Abstract
A dynamic algorithm can maintain the solution of a given problem under insertions and deletions of input objects. In this paper we propose a general scheme to obtain dynamic algorithms which is based on the abstract setting introduced by Clarkson and Shor. This scheme uses a novel data structure that combines the conflict graph and the history structure used by incremental algorithms. The randomized analysis of the dynamic algorithms assumes a probabilistic model of the update sequence, in which each currently present input object is equally likely to have been added by the previous insertion or to be deleted by the next deletion. We apply our general technique to obtain new and efficient algorithms for dynamically maintaining arrangements of line segments, lower envelopes of triangles, convex hulls and Voronoi diagrams of points in any dimension, and Voronoi diagrams of line segments in a plane.
This work has been partly supported by the ESPRIT Basic Research Action Program, under contract No. 7141 (project, ALCOM II).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
J.-D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec. Applications of random sampling to on-line algorithms in computational geometry. Discrete Comput. Geom., 8:51–71, 1992.
J. D. Boissonnat and K. Dobrindt. Randomized construction of the upper envelope of triangles in IR3. In Proc. 4th Canad. Conf. Comput. Geom., pages 311–315, 1992.
J-D. Boissonnat and M. Yvinec. Structures et algorithmes géométriques. To appear, 1994.
K. L. Clarkson, K. Mehlhorn, and R. Seidel. Four results on randomized incremental constructions. In Proc. 9th Sympos. Theoret. Aspects Comput. Sci., volume 577 of Lecture Notes in Computer Science, pages 463–474. Springer-Verlag, 1992.
K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry, II. Discrete Comput. Geom., 4:387–421, 1989.
O. Devillers, S. Meiser, and M. Teillaud. Fully dynamic Delaunay triangulation in logarithmic expected time per operation. Comput. Geom. Theory Appl., 2(2):55–80, 1992.
M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert, and R. E. Tarjan. Dynamic perfect hashing — upper and lower bounds. In Proc. 29th Annu. IEEE Sympos. Found. Comput. Sci., pages 524–531, 1988.
K. Dobrindt. Ph.D. thesis, Ecole de Mines de Paris, Paris, France, 1994.
H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, Heidelberg, West Germany, 1987.
L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental construction of Delaunay and Voronoi diagrams. Algorithmica, 7:381–413, 1992.
K. Mehlhorn. Sorting and Searching, volume 1 of Data Structures and Algorithms. Springer-Verlag, Heidelberg, West Germany, 1984.
K. Mehlhorn and S. Näher. Bounded ordered dictionaries in O(log log n) time and O(n) space. Inform. Process. Lett., 35:183–189, 1990.
K. Mulmuley. A fast planar partition algorithm, I. In Proc. 29th Annu. IEEE Sympos. Found. Comput. Sci., pages 580–589, 1988.
K. Mulmuley. Randomized multidimensional search trees: dynamic sampling. In Proc. 7th Annu. ACM Sympos. Comput. Geom., pages 121–131, 1991.
K. Mulmuley. Randomized multidimensional search trees: lazy balancing and dynamic shuffling. In Proc. 32nd Annu. IEEE Sympos. Found. Comput. Sci., pages 180–196, 1991.
O. Schwarzkopf. Dynamic maintenance of geometric structures made easy. In Proc. 32nd Annu. IEEE Sympos. Found. Comput. Sci., pages 197–206, 1991.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1993 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dobrindt, K., Yvinec, M. (1993). Remembering conflicts in history yields dynamic algorithms. In: Ng, K.W., Raghavan, P., Balasubramanian, N.V., Chin, F.Y.L. (eds) Algorithms and Computation. ISAAC 1993. Lecture Notes in Computer Science, vol 762. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57568-5_231
Download citation
DOI: https://doi.org/10.1007/3-540-57568-5_231
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-57568-9
Online ISBN: 978-3-540-48233-8
eBook Packages: Springer Book Archive