Skip to main content

Heuristic search strategies for Cylindrical Algebraic Decomposition

  • Conference paper
  • First Online:
Artificial Intelligence and Symbolic Mathematical Computing (AISMC 1992)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 737))

Abstract

In this paper, we report how certain AI techniques can be used to speed up an algebraic algorithm for deciding the satisfiability of a system of polynomial equations, dis-equations, and inequalities. The algebraic algorithm (a restructured version of Cylindrical Algebraic Decomposition) is non-deterministic, in the sense that it can often achieve the same goal, but following different paths requiring different amounts of computing times. Obviously one wishes to follow the least time-consuming path. However, in practice it is not possible to determine such an optimal path. Thus it naturally renders itself to the heuristic search techniques of AI. In particular we experimented with Best-First strategy. The experimental results indicate that such AI techniques can often help in speeding up the algebraic method, sometimes dramatically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. S. Arnon. Algorithms for the geometry of semi-algebraic sets. Technical Report 436, Computer Sciences Dept, Univ. of Wisconsin-Madison, 1981. Ph.D. Thesis.

    Google Scholar 

  2. D. S. Arnon. A bibliography of quantifier elimination for real closed fields. Journal of Symbolic Computation, 5(1,2):267–274, 1988

    Google Scholar 

  3. D. S. Arnon. A cluster-based cylindrical algebraic decomposition algorithm. Journal of Symbolic Computation, 5(1,2):189–212, 1988.

    Google Scholar 

  4. D. S. Arnon, G. E. Collins, and S. McCallum. Cylindrical algebraic decomposition I: The basic algorithm. SIAM J. Comp., 13:865–877, 1984.

    Google Scholar 

  5. M. Ben-Or, D. Kozen, and J. H. Reif. The complexity of elementary algebra and geometry. J. Comput. System Sci., 32(2):251–264, 1986.

    Google Scholar 

  6. W. Böge. Decision procedures and quantifier elimination for elementary real algebra and parametric polynomial nonlinear optimization. Manuscript in preparation, 1980.

    Google Scholar 

  7. B. Buchberger and H. Hong. Speeding-up quantifier elimination by Groebner bases. Technical Report 91-06.0, Research Institute for Symbolic Computation, Johannes Kepler University A-4040 Linz, Austria, 1991.

    Google Scholar 

  8. J. Canny. Some algebraic and geometric computations in PSPACE. In Proceedings of the 20th annual ACM symposium on the theory of computing, pages 460–467, 1988.

    Google Scholar 

  9. P. J. Cohen. Decision procedures for real and p-adic fields. Comm. Pure and Applied Math., 22:131–151, 1969.

    Google Scholar 

  10. G. E. Collins. Quantifier elimination for the elementary theory of real closed fields by cylindrical algebraic decomposition. In Lecture Notes In Computer Science, pages 134–183. Springer-Verlag, Berlin, 1975. Vol. 33.

    Google Scholar 

  11. G. E. Collins and H. Hong. Partial cylindrical algebraic decomposition for quantifier elimination. Journal of Symbolic Computation, 12(3):299–328, September 1991.

    Google Scholar 

  12. G. E. Collins and R. Loos. The SAC-2 Computer Algebra System. Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria A-4040.

    Google Scholar 

  13. N. Fitchas, A. Galligo, and J. Morgenstern. Algorithmes repides en séquential et en parallele pour l'élimination de quantificateurs en géométrie élémentaire. Technical report, UER de Mathématiques Universite de Paris VII, 1987. To appear in: Séminaire Structures Algébriques Ordonnées.

    Google Scholar 

  14. D. Yu. Grigor'ev. The complexity of deciding Tarski algebra. Journal of Symbolic Computation, 5(1,2):65–108, 1988.

    Google Scholar 

  15. D. Yu. Grigor'ev and N. N. Vorobjov (Jr). Solving systems of polynomial inequalities in subexponential time. Journal of Symbolic Computation, 5(1,2):37–64, 1988.

