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Abstract. An approach for formalizing hardware behaviour is presented
which is based on a small functional programming language called primitive
ML (PML). Since the basic constructs of PML are simply typed A—terms,
PML lends itself both to simulation and verification. The semantics of PML
is formally embedded in higher—order logic.

The formalization scheme is based on PML—functions that allow hardware
descriptions from the logical level up to the algorithmic level. Besides de-
scriptions of real circuits, abstract forms of hardware descriptions can also
be dealt with in PML. The main emphasis is thereby put on regular hard-
ware structures which are described by means of primitive recursion. PML—
descriptions can easily be converted to syntactic structures, called hardware

formulae, which can then be verified by the MEPHISTO system.

1 Introduction

Embedding hardware description languages (HDLs) in a logic or some calculi is
essential for verification. The semantics of such embedded HDLs, which correspond
to certain formulae in the underlying formal framework, can then be used to

— verify certain properties of an implementation,
— prove equivalences of two or more implementations and
— perform correct HDL-to—HDL translations.

Existing HDLs such as VHDL and ELLA are very powerful and complex. The ex-
pressive power is an advantage for circuit design, but their semantics are not formally
defined due to their complexity. Formalizing the semantics of a HDL means bridging
the gap between a high level design language and the simpler elements of the logic
or a particular calculus.

Functional HDLs such as ELLA are rather close to logic. Those elements which
consist exclusively of A-terms can be converted to higher—order logic almost un-
changed. In contrast to functional languages, procedural languages are more difficult
to be formalized due to their operational semantics. For every basic instruction, it
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must be described, how the execution of the instruction changes the global state.
The effect of compound instructions must be derived from the effect of the basic
instructions and the control structures.

There are several research projects about formalizing existing HDLs in higher—
order logic [BGGH92, BGHT91, CaGM86] or other calculi [Hunt86, BoPS92]. In
contrast to these projects, the starting—point of the approach presented in this paper
is not a given HDL. Instead, a simple functional language called primitive ML (PML)
is built on top of the logic such that its semantics is given right away. PML will be
the basis for hardware descriptions. It can be regarded as a common sublanguage
of HOL and ML (figure 1) — its syntax is similar to ML and every construct has a

Fig. 1. Relation between HOL, ML and PML.

corresponding representation in HOL. The embedding of PML has been done in a
shallow manner [BGGH92]. However, both PML-terms and the corresponding HOL-
terms are simply typed A—terms and there are only very small syntactical differences
which could simply be overcome by pretty—printing.

Relational descriptions are frequently used for formalizing circuits, i.e. input and
output signals need not be distinguished and signals can affect each other in an
arbitrary manner. However, relational circuit descriptions can be ambiguous or even
contradictory. In contrast, circuits are described in PML in a functional manner, i.e.
circuits are represented by functions mapping input signals onto output signals.

PML cannot be viewed as a hardware description language such as VHDL, but as
a general purpose programming language we use for describing hardware. In contrast
to VHDL, PML has no hardware specific syntactic elements such as signals, interfaces
and timing declarations. PML programmes can merely describe primitive recursive
and p-recursive functions and these functions can be regarded as a representation
of the corresponding hardware.

In our hardware formalization scheme, we will describe two kinds of PML—func-
tions: ones that represent single real circuits and others that describe sets of real
circuits. Functions representing exactly one real circuit are called concrete circuits
and functions describing a set of real circuits are called abstract circuits. Abstract
circuits do not represent real circuits, but correspond to a scheme for describing
regular hardware structures. Concrete circuits can be derived from abstract circuits
by type instantiation and variable substitution.

In this paper, only the formalization of circuits is described. PML can be viewed
as a more abstract layer for MEPHISTO [KuSK93, ScKK93c]. The verification of
descriptions using PML is achieved by converting them into formulae which can be

handled by MEPHISTO.

After having given a description of PML in section 2, concrete and abstract
circuits are formalized in section 3 and 4, respectively. Finally, we briefly discuss the
use of PML in simulation and verification in section 5.



2 Syntax and Semantics of PML

PML is a sublanguage of ML (figure 1). The syntax is similar, but there are less
syntactical constructs — for example there are no exceptions and no side effects.
Furthermore, data types in PML correspond to HOL—style data types and therefore
they are weaker than ML data types [Gunt92]. Although PML has only a small
number of basic elements, arbitrary p—recursive functions can be expressed by PML
functions, i.e. PML is Turing—complete.

2.1 Data Types and Primitive Recursion

In PML only HOL-style data types are allowed. For a detailed explanation of data
types in HOL and the mechanism for defining them see [Melh88]. The syntax of a
PML data type declaration is as follows:

primitive_datatype string ;

The parameter string defines the data type by giving the name of the type, the
names of the constructors and the types of their arguments. The syntax is the same
as in the HOL function define_type, e.g.

primitive_datatype " bool =T | F " ;
primitive_datatype " num = Zero | Suc of num " ;

The semantics of HOL—style data types is described by a theorem which states that
the primitive recursion over this type is unambiguous. In HOL, this theorem is de-
rived whenever a new data type is introduced by define_type. A data type declaration
in PML also introduces a basic function named PRIMREC _type, which is generated
automatically. PRIMREC type is derived from the semantics of the data type and it
can be used for expressing primitive recursion over that data type. For example, the
data types num and bool lead to the functions PRIMREC bool and PRIMREC_num,

respectively. They have the following semantics:

PRIMRECbool Ta b = a
PRIMRECbool Fab = &

PRIMREC_num Zero a f = a
PRIMREC.num (Sucn) a f fn (PRIMREC.num n «a f)

Arbitrary primitive recursive functions can be expressed by constant definitions

based on PRIMREC—{unctions.

2.2 Derived Functions

Asin ML, functions and constants can be added by the language constructs fun and
val, respectively. However, function and constant definitions in PML both correspond
to constant definitions in HOL. Therefore, function and constant definitions of PML
are less powerful than those in ML. The restrictions are:

— There must be only one equation within a fun or val definition, e.g.
funiszero0 = T | is_zero(Suc n) = F; is not a valid PML definition.



— The parameters on the left hand side of the equation may only be variables and
paired variables, e.g. val (Sucn) =y; is not allowed.

— The expressions on the right hand side are built up by function applications
(f a) and A-abstractions (fn # => a). The only basic functions are PRIMREC-
functions and WHILE (WHILE will be introduced later in section 2.5).

— The function being defined must not appear on the right hand side of the equa-
tion, e.g. fun odd n = PRIMREC.num n F (fna => fnb => not(odd a)); is
not a valid PML definition. Recursion can always be expressed by equivalent
definitions which use PRIMREC—functions and WHILE.

— There is no exception handling.

— (case...of...) has not yet been implemented.

2.3 Predefined Data Types

Some data types are already defined in order to support pretty—printing for them.
For example, it is possible to write 2 instead of Suc(Suc Zero). However, there is no
pretty—printing for user defined types. The predefined data types are:!

primitive_datatype " bool =T | F " ;
primitive_datatype ' prod = Comma of ’a # ’'b "
Nil | Cons of ’a # list " ;

primitive_datatype " list

primitive_datatype ' num Zero | Suc of num

The following syntactic sugar refers to the predefined types. They can all be put
down to expressions based on data type constructors and PRIMREC—functions.

— (a, b) may be used instead of (Commaa b)
(fn (z,y) => p[x, y]) may be used instead of
(fn z => PRIMREC prod z (fn & => fny => plx, y]))
— (letvalz = ping¢[x]end) may be used instead of ((fnz => q[z]) p).
numerals 0, 1, 2,... may be used instead of Zero, (Suc Zero), (Suc(Suc Zero)), . ..
— [1, [a], [a,b],. .. may be used instead of Nil, (Cons a Nil), (Cons a (Cons & Nil}),. ..

2.4 Example

We illustrate the use of the language constructs by a traffic light controller. First, a
new data type named state is defined, which represents the states of the traffic light.

primitive_datatype " state = Green | Yellow | Red " ;

This type declaration automatically introduces the function PRIMREC state with
the following semantics:

PRIMREC. state Greenabc = a
PRIMREC state Yellow a b ¢ =
PRIMRECSstate Red abec = ¢

! In PML, type variables are expressed by ’a, ’b, ’c, etc. whereas the corresponding type
variables in HOL are expressed by «, 3, v, etc. It should be noted that the polymorphism
in PML corresponds to that of HOL only.



A constant named init containing the initial state Red can be defined as:
val init = Red;

The function next takes a state as parameter and calculates the successor state. In
this simple traffic light controller, the state changes from red directly to green, but
changes from green to red via yellow.

fun next x = PRIMREC_state x Yellow Red Green;

Figure 2 shows the entire programme and the corresponding HOL—formula describing
its semantics.

PML-Program Semantics
primitive datatype (Va be. 1 g.
"state = Green | Yellow | Red"; (g Green = a) A (g Yellow = b) A
(gRed =¢)) A
(Vabe.

(PRIMREC state Greena b c = a) A
(PRIMREC state Yellowa bc = b) A
(PRIMRECstate Red abc=c)) A

val init = Red; (init=Red) A
fun next x = (V. nextz =
PRIMREC state x Yellow Red Green; PRIMREC state z Yellow Red Green )

Fig. 2. Traffic light programme.

2.5 p—Recursion

According to Church’s Thesis, there are several equivalent schemes for describ-
ing computable functions. pg—recursive functions are one means for describing com-
putable functions. With the elements described until now, only primitive recursive
functions can be described, while p—recursive functions cannot. Primitive recursive
functions are sufficient for describing hardware implementations, but they are too
weak for formalizing algorithmic specifications. Previous work such as the approaches
followed by the Boyer—-Moore community, are limited to primitive recursive specifi-
cations that cannot express all kinds of algorithms.

Unlike primitive recursive functions, g-recursive functions need not be total. In
ML 1t is possible that the evaluation of a function application does not terminate. The
equations of an ML function definition can be considered as a constant specification in
HOL where the specified function need not be described unambiguously, i.e. nothing
can be said about the value of a function application where the evaluation does not
terminate. In contrast to ML, the result of a PML function always has an explicitly
defined value, even if the function application does not terminate. In this case, the
value of the function is explicitly defined to be the constant Undefined, otherwise
the result is (Defined y) for a certain y. The data type partial is used for describing
values of p-recursive functions:



primitive_datatype " partial = Defined of ’a | Undefined " ;
The corresponding function PRIMREC partial has the following semantics:

PRIMREC partial (Defined z) fa = fu
PRIMREC partial Undefined fa = a

The function WHILE is the basis for g—recursion in PML and can be used to create
loops. Given functions f and g and a parameter z, it iterates f until a value z is
reached with g x = F.

F iota f = PRIMREC bool (3; f) (Defined (s f)) Undefined
F terminates(f,n) = (fn) A (Ym.m<n = =(fm))
F muf = iota(Am.terminates(f, m))
F power fnz =
PRIMREC. num n (Defined x) (Aa b. PRIMREC partial b f Undefined)
F WHILEg fz =
PRIMREC partial
(mu(An. PRIMREC partial (power f n x)
(Ay. PRIMREC bool (g ) FT) F))
(An. power f n x)
Undefined

The semantics of WHILE is described using four auxiliary constants: iota, terminates,
mu and power. The function iota resembles the Hilbert operator. But in contrast
to the Hilbert operator its value is (Defined y) in case the predicate specifies a
unique value and Undefined if it does not. The predicate terminates(f, n) states that
n is the smallest number such that (f n) becomes true. mu is a formalization of the
p—operator where mu f = Undefined corresponds to u(f)] ? and mu f = Defined k
corresponds to p(f) = k. The function power computes the multiple application
of a function, i.e. (power f n x) computes f™(x). The expression (WHILE ¢ f )
calculates frAn-g(f"(@)=F)(p) 3

2.6 Example

The traffic light example of section 2.4 is extended by a p—recursive function red_time.
red_time is calculating the next time when the traffic light becomes red. The traffic
light is described by a function f,um—state, that is assigning a state to every time.
For a given function f,um—state and a time ¢,,,m, the function red_time calculates
the smallest n >t with f n = Red.

Figure 3 shows an implementation in PML in comparison with an implementation
in ML. The implementations in PML and ML are not really equivalent, since their
types differ. In PML the result of red_time has the type (num partial) whereas in ML
it is num.

2 u(f) is the smallest element of {f(x) = T|z€N} and u(f) denotes that {f(z) = T|zeN}
is empty.

? Extending primitive recursive functions by WHILE is equivalent to the extension by
the p—operator, i.e. both extensions lead to computable functions. However, WHILE—
expressions can be evaluated more efficiently by an interpreter than expressions using
the p—operator.



PML-Implementation ML-Implementation

fun is not._red x =
PRIMREC state x T T F; fun red_time f t =
if ((f t) = Red) then
fun red_time f t = t
WHILE else
(fn n => ismotred(f n)) (red_time £ (Suc t));
(fn n => Defined(Suc n))
t;

Fig. 3. Implementations of red_time.

3 Concrete Circuits

The functions described in this section are called concrete circuits since each of
them corresponds to exactly one real circuit. A concrete circuit is represented by
a function that assigns an input signal onto an output signal. Hardware structures
are build up by function definitions. Expressing a structure by a function definition
is possible, if and only if the structure does not have cycles. Since structures of
sequential circuits essentially have cycles, sequential circuits are represented by a
triple consisting of a combinational transient circuit, a combinational output circuit
and an initial state. Instead of combining sequential circuits directly, their transient
circuits, output circuits and initial states are combined.

3.1 Combinational Circuits

Individual signals of combinational circuits have type bool. Other than individual
signals can be obtained by pairing individual signals. Combinational circuits are
represented by functions assigning an input signal to an output signal. Figure 4
shows a 1-bit fulladder implemented by the circuits and, or and xor.

fun fulladder (cin,(a,b)) =

cin Xor —— sum let val w1l = xor(a,b) in
a let val w2 = and(b,a) in
xor | Wl let val sum = xor(cin,wl) in
and _Vlvi let val w3 = and(cin,wl) in
and w2 or — cout let val cout = or(w3,w2) in
(sum, cout)

end end end end end;

Fig. 4. Structure of a 1-bit fulladder and the PML representation.

3.2 Sequential Circuits

The signals of sequential circuits are time dependent. Their type is num — v where
the type num represents the discrete time and v is the type of a time independent



signal. Sequential circuits map time dependent input signals onto time dependent
output signals, thus they have the following type: (num — &) — (num — 3).

The description style used for combinational circuits does not allow cycles which
are necessary for sequential circuits. In order to use this scheme also for sequential
circuits, we define a sequential circuit by a triple (f, g, ¢) consisting of a combina-
tional transient circuit f, a combinational output circuit ¢ and an initial state gq.
Thus, sequential structures can be expressed by interconnecting combinational cir-
cuits. Since structures of Mealy machines might lead to zero—delay—cycles, in this
paper only Moore circuits will be considered (see figure 5).

d

Fig.5. Scheme of a Moore circuit.

f — memory g —

A function named makeseq is introduced, which computes a sequential circuit for
a given triple (f, g,¢). makeseq can be defined by the equations below. The func-
tion definition given by these equations does not have the form of a PML function
definition. It can rather be regarded as a ML-style function definition or a constant
specification in HOL. These equations describe the desired properties of the intended
PML function in a clearer manner.

makeseq (f, ¢,¢) a 0 = fq
makeseq (f,¢,q) a (Suct) = makeseq (f,g,9(at, q)) (At.a(Suct)) ¢

The corresponding implementation in PML:

fun makeseq (f,g,q) a t =
f (PRIMREC_num t q (fn n => fn r => g(a n,r)));

It shall be demonstrated, how structures of sequential circuits can be described in
PML by function definitions. Figure 6 shows an example for a structure consisting

fun £fD (qa,gb,qc) =
let val (z,w2) = (fB gb) in z end;

* A |l B z fun gD ((x,y),(qa,gb,qc)) =
W let val (wi,(z,w2),(w3,ud)) =
mu (fA qa,fB gb,fC qc)
w3 in
y ¢ wd (gh(x,w4),gB(wl,w3),gC(w2,y))
end;

val qD = (qA,qB.qC);
Fig. 6. Structure of a sequential circuit and the PML representation.

of three sequential circuits A, B and C. The circuits A, B and C are represented by
(fA, gA, qA), (fB, gB, gB) and (fC, gC, qC). The entire circuit is called D and its triple
(fD, gD, qD) can directly be extracted from the structure.



