Abstract
The selection problem of size n is, given a set of n elements drawn from an ordered universe and an integer r with 1<r ≤n, to identify the rth smallest element in the set. We study approximate and exact selection on deterministic concurrent-read concurrent-write parallel RAMs, where approximate selection with relative accuracy λ>0 asks for any element whose true rank differs from r by at most An. Our main results are: (1) For all t≥(log log n)4, approximate selection problems of size n can be solved in O(t) time with optimal speedup with relative accuracy \(2^{{{ - t} \mathord{\left/{\vphantom {{ - t} {\left( {\log \log n} \right)}}} \right.\kern-\nulldelimiterspace} {\left( {\log \log n} \right)}}^4 }\); no deterministic PRAM algorithm for approximate selection with a running time below Ο(log n/log log n) was previously known. (2) Exact selection problems of size n can be solved in O(log n/log log n) time with O(n log log n/log n) processors. This running time is the best possible (using only a polynomial number of processors), and the number of processors is optimal for the given running time (optimal speedup); the best previous algorithm achieves optimal speedup with a running time of O(log n log* n/log log n).
Supported by the ESPRIT Basic Research Actions Program of the EC under contract No. 7141 (project ALCOM II). Authors' email addresses: shiva@mpi-sb.mpg.de, torben@mpisb.mpg.de, raman@umiacs.umd.edu.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
M. Ajtai, J. Komlós, W. L. Steiger, and E. Szemerédi. Optimal parallel selection has complexity O(log log N). Journal of Computer and System Sciences, 38 (1989), pp. 125–133.
M. Ajtai, J. Komlós, and E. Szemerédi. An O(n log n) sorting network. In Proc. 15th ACM STOC (1983), pp. 1–9.
N. Alon and Y. Azar. Parallel Comparison Algorithms for Approximation Problems. Combinatorica, 11 (1991), pp. 97–122.
Y. Azar and N. Pippenger. Parallel selection. Discrete Applied Mathematics, 27 (1990), pp. 49–58.
P. Beame and J. Håstad. Optimal bounds for decision problems on the CRCW PRAM. Journal of the ACM, 36 (1989), pp. 643–670.
M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds for selection. Journal of Computer and System Sciences, 7 (1973), pp. 448–461.
V. Chvatal. Lecture notes on the new AKS sorting network. DIMACS Technical Report 92–29, 1992.
R. Cole. Parallel merge sort. SIAM Journal on Computing, 17 (1988), pp. 770–785.
R. Cole. An optimally efficient selection algorithm. Information Processing Letters, 26 (1988), pp. 295–299.
R. Cole and U. Vishkin. Faster optimal parallel prefix sums and list ranking. Information and Computation, 81 (1989), pp. 334–352.
P. F. Dietz and R. Raman. Heap construction on the CRCW PRAM. In preparation, 1993.
M. T. Goodrich. Using approximation algorithms to design parallel algorithms that may ignore processor allocation. In Proc. 32nd IEEE FOCS (1991), pp. 711–722.
T. Hagerup. The log-star revolution. In Proc. 9th STACS (1992), LNCS 577, pp. 259–278.
T. Hagerup. Fast deterministic processor allocation. In Proc. 4th ACM-SIAM SODA (1993), pp. 1–10.
T. Hagerup and R. Raman. Waste makes haste: Tight bounds for loose parallel sorting. In Proc. 33rd IEEE FOCS (1992), pp. 628–637.
T. Hagerup and R. Raman. Fast deterministic approximate and exact parallel sorting. In Proc. 5th ACM SPAA (1993), to appear.
M.S. Paterson. Improved sorting networks with O(log N) depth. Algorithmica, 5 (1990), pp. 75–92.
N. Pippenger. Communication Networks. In Handbook of Theoretical Computer Science, Vol A, Algorithms and Complexity (J. van Leeuwen, ed.). Elsevier/The MIT Press (1990), Chapter 15, pp. 805–833.
R. Reischuk. Probabilistic parallel algorithms for sorting and selection. SIAM Journal on Computing, 14 (1985), pp. 396–409.
L. G. Valiant. Parallelism in comparison problems. SIAM Journal on Computing, 4 (1975), pp. 348–355.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1993 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chaudhuri, S., Hagerup, T., Raman, R. (1993). Approximate and exact deterministic parallel selection. In: Borzyszkowski, A.M., Sokołowski, S. (eds) Mathematical Foundations of Computer Science 1993. MFCS 1993. Lecture Notes in Computer Science, vol 711. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57182-5_27
Download citation
DOI: https://doi.org/10.1007/3-540-57182-5_27
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-57182-7
Online ISBN: 978-3-540-47927-7
eBook Packages: Springer Book Archive