    Google Scholar 

  16. J. Heintz, M-F. Roy, and P. Solernó. On the complexity of semialgebraic sets. In Proc. IFIP, pages 293–298, 1989.

    Google Scholar 

  17. C. Holthusen. Vereinfachungen für Tarski's Entscheidungsverfahren der elementaren reellen Algebra. PhD thesis, University of Heidelberg, January 1974.

    Google Scholar 

  18. H. Hong. An improvement of the projection operator in cylindrical algebraic decomposition. Technical Report OSU-CISRC-12/89 TR55, Computer Science Dept, The Ohio State University, 1989.

    Google Scholar 

  19. H. Hong. An improvement of the projection opérator in cylindrical algebraic decomposition. In International Symposium of Symbolic and Algebraic Computation, pages 261–264, 1990.

    Google Scholar 

  20. H. Hong. Improvements in CAD-based Quantifier Elimination. PhD thesis, The Ohio State University, 1990.

    Google Scholar 

  21. H. Hong. Comparison of several decision algorithms for the existential theory of the reals. Technical Report 91-41.0, Research Institute for Symbolic Computation, Johannes Kepler University A-4040 Linz, Austria, 1991. Submitted to Journal of Symbolic Computation.

    Google Scholar 

  22. H. Hong. Parallelization of quantifier elimination on workstation network. Technical Report 91-55.0, Research Institute for Symbolic Computation, Johannes Kepler University A-4040 Linz, Austria, 1991.

    Google Scholar 

  23. H. Hong. Simple solution formula construction in cylindrical algebraic decomposition based quantifier elimination. Technical Report 92-02.0, Research Institute for Symbolic Computation, Johannes Kepler University A-4040 Linz, Austria, 1992. To appear in International Conference on Symbolic and Algebraic Computation ISSAC-92.

    Google Scholar 

  24. J. R. Johnson. Algorithms for Polynomial Real Root Isolation. PhD thesis, The Ohio State University, 1991.

    Google Scholar 

  25. L. Langemyr. The cylindrical algebraic decomposition algorithm and multiple algebraic extensions. In Proc. 9th IMA Conference on the Mathematics of Surfaces, September 1990.

    Google Scholar 

  26. D. Lazard. An improved projection for cylindrical algebraic decomposition. Unpublished manuscript, 1990.

    Google Scholar 

  27. R. G. K. Loos. The algorithm description language ALDES (Report). ACM SIGSAM Bull., 10(1):15–39, 1976.

    Google Scholar 

  28. S. McCallum. An Improved Projection Operator for Cylindrical Algebraic Decomposition. PhD thesis, University of Wisconsin-Madison, 1984.

    Google Scholar 

  29. J. Pearl. Hueristics (Intelligent Search Strategies for Computer Problem Solving). Addison-Wesley, 1984.

    Google Scholar 

  30. J. Renegar. On the computational complexity and geometry of the first-order theory of the reals (part I). Technical Report 853, Cornell University, Ithaca, New York 14853-7501 USA, July 1989.

    Google Scholar 

  31. J. Renegar. On the computational complexity and geometry of the first-order theory of the reals (part II). Technical Report 854, Cornell University, Ithaca, New York 14853-7501 USA, July 1989.

    Google Scholar 

  32. J. Renegar. On the computational complexity and geometry of the first-order theory of the reals (part III). Technical Report 856, Cornell University, Ithaca, New York 14853-7501 USA, August 1989.

    Google Scholar 

  33. A. Seidenberg. A new decision method for elementary algebra. Ann. of Math, 60:365–374, 1954.

    Google Scholar 

  34. A. Tarski. A Decision Method for Elementary Algebra and Geometry. Univ. of California Press, Berkeley, second edition, 1951.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Calmet John A. Campbell

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hong, H. (1993). Heuristic search strategies for Cylindrical Algebraic Decomposition. In: Calmet, J., Campbell, J.A. (eds) Artificial Intelligence and Symbolic Mathematical Computing. AISMC 1992. Lecture Notes in Computer Science, vol 737. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57322-4_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-57322-4_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57322-7

  • Online ISBN: 978-3-540-48063-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics