Abstract
This paper describes an Abstract Genetic Algorithm (AGA) that generalizes and unifies Genetic Algorithms (GA) and Simulated Annealing (SA), showing that the latter belongs to a family of genetic algorithms which we have called elitist probabilistic.
This work was supported by grant PGV 9220 from the Gobierno Vasco — Departamento de Educación, Universidades e Investigación
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aarts E.H.L., Korst J.H.M. (1989). Simulated Annealing and Boltzmann Machines. Wiley, Chichester.
Aarts E.H., Van Laarhoven P.J.M. (1985). Statistical Cooling: A general approach to combinatorial optimization problems. Philips J. Res. 40, 193–226.
Baba N. (1992). Utilization of stochastic automata and genetic algorithms for neural network learning. Parallel Problem Solving from Nature, 2 431–440.
Booker L.B., Goldberg D.E., Holland J.H. (1989). Classifiers systems and genetic algorithms. Artificial Intelligence 40, 235–282.
Chockalingam T., Arunkumar S. (1992). A randomized heuristics for the mapping problem: The genetic approach. Parallel Computing 18, 1157–1165.
Eiben A.E., Aarts E.H.L., van Hee K.M. (1990). Global Convergence of Genetic Algorithms: an Infinite Markov Chain Analysis. Computing Science Notes. Eindhoven University of Technology.
Eglese R.W. (1990). Simulated annealing: A tool for operational research. European Journal of Operational Research Vol. 46 271–281.
Geman S., Geman D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on pattern analysis and machine intelligence. Vol. PAMI-6, No. 6, 721–741.
Goldberg D.E. (1989). Genetic algorithms in search, optimization, machine learning. Addison-Wesley
Grefenstette J.J. (1989). Genetics Algorithms and their applications: Proceedings of the Second International Conference on Genetics Algorithms, ICGA '89.
Haario H., Saksman E. (1991). Simulated annealing process in general state space. Adv. Appl. Prob. Vol. 23, 866–893.
Hancock P.J.B. (1992). Recombination operators for the design of neural nets by genetic algorithm. Parallel Problem Solving from Nature, 2 441–450.
Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. Univ. of Michigan Press, Ann Arbor.
Kirkpatrick S., Gelatt C.D., Vecchi M.P. (1983). Optimization by simulated annealing. Science 220, 671–680.
Langley P. (1987) Machine Learning. Special Issue on Genetic Algorithms. Volume 3, Nos. 2/3.
Polani D., Uthmann T. (1992). Adaptation of Kohonen feature map topologies by genetic algorithms. Parallel Solving from Nature, 2 421–429
Rajasekaran S., Reif J.H. (1992). Nested annealing: a provable improvement to simulated annealing. Theorical Computer Science 99, 157–176.
Sugai Y., Hirata H. (1991). Hierarchical algorithm for a partition problem using simulated annealing: application to placement in VLSI layout. Int. J. Systems Sci. Vol. 22, No. 12, 2471–2487
Tam K.Y. (1992). Genetic algorithms, function optimization and facility layout design. European Journal of Operational Research 63, 322–346.
Tan H.L., Gelfand S.B. (1991). A cost minization approach to edge detection using simulated annealing. IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 14, No. 1, 3–18.
Venugopal V., Narendran T.T. (1992). Cell formation in manufacturing systems through simulated annealing: An experimental evaluation. European Journal of Operational Research. 63, 409–422.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1993 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Larrañaga, P., Graña, M., D'Anjou, A., Torrealdea, F.J. (1993). Genetic algorithms elitist probabilistic of degree 1, a generalization of simulated annealing. In: Torasso, P. (eds) Advances in Artificial Intelligence. AI*IA 1993. Lecture Notes in Computer Science, vol 728. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57292-9_59
Download citation
DOI: https://doi.org/10.1007/3-540-57292-9_59
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-57292-3
Online ISBN: 978-3-540-48038-9
eBook Packages: Springer Book Archive