
H. Grunbacher, R. W. Hartenstein, Eds., Field-Programmable Gate Arrays: Architectures and Tools for Rapid
Prototyping, Berlin: Springer-Verlag, pp. 44-51, 1993.

MONTAGE: An FPGA for Synchronous and
Asynchronous Circuits

Scott Hauck, Gaetano Borriello, Steven Burns, Carl Ebeling
Department of Computer Science and Engineering
University of Washington
Seattle, WA 98195

Abstract

Field-programmable gate arrays are frequently used to implement system interfaces and glue logic. However, there
has been little attention given to the special problems of these types of circuits in FPGA architectures. In this paper
we describe Montage, a Triptych-based FPGA designed for implementing asynchronous logic and interfacing
separately-clocked synchronous circuits. Asynchronous circuits have different requirements than synchronous
circuits, which make standard FPGAs unusable for asynchronous applications. At the same time, many
asynchronous design methodologies allow components with greatly different performance to be substituted for one
another, making a design environment which migrates between FPGA, MPGA, and semi-custom implementations
very attractive. Similar problems also exist for interfacing separately-clocked synchronous circuits. We discuss
these problems, and demonstrate how the Montage FPGA satisfies the demands of these classes of circuits.

Introduction

Field-programmable gate arrays provide an ideal implementation medium for system interface and glue logic. They
integrate large amounts of random logic and simple data paths, and can be easily reprogrammed to reflect changes in
system components. Unfortunately, most of the effort in designing FPGA architectures has ignored the special
problems of these types of circuitry. Interface and glue logic require support for interfacing asynchronous logic to
synchronous logic, interconnecting separately-clocked synchronous components, and controlling certain circuit delays
[Borriello 1988], all of which are largely ignored by current architectures.

Asynchronous circuits are also not well served by current FPGAs. Implementations of asynchronous logic must
consider hazards in the logic, synchronization and arbitration of events, and strict adherence to the timing
assumptions of the design methodologies [Martin 1990, Sutherland 1989]. Unfortunately, it is not possible to
implement these circuits in a robust manner in current FPGAs. Some of the elements required (most importantly,
arbiters that resolve conflicts between two concurrently arriving signals) are not implementable in the standard digital
logic found in these devices. In addition, the logic and routing elements must be designed more carefully in order to
avoid extra "glitches" on lines, since in asynchronous circuits every transition is important. Finally, routing
resources must have predictable, optimizeable delays in order to meet timing assumptions in the design
methodologies.

However, the problems are not restricted simply to the architectures themselves. The mapping software also must
be altered to handle the demands of asynchronous logic. Primarily, there are much stricter timing demands that must
be upheld. Bundled data and isochronic forks both require signals to be routed with special delay demands, demands
that impact placement of logic cells as well. Also, the logic decomposition used to break logic blocks down to the
size required by an FPGA (the covering problem) cannot simply use the algorithms for synchronous logic. For
quasi-delay insensitive circuits, where the only timing assumptions made are those of isochronic forks, standard
synchronous logic decomposition techniques can add extra levels of logic incorrectly, putting hazards into the circuit.

Related work [Brunvand 1991] has looked at mapping asynchronous circuits to Actel electrically-programmable gate
arrays. Although the paper outlined an implementation strategy based on a fairly rich library of macro blocks, the
underlying limitations of the Actel parts made it difficult to handle arbitration and synchronization, and the complex
routing structure did not allow adequate control of routing delays. In addition, we feel that any antifuse-based FPGA
is less desirable for asynchronous circuits because of the strict assumptions that must be made about circuit delays.
These may require chip delay testing, which is impossible in an unprogrammed antifuse system as path delays
cannot be measured until after programming.

The Architecture

The Montage FPGA is a version of the Triptych architecture designed to handle synchronous interface and
asynchronous circuits. Since much of Montage is identical to Triptych, we direct readers unfamiliar with this
architecture to [Hauck 1992]. Like Triptych, Montage is a RAM-based FPGA, which is preferable to antifuses
because it allows the chip to be programmed for delay testing without permanently configuring it.

(a) (b) (c) (d)

Figure 1. The overall structure of the Montage FPGA shown in a progression of steps. The basic
fanin/fanout structure (a) is augmented with segmented routing channels (b) attached to a third RLB input
and output. The structure (c) is obtained by merging two copies of (b), with data flowing in opposite
directions in the two copies. Shown in (d) are the connections between the two copies, which permit
communication between the two copies, in order to implement sequential logic.

The Montage global routing structure is identical to the Triptych routing structure, with diagonal connections
between local cells, augmented with vertical segmented channels (see figure 1). This structure has proven to be
effective for mapping general synchronous circuits. It is even better suited to asynchronous circuits, where one
expects to find much more tightly connected subcircuits, and in general less random global routing. Also shared
with Triptych is the general philosophy of allowing mappings to fix the tradeoff between logic and routing resources
by having logic blocks capable of performing routing functions.

FU

Figure 2. Montage routing and logic block (RLB) design. The RLB consists of: 3 multiplexers for the
inputs, a functional unit, 3 multiplexers for the outputs, and tristate drivers for the segmented channels.

A Montage RLB (shown in figure 2) has three inputs and three outputs, and a functional unit (FU) which operates
on the three inputs. There are two different types of functional units. The first is a logic block, which implements
logic functions and stateholding elements. As shown in figure 3, the logic block has a function block capable of
implementing any function of 3 inputs. The switch logic function block shown was chosen because it does not
suffer from charge sharing. This is important because asynchronous circuits require very clean signals, with
absolutely no extraneous transitions. The function output can be fed through a master-slave d-latch. This d-latch
can be configured with one of two clocks in synchronous mode (allowing two independently clocked synchronous
circuits to coexist on a chip), or with a choice of initialization state in asynchronous mode. In the asynchronous
initialization mode, the latch is set to a value during programming and holds the function output to this value until
enough time has passed for the circuit to reach a valid operating state, at which point the latch is made transparent.
Each RLB can choose independently how to use the d-latch, so on a single chip there can be two separately clocked

synchronous circuits, asynchronous elements initialized with the built-in circuitry, and unlatched logic blocks. Note
that any one of the three logic block inputs can be replaced with a feedback line carrying the d-latch’s output value.
This feature is used in two separate ways. For synchronous circuit elements, this line carries the latch output. This
allows a function to be dependent on its previous value, implementing simple state machines in a single cell. For
asynchronous elements, this line allows state-holding (non-combinational) elements to be built. This is done by
expressing the state-holding function of n inputs as a combinational function of (n+1) inputs, where the extra input
is the function's previous value. Thus, a single logic block is capable of implementing any 3-input combinational
function, or a 2-input stateholding function such as an asynchronous S-R flipflop or a Muller C-Element.

Outputs

Inputs

C1 C2
AIφ1φ2 φ1φ2

φ1 φ2

Inputs
Outputs

Vdd

Figure 3. The two types of functional units: the logic block (left) and the arbiter unit (right).

The second type of functional unit is an arbiter block. This block is capable of implementing an arbiter, an enabled
arbiter, or a synchronizer, with all inputs completely permutable and invertable. Although we expect these blocks to
be used infrequently, the roles they serve in asynchronous circuits are essential, and are not implementable in
standard digital logic. Thus, they must appear as special, built-in blocks in any FPGA which hopes to implement
asynchronous circuits, but which does not allow mappings to program circuits at the transistor level (for an example
of an EPGA which might allow sufficient transistor-level programming to implement an arbiter, see [Marple 1992]).
For examples of how both types of blocks are used, please see figure 4.

Currently we plan to have a 15:1 ratio between the number of logic blocks and arbiter blocks. This number was
chosen based on the relative infrequency of arbiters and synchronizers in typical asynchronous circuits. Since we
found that typical Triptych mappings used 25% of their RLBs for routing only, jobs which the arbiter RLBs in
Montage are capable of handling, we believe that most unused arbiters will be absorbed into this factor. However,
we have taken care to ensure arbiter blocks occupy the same amount of area as logic blocks, allowing easy alteration
of the arbiter mix in Montage implementations should it prove necessary.

A last important point to be made about the architecture is how the Montage routing structure handles bundled data
and isochronic forks. For bundled data, the Montage routing structure’s simplicity makes it much more feasible to
design a router which ensures that bundled-data control signals take longer paths than all of their data bits. For
isochronic forks, there are two different implementation styles dependent on the type of isochronic forks. Isochronic
forks can be broken into two classes: one-way, where the only requirement is that a signal reach one end of the fork
before it reaches the other; and two-way, where the signal is required to reach both ends of the fork at the same time.
For one-way isochronic forks, the signal is routed to the RLB of the critical end of the fork, and is then routed back
out of this block to the other side of the fork. Thus, the dual routing and logic nature of a Montage RLB ensures
that the signal reaches one cell before the other. For two-way isochronic forks, the two ends of the fork are placed
either off the same interconnect line, or off diagonals flowing from a shared source RLB. In this way, the isochronic
fork depends on the correct speed of very localized elements, delays which can easily be checked during initial chip
verification.

Future Work

The development of an FPGA for asynchronous circuits opens up several new avenues of exploration. The entire
process of mapping for FPGAs must be re-evaluated for this domain. Most obviously, placement algorithms must
take into account the constraints generated by bundled data and isochronic forks, and routers must ensure these

constraints are met. A more subtle issue arises in the covering process. Quasi-delay insensitive circuits, which
make no timing assumptions other than that of isochronic forks, cannot always be decomposed using standard logic
decomposition techniques. The problem is that when a logic function is decomposed, the lines introduced to connect
the subcomponents may now have transitions on them that did not exist in the original circuit. Since these
transitions are obviously not properly sensed in the original circuit, where they did not even exist, it can cause the
circuit to malfunction. Thus, new covering techniques must be explored, such as a complete resynthesis from the
original circuit description.

C

vu
x b

v u
xb

¬aiao

eoei

u

u

co ci

bo¬bi

ao ao

ai

eo

ao
ai
s1

eo

ci
ci
u

ci

ei

u

u

ei

co

u
ei bi

s2 t2

co

bi

s2
bi
bo

ei
ao

t1

s1
ai

t1

ci
t2

bo

bo bo

C

Toggle

C

Toggle

d1 d2 d3 d4

r3

r4

r5

r6

x1 x2

c1 c2 c3

r1

r2

d0

x1
d1

d2
x1

x2
d3

d4
x2

d3
d2
d3

x2
d4
d2

d1

d1

x1
d2

d1
d0
x2

x2
c1

x2
c1
x1

c1
c2
x2

x1
r1
x2

x2
r3
x1

x2
r3 r5

x2

x2
x2

x2

x1
x1

x1

x1

x2
x1
x1

x1
x2

x1

r2

r4

x1

x1

x1
x1

d3
d2

d2

c2

c2
x2

c2
c3

x2

r4

r6

d4
d4

d4
d4

Figure 4. Two example circuits: (left) Martin’s fair arbiter [Martin 1990], built with two synchronizers
(arbiter blocks have grey outlines), and (right) Sutherland’s micropipelined FIFO [Sutherland 1989]. Note
that although only two levels of the FIFO are shown, the mapping fits together for longer FIFOs.

Acknowledgments

This research was funded in part by the Defense Advanced Research Projects Agency under Contract N00014-J-91-
4041. Gaetano Borriello and Carl Ebeling were supported in part by NSF Presidential Young Investigator Awards,
with matching funds provided by IBM Corporation and Sun Microsystems.

References
G. Borriello, “A New Interface Specification Methodology and its Application to Transducer Synthesis”, Technical

Report UCB/CSD 88/430, University Of California, Berkeley, May 1988.

E. Brunvand, “Implementing Self-Timed Systems with FPGAs”, International Workshop on Field-Programmable
Logic and Applications, Oxford, 1991.

S. Hauck, G. Borriello, C. Ebeling, “Triptych: An FPGA Architecture with Integrated Logic and Routing”,
Brown/MIT Conference on Advanced Research in VLSI and Parallel Systems, March 1992.

D. Marple, L. Cooke, “An MPGA Compatible FPGA Architecture”, First International ACM/SIGDA Workshop on
Field-Programmable Gate Arrays, Berkeley, 1992.

A. Martin, “Programming in VLSI: From Communicating Processes to Delay-insensitive Circuits”. In C. Hoare,
“UT Year of Programming Institute on Concurrent Programming”, Addison-Wesley, Reading, MA, 1990.

I. Sutherland, “Micropipelines”, CACM, Volume 32, Number 6, June 1989.

