Abstract
We prove that polynomial size discrete synchronous Hopfield networks with hidden units compute exactly the class of Boolean functions PSPACE/poly, i.e., the same functions as are computed by polynomial space-bounded nonuniform Turing machines. As a corollary to the construction, we observe also that networks with polynomially bounded interconnection weights compute exactly the class of functions P/poly.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aarts, E., Korst, J. Simulated Annealing and Boltzmann Machines. John Wiley & Sons, Chichester, 1989.
Anderson, J. A., Rosenfeld, E. (eds.) Neurocomputing: Foundations of Research. The MIT Press, Cambridge, MA, 1988.
Balcázar, J. L., Díaz, J., Gabarró, J. On characterizations of the class PSPACE/poly. Theoret. Comput. Sci. 52 (1987), 251–267.
Balcázar, J. L., Díaz, J., Gabarró, J. Structural Complexity I. Springer-Verlag, Berlin Heidelberg, 1988.
Balcázar, J. L., Gavaldà, R., Siegelmann, H. T., Sontag, E. D. Some structural complexity aspects of neural computation. Presented at the 8th Ann. Conf. on Structure in Complexity Theory (San Diego, CA, May 1993).
Bruck, J. On the convergence properties of the Hopfield model. Proc. of the IEEE 78 (1990), 1579–1585.
Durbin, R., Willshaw, D. An analogue approach to the Travelling Salesman Problem using an elastic net method. Nature 326 (1987), 689–691.
Fogelman, F., Goles, E., Weisbuch, G. Transient length in sequential iterations of threshold functions. Discr. Appl. Math. 6 (1983), 95–98.
Goles, E., Fogelman, F., Pellegrin, D. Decreasing energy functions as a tool for studying threshold networks. Discr. Appl. Math. 12 (1985), 261–277.
Goles, E., Martínez, S. Exponential transient classes of symmetric neural networks for synchronous and sequential updating. Complex Systems 3 (1989), 589–597.
Goles, E., Martínez, S. Neural and Automata Networks. Kluwer Academic, Dordrecht, 1990.
Goles, E., Olivos, J. The convergence of symmetric threshold automata. Info. and Control 51 (1981), 98–104.
Haken, A. Connectionist networks that need exponential time to converge. Manuscript, 10 pp., January 1989.
Haken, A., Luby, M. Steepest descent can take exponential time for symmetric connection networks. Complex Systems 2 (1988), 191–196.
Hartley, R., Szu, H. A comparison of the computational power of neural networks. In: Proc. of the 1987 Internat. Conf. on Neural Networks, Vol. 3. IEEE, New York, 1987. pp. 15–22.
Hinton, G. E., Sejnowski, T. E. Learning and relearning in Boltzmann machines. In [31], pp. 282–317.
Hertz, J., Krogh, A., Palmer, R. G. Introduction to the Theory of Neural Computation. Addison-Wesley, Redwood City, CA, 1991.
Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. USA 79 (1982), 2554–2558. Reprinted in [2], pp. 460–464.
Hopfield, J. J. Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Nat. Acad. Sci. USA 81 (1984), 3088–3092. Reprinted in [2], pp. 579–583.
Hopfield, J. J., Tank, D. W. “Neural” computation of decisions in optimization problems. Biol. Cybern. 52 (1985), 141–152.
Kamp, Y., Hasler, M. Recursive Neural Networks for Associative Memory. John Wiley & Sons, Chichester, 1990.
Karp, R. M., Lipton, R. J. Turing machines that take advice. L'Enseignement Mathématique 28 (1982), 191–209.
Kleene, S. C. Representation of events in nerve nets and finite automata. In: Automata Studies (ed. C. E. Shannon, J. McCarthy). Annals of Mathematics Studies n:o 34. Princeton Univ. Press, Princeton, NJ, 1956. Pp. 3–41.
Kohonen, T. Self-Organization and Associative Memory. Springer-Verlag, Berlin Heidelberg, 1989 (3rd Edition).
Lepley, M., Miller, G. Computational power for networks of threshold devices in an asynchronous environment. Unpublished manuscript, Dept. of Mathematics, Massachusetts Inst. of Technology, 1983.
McCulloch, W. S., Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5 (1943), 115–133. Reprinted in [2], pp. 18–27.
Minsky, M. L. Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs, NJ, 1972.
Orponen, P. Neural networks and complexity theory. In: Proc. of the 17th Internat. Symp. on Mathematical Foundations of Computer Science (ed. I. M. Havel, V. Koubek). Lecture Notes in Computer Science 629, Springer-Verlag, Berlin Heidelberg, 1992. Pp. 50–61.
Parberry, I. A primer on the complexity theory of neural networks. In: Formal Techniques in Artificial Intelligence: A Sourcebook (ed. R. B. Banerji). Elsevier-North-Holland, Amsterdam, 1990. Pp. 217–268.
Poljak, S., Sura, M. On periodical behaviour in societies with symmetric influences. Combinatorica 3 (1983), 119–121.
Rumelhart, D. E., McClelland, J. L., et al. (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1. The MIT Press, Cambridge, MA, 1986.
Sánchez-Sinencio, E., Lau, C. Artificial Neural Networks: Paradigms, Applications, and Hardware Implementations. IEEE Press, New York, 1992.
Siegelmann, H. T., Sontag, E. D. Analog computation via neural networks. Presented at the 2nd Israel Symp. on Theory of Computing and Systems (Natanya, Israel, June 1993).
Wegener, I. The Complexity of Boolean Functions. John Wiley & Sons, Chichester, and B. G. Teubner, Stuttgart, 1987.
Wiedermann, J. Complexity issues in discrete neurocomputing. In: Aspects and Prospects of Theoretical Computer Science. Proc. of the 6th Meeting of Young Computer Scientists (ed. J. Dassow, J. Kelemen). Lecture Notes in Computer Science 464, Springer-Verlag, Berlin Heidelberg, 1990. Pp. 93–108.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1993 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Orponen, P. (1993). On the computational power of discrete Hopfield nets. In: Lingas, A., Karlsson, R., Carlsson, S. (eds) Automata, Languages and Programming. ICALP 1993. Lecture Notes in Computer Science, vol 700. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56939-1_74
Download citation
DOI: https://doi.org/10.1007/3-540-56939-1_74
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-56939-8
Online ISBN: 978-3-540-47826-3
eBook Packages: Springer Book Archive