Abstract
In this work we consider some one-dimensional diffusion processes arising in single neurons' activity modelling and discuss some of the related theoretical and computational first passage time problems. With reference to the Wiener and the Ornstein-Uhlenbeck processes, we outline some theoretical methods and algorithmic procedures. In particular, the relevance of the computational methods to infer about asymptotic trends of the firing pdf is pointed out.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anderssen, R.S., DeHoog, F.R. and Weiss, R.: On the numerical solution of Brownian motion processes. J. Appl. Prob. 10 (1973) 409–418
Buonocore, A., Nobile, A.G. and Ricciardi, L.M.: A new integral equation for the evaluation of first-passage-time probability densities. Adv. Appl. Prob. 19 (1987) 784–800
Cerbone, G., Ricciardi, L.M. and Sacerdote, L.: Mean, variance and skewness of the first passage time for the Ornstein-Uhlenbeck process. Cybern. Syst. 12 (1981) 395–429
Daniels, H.E.: The minimum of a stationary Markov process superimposed on a U-shaped trend. J. Appl. Prob. 6 (1969) 399–408
Durbin, J.: Boundary-crossing probabilities for the Brownian motion and Poisson processes and techniques for computing the power of the Kolmogorov-Smirnov test. J. Appl. Prob. 8 (1971) 431–453
Favella, L., Reineri, M.T., Ricciardi, L.M. and Sacerdote, L.: First passage time problems and some related computational problems. Cybernetics and Systems 13 (1982) 95–128
Feller, W.: Parabolic differential equations and semigroup transformations. Ann. Math. 55 (1952) 468–518
Feller, W.: Diffusion processes in one dimension. Trans. Amer. Math. Soc. 77 (1954) 1–31
Feller, W.: An Introduction to Probability Theory and its Applications vol.2. Wiley, New York, 1966
Gerstein, G.L. and Mandelbrot, B.: Random walk models for the spike activity of a single neuron. Biophys. J. 4 (1964) 41–68
Giorno, V., Lánský P., Nobile, A.G., Ricciardi, L.M.: Diffusion approximation and first-passage-time problem for a model neuron. III. A birth-and-death process approach. Biol. Cybern. 58 (1988) 387–404
Giorno, V., Nobile, A.G., Ricciardi, L.M. and Sato, S.: On the evaluation of the first-passage-time densities via non-singular integral equations. Adv. Appl. Prob. 21 (1989) 20–36
Giorno, V., Nobile, A.G. and Ricciardi, L.M.: On the asymptotic behaviour of first-passage-time densities for one-dimensional diffusion processes and varying boundaries. Adv. Appl. Prob. 22 (1990) 883–914
Holden, A.V.: A note on convolution and stable distributions in the nervous system. Biol. Cybern. 20 (1975) 171–173
Karlin, S. and Taylor, H.M.: A Second Course in Stochastic Processes. Academic Press, New York, 1981
Lánský, P.: On approximations of Stein's neuronal model. J. Theor. Biol. 107 (1984) 631–647
Matsuyama, Y.: A note on stochastic modeling of shunting inhibition. Biol. Cybern. 24 (1976) 139–145
Matsuyama, Y., Shirai, K. and Akizuki, K.: On some properties of stochastic information processes in neurons and neuron populations. Kybernetik 15 (1974) 127–145
Nobile, A.G., Ricciardi, L.M. and Sacerdote, L.: Exponential trends of Ornstein-Uhlenbeck first-passage-time densities. J. Appl. Prob. 22 (1985) 360–369
Nobile, A.G., Ricciardi, L.M. and Sacerdote, L.: Exponential trends of first-passage-time densities for a class of diffusion processes with steady-state distribution. J. Appl. Prob. 22 (1985) 611–618
Park, C. and Schuurmann, F.J.: Evaluations of barrier-crossing probabilities of Wiener paths. J. Appl. Prob. 13 (1976) 267–275
Park, C. and Schuurmann, F.J.: Evaluations of absorption probabilities for the Wiener process on large intervals. J. Appl. Prob. 17 (1980) 363–372
Ricciardi, L.M.: Diffusion processes and related topics in Biology. (Lecture Notes in Biomathematics, vol. 14)., Springer, Berlin Heidelberg New York, 1977
Ricciardi, L.M.: Diffusion approximation and computational problems for single neurons activity. In: Amari S. and Arbib M.A. (eds.) Competition and Cooperation in Neural Nets. (Lecture Notes in Biomathematics, vol. 45). Springer, New York. 1982, 143–154
Rodieck, R.W., Kiang, N.Y.-S. and Gerstein, G.L.: Some quantitative methods for the study of spontaneous activity of single neurons. Biophys. J. 2 (1962) 351–368
Škvařil, J., Radii-Weiss, T., Bohdanecký, Z. and Syka, J.: Spontaneous discharge patterns of mesencephalic neurons, interval histogram and mean interval relationship. Kybernetik 9 (1971) 11–15
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1994 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Giorno, V., Nobile, A.G., Ricciardi, L.M. (1994). On some algorithmic and computational problems for neuronal diffusion models. In: Pichler, F., Moreno Díaz, R. (eds) Computer Aided Systems Theory — EUROCAST '93. EUROCAST 1993. Lecture Notes in Computer Science, vol 763. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57601-0_58
Download citation
DOI: https://doi.org/10.1007/3-540-57601-0_58
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-57601-3
Online ISBN: 978-3-540-48286-4
eBook Packages: Springer Book Archive