Skip to main content

Learning qualitative physics reasoning from regime analysis

  • Conference paper
  • First Online:
Artificial Intelligence and Symbolic Mathematical Computing (AISMC 1992)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 737))

  • 172 Accesses

Abstract

One of the very basic rules we learn in an introductory course of physics is that two physical quantities, say Q 1 and Q 2, can only be compared when they have the same dimensional representation and, in addition, should be in the same system of units. This rule is also frequently applied to discard non-matching physcial formulae. In other words, the dimensional consistence of physical formulae must be fulfilled.

The rule we are talking about is in fact known as the Principle of Dimensional Homogeneity (PDH), which states that any physical law has to be dimensionally consistent to be meaningful.

In this paper we show that using the PDH and results from the Regime Analysis, it is possible to reason qualitatively about a physical system. In addition, as the whole process is algorithmic, this allows automating the reasoning through a symbolic computer system. The system QDR-Qualitative Dimensional Reasoner has been developed for this task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. D. Forbus: Qualitative process theory. Artificial Intelligence, 24, 85–168, (1984).

    Google Scholar 

  2. K. D. Forbus: Qualitative physics: past, present and future. In: D. S. Weld and J. de Kleer (eds.): Readings in qualitative reasoning about physical systems. Morgan Kaufmann Publishers, Inc. 1990, pp. 11–39.

    Google Scholar 

  3. J. de Kleer and B. C. Williams: Diagnosis with behavioral modes. In: Proceedings of International Joint Conference in Artificial Intelligence, 1989, pp. 1324–1330.

    Google Scholar 

  4. J. Douglass and J. W. Roach: Hoist: A second-generation expert system based on qualitative physics. AI Magazine, 108–114, 1990.

    Google Scholar 

  5. D. Dvorak and B. J. Kuipers: Model-Based monitoring of dynamic systems. In: Proceedings of International Joint Conference in Artificial Intelligence, 1989, pp. 1238–1243.

    Google Scholar 

  6. M. M. Kokar: Qualitative monitoring of time-varying physical systems. In: Proceedings of the 29th. IEEE Conference on Decision and Control, vol. 3, 1990, pp. 1504–1508.

    Google Scholar 

  7. B. J. Kuipers: Qualitative simulation using time-scale abstraction. International Journal of AI in Engineering, 3, 185–191, 1988.

    Google Scholar 

  8. B. J. Kuipers: Artificial intelligence: a new approach to modeling and control. In: Proceedings of the 1st IFAC Symposium on Modeling and Control in Biomedical Systems, Venice, Italy, 1988.

    Google Scholar 

  9. D. T. Molle, B. J. Kuipers and T. F. Edgar: Qualitative modeling and simulation of dynamic systems. Computers and Chemical Engineering, 12, 853–866, 1988.

    Google Scholar 

  10. M. M. Kokar: Determining arguments of invariant functional descriptions. Machine Learning, 1, 403–422, 1986.

    Google Scholar 

  11. B. J. Kuipers and Y. T. Byun: A robust qualitative method for spatial learning in unknown environments. In: Proceedings of the American Association of Artificial Intelligence. Morgan Kaufman, Los Altos, CA, 1988.

    Google Scholar 

  12. B. J. Kuipers and J. P. Kassirer: Causal reasoning in medicine: analysis of a protocol. Cognitive Science, 8, 363–385, 1984.

    Google Scholar 

  13. P. J. Hayes: Naive physics manifesto. In: D. Michie (ed.): Expert Systems in the Micro Eletronic Age. Edinburg University Press, 1979, pp. 242–270.

    Google Scholar 

  14. J. de Kleer and J. S. Brown: A qualitative physics based on confluences. Artificial Intelligence, 24, 7–83, 1984.

    Google Scholar 

  15. B. J. Kuipers: Qualitative simulation. Artificial Intelligence, 29, 289–338, 1986.

    Google Scholar 

  16. D. S. Weld and J. de Kleer (eds.): Readings in Qualitative Reasoning about Physical Systems. Morgan Kaufmann Publishers, Inc. 1990.

    Google Scholar 

  17. R. Bhaskar and A. Nigam: qualitative physics using dimensional analysis. Artificial Intelligence, 45, 73–111, 1990.

    Google Scholar 

  18. W. L. Roque: Automated qualitative reasoning with dimensional analysis. Technical report # 255, Departamento de Matemática, Universidade de Brasilia, Brazil, 1991.

    Google Scholar 

  19. M. M. Kokar: Critical hypersurfaces and the quantity space. In: Proceedings of American Association of Artificial Intelligence, 1987, pp. 616–620.

    Google Scholar 

  20. I. Newton: Philosophiae Naturalis, Principia Mathematica II, prop. 32 (1713), ansl. A. Motte. University of California Press, Berkeley, 1946.

    Google Scholar 

  21. J-B. Fourier: Théorie Analytique de la Chaleur. Gauthier-Villars, Paris, 1888.

    Google Scholar 

  22. L. I. Sedov: Similarity and Dimensional Methods in Mechanics. Translated from Russian by M. Holt. Academic Press, New York, 1959.

    Google Scholar 

  23. R. Kurth: Dimensional Analysis and Group Theory in Astrophysics. Pergamon Press, Oxford, 1972.

    Google Scholar 

  24. J. P. Catchpole and G. Fulford: Dimensionless Groups. Ind. Eng. Chem, 58, 46–60, 1966. G. Fulford and J. P. Catchpole: Dimemsionless groups. Ind. Eng. Chem, 60, 71–78, 1968.

    Google Scholar 

  25. J. D. Barrow and F. J. Tipler: The Anthropic Cosmological Principle. Oxford University Press, 1986.

    Google Scholar 

  26. P. W. Bridgman: Dimensional Analysis. Yale University Press, 1922.

    Google Scholar 

  27. S. Dobrot: On the Foundations of Dimensional Analysis. Studia Mathematica, 14, 84–99, 1953.

    Google Scholar 

  28. H. Whitney: The mathematical of physical quantities, Part I: Mathematical models for measurements. American Mathematical Monthly, 75, 115–138, 1968. Part II: Quantity structures and dimensional analysis. American Mathematical Monthly, 75, 227–256, 1968.

    Google Scholar 

  29. E. de St Q. Issacson and M. de St Q., Issacson: Dimensional Methods in Engineering and Physics. John Wiley & Sons, New York, 1975.

    Google Scholar 

  30. E. Buckingham: On physically similar systems: Illustrations of the use of dimensional equations. Physical Review, IV, 345–376, 1914.

    Google Scholar 

  31. K. Srinivasan: Choice of vapour-compression heat pump working fluids. Int. Jour. Energy Research, 15, 41–47, 1990.

    Google Scholar 

  32. Encyclopedia of Science and Technology, 5th. edition, McGrow-Hill, 1982.

    Google Scholar 

  33. A. C. Hearn: REDUCE 3.3 User's Manual. The Rand Corporation, Santa Monica, CA, 1987.

    Google Scholar 

  34. M. A. H. MacCallum and F. J. Wright: Algebraic Computing with REDUCE. In: M. J. Rebouças and W. L. Roque (eds.): Proceedings of the First Brazilian School on Computer Algebra, vol. 1, Oxford University Press, 1991.

    Google Scholar 

  35. M. M. Kokar: Physical similarity generalizaion rule: learning and qualitative reasoning. Pre-print Northeastern University, Boston, MA, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Calmet John A. Campbell

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roque, W.L. (1993). Learning qualitative physics reasoning from regime analysis. In: Calmet, J., Campbell, J.A. (eds) Artificial Intelligence and Symbolic Mathematical Computing. AISMC 1992. Lecture Notes in Computer Science, vol 737. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57322-4_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-57322-4_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57322-7

  • Online ISBN: 978-3-540-48063-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics