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P r e f a c e  

Minimizing a nonlinear, multidimensional function f ( z ) ,  z E ~" ,  where f is 
smooth and not necessarily convex, is a central problem of computat ional  op- 
t imization. An understanding of the methods used to solve it is essential for 
anyone interested in computat ion for several reasons: 

�9 Nonlinear minimization problems frequently arise in practice, their solu- 
tions either being of immediate  interest or required at intermediate stages 
of a more complex calculation. 

�9 Closely related problems, in particular, solving systems of nonlinear equa- 
tions or nonlinear least squares data-fi t t ing problems, can be posed as 
nonlinear minimization problems; alternatively, techniques used in min- 
imization methods can be suitably adapted or specialized to solve such 
problems. 

�9 Nonlinear ordinary differential equations, partial  differential equations or 
opt imal  control problems, which are defined over function spaces, must  
eventually be discretized for solution on a computer.  This leads, in turn, 
to finite-dimensional nonlinear equation-solving or minimization problems. 

�9 Unconstrained minimization techniques form the backbone of methods  for 
solving constrained minimization problems. In this regard, it is worth not- 
ing that  the addition of constraints can sometimes render an optimizat ion 
problem computat ionally more tractable.  As an extreme case, suppose f 
is to be minimized subject to a set of n - 1 independent linear equality 
constraints along with finite lower and upper bounds on the n variables. 
Then the problem is equivalent to a unidimensional minimization on a line 
segment. 

�9 Recent interior-point techniques for linear p rogramming  (LP), which now 
supplement Dantzig's  simplex method,  have moved computat ional  LP 
away from its traditional base in combinatorial  programming,  and repo- 
sitioned it, alongside linearly constrained nonlinear optimization,  in the 
transition region between unconstrained nonlinear minimizat ion on the 
one hand and nonlinearly constrained optimization on the other. Again, 
techniques of unconstrained minimization or related techniques of nonlin- 
ear equation-solving play a key role in these new interior-point LP meth-  
ods. 

Two classical methods for minimizing a nonlinear function are Cauchy's 
method, which uses a search direction of steepest descent, and Newton's method, 
which uses a search direction derived from a local quadratic approximat ing 
model obtained, in turn, from the Taylor expansion. More recently, during the 
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digital computer era, there have been two further algorithmic breakthroughs. 
The conjugate gradient method (CG), proposed by Hestenes and Stiefel in 1952, 
and the variable metric method, developed by Davidon during the years 1955- 
1959. The CG method was originally proposed for minimizing a strictly convex 
quadratic function or, equivalently, for solving a positive definite symmetric 
system of linear equations, and it was straightforwardly adapted to general 
nonlinear minimization by Fletcher and Reeves in 1964. Nowadays, CG-related 
is a generic name for a class of methods that require limited computer stor- 
age. The variable metric method was clarified and brought to the attention 
of the optimization community by Fletcher and Powell in 1963, and subse- 
quently broadened and relabelled under the generic name quasi-Newton, in- 
corporating the contributions of numerous researchers. Interestingly enough, 
Davidon's original paper developed the seminal underlying ideas in the setting 
of non-quadratic problems, but the important clarification and promulgation 
of Fletcher and Powell, which gained wide acceptance for the variable metric 
method, placed considerable emphasis on its theoretical properties on quadratic 
functions. Thus the historical development of both modern breakthroughs of 
computational nonlinear optimization occurred at the interface with computa- 
tional linear algebra. More recently, computational nonlinear minimization has 
broken loose from these early moorings, and its methods can now be formulated 
quite independently of the historical context. 

The literature on unconstrained nonlinear minimization is vast and there 
are several useful expository texts that discuss individual methods in detail, in- 
cluding, for example, Avriel [1976], Bazaraa, Sherali and Shetty [1993], Dennis 
and Schnabel [1983], Fletcher [1980], Gill, Murray and Wright [1981] and Luen- 
berger [1984]. Noticeably lacking, however, is a treatment that reveals the essen- 
tial unity of the subject. This is the central concern of our research monograph, 
namely, to explore the relationships between the main methods, to develop a 
unifying Newton/Cauchy framework and to point out its rich wealth of algorith- 
mic implications. The monograph also makes a contribution to clarifying the 
notation of the subject, currently full of conflicts and contradictions, as well as 
the terminology of quasi-Newton methods, which currently resembles 'alphabet 
soup', to quote Dennis and Schnabel [1983]. We concentrate on basic concep- 
tual methods rather than on algorithmic variants and implementational details, 
and in the interests of brevity, we try to keep to a minimum the duplication of 
material that is widely available in the literature and the texts previously cited. 

The monograph consists of six main chapters organized as follows: 

Chapter 1 introduces the conjugate gradient and quasi-Newton methods 
within the context of their historical development, namely, convex quadratic 
minimization. The methods assume a particularly elegant form in this setting 
and have interesting algebraic properties. To neglect this aspect is to turn one's 
back on some of most attractive results of the subject, as well as the important 
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interface with computational linear algebra. Our development follows a logical 
and orderly progression of ideas, highlighting the small set of basic principles 
that give rise to the methods. However, we do not then, according to historical 
precedent, generalize the methods in patchwork fashion so that they can be 
applied to nonquadratic problems. Our objectives in this chapter are much 
more limited, namely, to motivate the methods and demonstrate their properties 
in a particular simple setting. 

In Chapter 2, we begin afresh in the setting of general nonlinear functions. 
Our starting point for development is the classical steepest-descent metric-based 
method of Cauchy. We follow an orderly progression of ideas leading, in turn, 
to Davidon's variable metric, the conjugate-gradient metric and the Newton 
metric, and highlighting the relationship between them. 

In Chapter 3, our starting point for development is the classical model-based 
Newton's method. Again, a logical train of ideas lead, in succession, to the 
quasi-Newton model, the CG-related model and the Cauchy model. 

Computational unconstrained nonlinear optimization comes to life from a 
study of the interplay between the metric-based (Chapter 2) and model-based 
(Chapter 3) points of view, with the motivating development of Chapter 1 in the 
background to lend added dimension. This is the topic of Chapter 4, which ties 
together the preceding three chapters, develops the Newton/Cauchy framework 
and indicates its rich array of algorithmic implications. 

Chapter 5 discusses the basic conditions for establishing global convergence 
of implemenlable algorithms derived from the Newton/Cauehy framework and 
the important idea of hierarchical implementation of optimization methods. 

Finally, Chapter 6 overviews nonlinear unconstrained optimization technol- 
ogy, namely, the wide variety of implementable mathematical and numerical 
algorithms that can be derived from the basic conceptual methods of the New- 
ton/Cauchy framework. 

Chapters 1, 2 and 3 are each largely self-contained and develop all the nec- 
essary expository detail. On the other hand, Chapters 4, 5 and 6 are more 
concise and collectively provide a free-standing structured guide to the uncon- 
strained optimization literature, to which they make extensive reference. They 
also highlight some important unexplored territory, 

The monograph assumes the following background on the part of the reader: 

�9 basic multivariate calculus; see, for example, Rudin [1976], 

�9 the basic factorizations of computational linear algebra; see, for example, 
Golub and Van Loan [1989] or Watkins [1991], 

* elementary convex analysis, in particular, the characterization of convex 
sets and differentiable convex functions; see, for example, Avriel [1976] or 
Luenberger [1984], 
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�9 the basic algorithms for one-dimensional minimization and solving a non- 
linear equation of a single variable; see any introductory numerical analysis 
text,  for example, Kahaner, Moler and Nash [1989], 

�9 and the basic theoretical characterization of optimal points, in particu- 
lar, definitions of local and global optima, necessary and sufficient op- 
t imali ty conditions for smooth unconstrained functions and some basic 
exposure to the Lagrangian /Karush-Kuhn-~cker  optimality conditions 
for constrained optimization. These topics are widely treated in several 
excellent texts, for example, Avriel [1976], Luenberger [1984], or Zang- 
will [1969], and their duplication here would be pointless. In this regard, 
it is also worth noting explicitly that  as a result of the repositioning of 
linear programming mentioned previously, it is increasingly likely that 
newcomers to optimization algorithms will be introduced to the subject 
via the methods of unconstrained nonlinear minimization rather than the 
more traditional combinatorial-based linear programming and the sim- 
plex method, and that  the next generation of textbooks on computational 
linear and nonlinear optimization will adopt the following pattern of expo- 
sition: 1. Optimali ty conditions for both unconstrained and constrained 
optimization. 2. Unconstrained minimization methods. 3. Methods for 
linearly constrained problems including linear programming. 4. Methods 
for nonlinearly constrained problems. 

The monograph is addressed to a broad spectrum of practitioners, researchers, 
instructors, and students, and we hope that  it proves to be both useful and a 
refreshing new prespective on computational nonlinear optimization. For ped- 
agogical purposes, it can be used to supplement one of the optimization texts 
cited earlier. It can also be used as the primary text of a graduate research sem- 
inar course when the instructor fills in background material as needed, fleshes 
out Chapters 4 through 6 through assigned readings in the optimization liter- 
ature, and encourages students to explore uncharted terri tory via appropriate 
research projects. 

Finally, it is a pleasure to thank various people who have contributed di- 
rectly or indirectly to this effort. My thanks to Bill Davidon, whose algorithmic 
genius has always been a source of inspiration. I thank my Optimization Group 
colleagues Bob Mifflin and Kuruppu Ariyawansa with whom I share many re- 
search interests, and also Mike Kallaher, former chairman of WSU's Department 
of Pure and Applied (and, in all but name, Computational)  Mathematics, whose 
enlightened approach has given the department a secure balance on the three 
equal legs of the mathematical  tripod. My affiliation at the University of Wash- 
ington has been invaluable, and I have profited from interaction, in particular, 
with Jim Burke, Alan Goldstein, Bob O'Malley, Terry Rockafellar and Paul 
Tseng. I thank Brian Smith, Laura Kustiner, and Miguel Gomez - students in 
the Fall '92 graduate course on computational nonlinear optimization, who pro- 
vided useful feedback when some of this material was formulated and presented. 
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And finally, on a personal note, I thank my wife Abigail for her encouragement 
when the task of writing grew burdensome, as it always does, even for a rela- 
tively short monograph such as this. 

Bainbridge Is., WA, 1993 J.L. Nazareth 
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