Skip to main content

On some algorithmic and computational problems for neuronal diffusion models

  • Conference paper
  • First Online:
Computer Aided Systems Theory — EUROCAST '93 (EUROCAST 1993)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 763))

Included in the following conference series:

  • 136 Accesses

Abstract

In this work we consider some one-dimensional diffusion processes arising in single neurons' activity modelling and discuss some of the related theoretical and computational first passage time problems. With reference to the Wiener and the Ornstein-Uhlenbeck processes, we outline some theoretical methods and algorithmic procedures. In particular, the relevance of the computational methods to infer about asymptotic trends of the firing pdf is pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anderssen, R.S., DeHoog, F.R. and Weiss, R.: On the numerical solution of Brownian motion processes. J. Appl. Prob. 10 (1973) 409–418

    Google Scholar 

  2. Buonocore, A., Nobile, A.G. and Ricciardi, L.M.: A new integral equation for the evaluation of first-passage-time probability densities. Adv. Appl. Prob. 19 (1987) 784–800

    Google Scholar 

  3. Cerbone, G., Ricciardi, L.M. and Sacerdote, L.: Mean, variance and skewness of the first passage time for the Ornstein-Uhlenbeck process. Cybern. Syst. 12 (1981) 395–429

    Google Scholar 

  4. Daniels, H.E.: The minimum of a stationary Markov process superimposed on a U-shaped trend. J. Appl. Prob. 6 (1969) 399–408

    Google Scholar 

  5. Durbin, J.: Boundary-crossing probabilities for the Brownian motion and Poisson processes and techniques for computing the power of the Kolmogorov-Smirnov test. J. Appl. Prob. 8 (1971) 431–453

    Google Scholar 

  6. Favella, L., Reineri, M.T., Ricciardi, L.M. and Sacerdote, L.: First passage time problems and some related computational problems. Cybernetics and Systems 13 (1982) 95–128

    Google Scholar 

  7. Feller, W.: Parabolic differential equations and semigroup transformations. Ann. Math. 55 (1952) 468–518

    Google Scholar 

  8. Feller, W.: Diffusion processes in one dimension. Trans. Amer. Math. Soc. 77 (1954) 1–31

    Google Scholar 

  9. Feller, W.: An Introduction to Probability Theory and its Applications vol.2. Wiley, New York, 1966

    Google Scholar 

  10. Gerstein, G.L. and Mandelbrot, B.: Random walk models for the spike activity of a single neuron. Biophys. J. 4 (1964) 41–68

    Google Scholar 

  11. Giorno, V., Lánský P., Nobile, A.G., Ricciardi, L.M.: Diffusion approximation and first-passage-time problem for a model neuron. III. A birth-and-death process approach. Biol. Cybern. 58 (1988) 387–404

    Google Scholar 

  12. Giorno, V., Nobile, A.G., Ricciardi, L.M. and Sato, S.: On the evaluation of the first-passage-time densities via non-singular integral equations. Adv. Appl. Prob. 21 (1989) 20–36

    Google Scholar 

  13. Giorno, V., Nobile, A.G. and Ricciardi, L.M.: On the asymptotic behaviour of first-passage-time densities for one-dimensional diffusion processes and varying boundaries. Adv. Appl. Prob. 22 (1990) 883–914

    Google Scholar 

  14. Holden, A.V.: A note on convolution and stable distributions in the nervous system. Biol. Cybern. 20 (1975) 171–173

    Google Scholar 

  15. Karlin, S. and Taylor, H.M.: A Second Course in Stochastic Processes. Academic Press, New York, 1981

    Google Scholar 

  16. Lánský, P.: On approximations of Stein's neuronal model. J. Theor. Biol. 107 (1984) 631–647

    Google Scholar 

  17. Matsuyama, Y.: A note on stochastic modeling of shunting inhibition. Biol. Cybern. 24 (1976) 139–145

    Google Scholar 

  18. Matsuyama, Y., Shirai, K. and Akizuki, K.: On some properties of stochastic information processes in neurons and neuron populations. Kybernetik 15 (1974) 127–145

    Google Scholar 

  19. Nobile, A.G., Ricciardi, L.M. and Sacerdote, L.: Exponential trends of Ornstein-Uhlenbeck first-passage-time densities. J. Appl. Prob. 22 (1985) 360–369

    Google Scholar 

  20. Nobile, A.G., Ricciardi, L.M. and Sacerdote, L.: Exponential trends of first-passage-time densities for a class of diffusion processes with steady-state distribution. J. Appl. Prob. 22 (1985) 611–618

    Google Scholar 

  21. Park, C. and Schuurmann, F.J.: Evaluations of barrier-crossing probabilities of Wiener paths. J. Appl. Prob. 13 (1976) 267–275

    Google Scholar 

  22. Park, C. and Schuurmann, F.J.: Evaluations of absorption probabilities for the Wiener process on large intervals. J. Appl. Prob. 17 (1980) 363–372

    Google Scholar 

  23. Ricciardi, L.M.: Diffusion processes and related topics in Biology. (Lecture Notes in Biomathematics, vol. 14)., Springer, Berlin Heidelberg New York, 1977

    Google Scholar 

  24. Ricciardi, L.M.: Diffusion approximation and computational problems for single neurons activity. In: Amari S. and Arbib M.A. (eds.) Competition and Cooperation in Neural Nets. (Lecture Notes in Biomathematics, vol. 45). Springer, New York. 1982, 143–154

    Google Scholar 

  25. Rodieck, R.W., Kiang, N.Y.-S. and Gerstein, G.L.: Some quantitative methods for the study of spontaneous activity of single neurons. Biophys. J. 2 (1962) 351–368

    Google Scholar 

  26. Škvařil, J., Radii-Weiss, T., Bohdanecký, Z. and Syka, J.: Spontaneous discharge patterns of mesencephalic neurons, interval histogram and mean interval relationship. Kybernetik 9 (1971) 11–15

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Franz Pichler Roberto Moreno Díaz

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giorno, V., Nobile, A.G., Ricciardi, L.M. (1994). On some algorithmic and computational problems for neuronal diffusion models. In: Pichler, F., Moreno Díaz, R. (eds) Computer Aided Systems Theory — EUROCAST '93. EUROCAST 1993. Lecture Notes in Computer Science, vol 763. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57601-0_58

Download citation

  • DOI: https://doi.org/10.1007/3-540-57601-0_58

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57601-3

  • Online ISBN: 978-3-540-48286-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics