _< IPC(i) = initl}

Proof. By induction. Initially, the antecedent is false. For a Try(j) action, for
any j , by (s t e p l) , we have

{true} Try(j) {Ix = 01 = Itruel < Ipc(i) = in i t l } .

In the case of a Wait (j) action, for any j , we have two cases. If x = 0 holds
in the precondition then by (s t e p l) and (s tep2) , we have

{ X - 0 A Y - I P C (i) --- i n i t l }
Wait(j)

{Ix = ol = Itruel < (Y § Itruel) - IPc(i) - i n i t l } .

Otherwise, by (s tep2) we have

{X = Ix = 01 _< Y = IPC(i) = initl}
Wait(j)

{Ix = ot = (x + Itruel) < (Y + Itruel) = IPC(i) = i n i t l } .

The Cs(j) action, for any j , similarly preserves the invariant by using
(s tep2) to add the same delay to both sides of the precondition inequality
yielding the postcondition invariant. �9

The next lemma is the main step in the proof and does not mention time
in its statement. It asserts that when process i is in its critical section and x is
equal to k, then no process j is in its t r y state.

/ J

L e m m a 3.5

invar lant{Vj , i : PC(i) - cs A x = i D PC(j) r t ry} .

287

Proof. Suppose PC(j) = t ry , then by Invariants 3.1 and 3.4, we have

Ix = OI < [Pc (j) - - i n i t I < h i .

By Invariants 3.3 and 3.2, this yields

l o < IPc(i) = t r y l < Ix = 01 < h i

since 1PC(i) - wait I >_ 0. Hence, by the Inequality (1), we get a contradiction.

As a consequence of the above invariant(if process i is in its critical section
and x is i , then no other process can change the value of x.

L e m m a 3.6
invariant{Vi: PC(i) = cs D x = i}.

�9 Proof. By induction. Initially, the antecedent is false. The Try action is the only
action that can falsify the invariant, but by Invariant 3.5, (Vj: PC(j) r t ry) , so
that either PC(i) r is true and the invariant trivially holds, or no Try action
is enabled. �9

Lemma 3.7

invariant{Vi, j: PC(i) = cs ̂ PC(j) = cs D i = j }

Proof. Follows trivially from Invariant 3.6. �9

4 Verifying the Safety of a Railroad Crossing Controller

We next consider a railroad crossing system consisting of a gate, a controller, and
an arbitrary number of trains. Relative to the crossing, any train is either safe ,
approaching, or crossing. A train goes from being safe to approaching, then
to c ross ing and back to being safe. The controller senses when a train starts
approaching and sets a signal to lower within a delay of D time units. Within
G time units after the signal is set to lower, the gate is either down or starts
moving down. Once a gate starts moving down, it is down within L time units.
The gate then starts moving up only when no train is either approaching or in
the crossing. No bounds are placed on the time it takes for the gate to start
moving up or to be up once it has started moving up. The main correctness
criterion for the system is that when a train is in the crossing, the gate must
be down. To ensure this, we must assume that a train cannot go from safe to
cros s ing within D + G-t- L time units. Let Approaching define a state predicate
that holds if there is some train that is approaching in the given state. Similarly,
Crossing is a state predicate that holds if some train is crossing, and the state
predicate Safe is defined to hold when no train is approaching or crossing.
The railroad crossing system without the timing constraints can be written as
the Unity program shown below.

288

Program RR

declare train : [nat -> {safe, approaching, crossing}],
signal : {lower, raise},
gate : {up, down, moving_up, moving_down}

]nltJaUy (V p: train(p) = safe)
assign
(Op:

train(p) := approaching, if
D train(p) := crossing, if
train(p) := safe, if

)
D signal := lo.er, if
8 signal := raise, if

gate := moving_down, if
gate := down, if
gate := moving_up, if

D gate := up, if
end {RR}

train(p) = safe
train(p) = approaching
train~p) = crossing

Approaching A signal r lower
Safe A signal = lower
signal = lower A gate ~ down
gate = ,,oving_dovn
signal = raise h gate ~ up
gate = moving_up

As with the mutex example, the timing constraints associated with the trains,
controller, and gate are expressed as invariants. We omit these here but the full
details appear in a technical report [Sha92].

The key safety requirement can be stated as the invariant asserting that if
there is a train in the crossing, the gate is down.

L e m m a 4.1

invarlant{Crossing D gate = down A signal = lower}.

An additional utility requirement has also been proved. It asserts that if the
crossing has been safe (i.e., no train has either been approaching or crossing)
for a certain number of time units, then the gate is up.

We omit the details of the proof of safety for the railroad crossing. It is
significantly more complicated than the proof of the mutual exclusion protocol.
The proof employs various important laws regarding invariants and the since
operator which are listed below. The variable P and Q in the statements below
range over state predicates.

invariant{l(IP[< x)l < y DIP[_< x + y}.
invar iant{P D Q} ~ invariant{IQ[< IPJ}-
invarlant{[P v Q[= IPI V]P V QI - [QI}-
invariant{Ip A Qt = I P[v IP A -~QI = iF[} -
invariant{lP[_< [P A Q[}.

289

5 Verification Using PVS

We have described our approach to the formalization of real-time behavior and
illustrated it by sketching informal correctness proofs. These proofs have been
mechanically verified using the PVS specification/verification system [ORS92].
PVS consists of a specification language based on higher-order logic and an
interactive proof checker that uses powerful arithmetic decision procedures. The
higher-order logic underlying PVS employs a rich type system but only a small
part of the expressiveness of the type system is used for the real-time examples
above. A computation trace is a sequence of states, where the type s t a t e is an
undefined base type. A sequence of type T is a function from the built-in type
nat of natural numbers to T. A program variable of type T is just a function
from the type s t a t e to type T. The type of non-negative rational numbers can
be defined in PVS as a predicate subtype of the built-in type rational. The
program variable Time has the type shown below.

time : TYPE = {x : rational[x >= 0}

Time: [state -> time]

The notion of behavior can be captured by the following PVS declarations.

seq: VAR sequence[state]
i, j , k: VAR nat

nondec?(seq): bool =
(FOP~LL i , j : i>j IMPLIES Time(seq(j)) <= Time(seq(i)))

nonzeno?(seq): bool =
(FORALL (x~ r a t i o n a l) : (EXISTS i : x < Time(seq(i))))

behavior?(seq): bool = nondec?(seq) AND nonzeno?(seq)

behavior : TYPE = (behavior?)

The type (behavior?) signifies the subtype of sequences of state satisfy-
ing the behavior? predicate. The type s t a t e p r e d is the type of predicates on
s t a t e . The two axioms (s t e p l) and (s tep2) (in Section 2) are captured by
the following axiom defining s ince where aa ranges over behavior. The (ini t)
axiom is not needed since it is implicit in the definition of the type of rooted
behaviors.

since: [statepred -> [state-> time]]

since_ax: AXIOM

since(pp) (aa(i+l)) = (IF pp(aa(i))

THEN (Time (aa(i+l)) - Time (aa(i)))

ELSE since(pp) (aa(i)) +

(Time (aa(i+l)) - Time (aa(i)))
ENDIF)

The notion of invariance is defined for an assertion pp and a behavior aa as
below.

290

Inv(pp)(aa) : bool = (FORALL (n : nat) : pp(aa(n)))

An atomic program action is expressed as a binary predicate which relates
a precondition and a postcondition state, as illustrated by the predicate Check
which corresponds to the Try action encountered in Section refMutex.

program_counter : TYPE ffi { in i t , t ry , wait, cs}
x : [state -> nat]
PC: [state -> [process -> program_Counter]]

Check(s0 , s l) : b o o l =
(EXISTS i : P C (s 0) (i) -- in i t AND x(s0) = 0 AND x (s l) -- x (s 0) AND

PC(s l) = PC(s0) WITH [(i) := t r y])

The predicate program is defined to hold of a behavior if and only if the
initial condition holds of the initial state of the behavior and every adjacent pair
of states satisfies one of the atomic actions. The mutual exclusion property is
stated below, where the variable s ranges over s t a t e .

s a f e t y : THEOREN
program(aa) AND hi < Io IMPLIES
Inv(LAM s: (FORALL i, j:

PC(s)(i) = cs AND PC(s)(j) = cs IMPLIES i = j))(aa)

The proof of the mutual exclusion example follows the outline given in Sec-
tion 3. The verification using PVS makes moderately heavy use of induction and
the arithmetic decision procedures. Since the PVS proof makes explicit use of
state, there is some overhead work in unwinding definitions of functions such as
Inv in order to bring the expressions into a form that the decision procedures
can handle. The first attempt at verifying mutual exclusion protocol took a few
hours of effort, whereas the first attempt at verifying railroad crossing controller
took nearly a week.

6 Conclusions and Future Work

We have shown how nontrivial real-time protocols can be formalized and verified
within the higher-order logic of PVS. The approach we have adopted in formal-
izing real-time state transition systems works equally well for systems where
real time is irrelevant. We illustrai;ed our approach with two examples: Fischer's
real-time mutual exclusion protocol and a real-time railroad crossing controller.
The key safety properties of these two systems have been proved using the PVS
interactive proof checker. Once a reasonable informal outline of the proof has
been obtained, the mechanical verification is largely straightforward since PVS
employs decision procedures for equalities and arithmetic inequalities.

As formalized above, these systems are not finite-state systems. We allow ar-
bitrarily many processes in the mutual exclusion protocol and arbitrarily many
trains in the case of the railroad crossing. Our future efforts will be directed
towards making the mechanical verification of real-time systems more system-
atic, automatic, and compositional. We believe that with such improvements,

291

mechanical verification based on interactive theorem proving can be competitive
with model-checking in terms of human effort on similar finite-state systems.

References

[Att91]

[AL91]

[C~R92]

[CM88]

[CM92]

[dB~dRR91]

[ttMP91]

[J~86]

[Lam87]

[Lam90]

[MMPgl]

[ORS92]

[Pnu77]

[SBM91]

[Sha92]

[SRRC92]

R. Alur and T. A. Henzinger. Logics and models of real time: A survey.
In de Bakker et a]. [dBHdRR91], pages 74--106.
M. Abadi and L. Lamport. An old-fashioned recipe for real time. In
de Bakker et al. [dBHdRR91], pages 1--27.
Zhou Chaochen, C. A. R. Hoare, and A. P. Ravn. A calculus of durations.
Information Processing Letters, 40(5):269-276, 1992.
K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foun-
dation. Addison-Wesley, Reading, MA, 1988.
J. A. Carruth and J. Misra. Proof of a real-time mutual-exclusion algo-
rithm. Notes on UNITY: 32-92, 1992.
J. W. de Bakker, C. I-Inizing, W.P. de Roever, and G. Rozenberg, edi-

tors. Real Time: Theory in Practice, volume 600 of Lecture Notes in
Computer Science, REX Workshop, Mook, The Netherlands, June 1991.
Springer Verlag.
T. A. Henzinger, Z. Manna, and A. Pnueli. Timed transition systems. In

�9 de Bakksr et al. [dBHdRRgl], pages 226--251.
Farnam Jahanian and Aloysius Ka-Lau Mok. Safety analysis of timing
properties in real-time systems. IEEE Transactions on So]ttoare Engi-
neering, SE-12(9):890-904, September 1986.
Leslie Lamport. A fast mutual exclusion algorithm. ACM Transactions
on Computer Systems, 5(1):1-11, February 1987.
Leslie Lamport. The temporal logic of actions. Technical Report 57, DEC
Systems Research Center, Palo Alto, CA, April 1990. A substantially
modified version is available dated January 1991.
O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In
de Bakker et al. [dBHdRR91], pages 447---484.
S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification
system. In Deepak Kapur, editor, 11th International Conference on Au-
tomated Deduction (CADE), volume 607 of Lecture Notes in Artificial
Intelligence, pages 748-752, Saratoga, NY, 1992. Springer Verlag.
A. Pnueli. The temporal logic of programs. In Proc. 18th Symposium on
Foundations of Computer Science, pages 46-57, Providence, RI, Novem-
ber 1977. ACM.
F. B. Schneider, B. Bloom, and K. Marzullo. Putting time into proof
outlines. In de Bakker et al. [dBHdRRgl], pages 618--639.
N. Shanlc~r. Mechanized verification of real-time systems using PVS.
Technical Report SRI-CSL-12, SRI International Computer Science Lab-
oratory, Menlo Park, CA, 1992.
J. U. Sl~kksbmk, A. P. Ravn, H. Rischel, and Zhou Chaochen. Specifica-
tion of embedded, real-time systems. In Proceedings of 199~ Euromicro
Workshop on Real-Time Systems. IEEE Computer Society Press, 1992.