4 Abstract Circuits

In the previous section, functions were used for describing single real circuits. In
contrast to concrete circuits, abstract circuits represent sets of (concrete) circuits
and are therefore more powerful than concrete circuits. Similar to concrete circuits,
abstract circuits can also be represented by PML—functions. Abstract circuits can be
polymorphic and allow parameters which have types that are not restricted to pairs
(e.g. lists and trees may be used for instance). Concrete circuits can be obtained
from abstract circuits by type instantiation and variable substitution.

The function mux is an example for an abstract circuit:

fun mux((s:bool),(a:’a),(b:’a)) = PRIMREC_bool s b a;

Concrete circuits can be derived from mux by instantiating the type variable o («
is expressed by ’a within the PML syntax). Figure 7 shows two instances of mux.

bool /™
a =bool bool — mMux— bool
bool —
mux
bool /™
a =bool*bool bool*hool —

muX— bool*bool

bool*bool —

Fig. 7. Instances of a polymorphic 2:1-multiplexer.

Abstract circuits are used for formalizing regular hardware structures which can
be expressed by means of primitive recursion. In general,
f regular circuit structures lead to regular signal struc-

tures. If for example, a structure is described, that con-

sists of n combinational circuits connected in parallel,

then it would be appropriate to use the type list for
grouping together the input and the output signals.
The structure of the input signal determines the struc-
f ture of the circuit and the structure of the output signal.
Grouping signals together by recursive types such as list
is flexible, since the structure of the signals and espe-
cially the number of the individual signals depends on the value.

Other types than list can be used for grouping signals. In the next example,
signals are grouped together by a list and a binary tree.

Fig.8.: Regular circuit.

primitive_datatype "list = Nil | Cons of ’a # list";
primitive_datatype "btree = Bleaf of ’a | Bnode of btree # btree";

The semantics of the corresponding PRIMREC—functions is:

PRIMREC list Nil a f = a
PRIMREC. list (Consz y) a f = faxy (PRIMRECisty a f)
PRIMREC btree (Bleafz) f ¢ = f=x

PRIMREC btree (Bnode z y) f ¢ =
gy (PRIMREC btree z f g) (PRIMREC btree y f ¢)



The input of the 27:1-multiplexer consists of a group of data inputs and an
address signal for selecting one of the data inputs. The data input signals have an
arbitrary type « and they are grouped together as (« btree). The address signals are
represented by a list of booleans (see figure 8).

bool list

mux

mux—l

mux
« btree muxl— o

muxH

Fig.9. 2":1-multiplexer.

The structure of the 2":1-multiplexer depends on the structure of the input
signals (i.e. it depends on the length of the boolean list) and it also depends on
the shape of the binary tree. The PML function representing the 27:1-multiplexer
function is total and so the 27:1-multiplexer has to be designed for arbitrary lists
and arbitrary binary trees, even though after instantiation the binary tree has a
constant depth which is equal to the length of the list.

Figure 10 illustrates, how the the structure of the 27:1-multiplexer bmux is de-
fined. For a given structure of the input signals, a circuit structure describes how
the 2”:1-multiplexer can recursively be put down to other 2":1-multiplexers having
‘smaller’ input structures in the sense of a canonical term—ordering.

The following equations give a formal definition of the description in figure 10. The
equations correspond to the circuit structures of the figure in a one—to—one manner.

bmux(z, Bleaf a) = a
bmux(Nil, Bnode b ¢) bmux(Nil, b)
bmux(Cons h t,Bnode b ¢) = mux(h, bmux(¢,b), bmux(?, ¢))

Obviously bmux is a primitive recursive function, but these equations cannot directly
be used for the PML implementation. To implement bmux in PML, the definition has
to be transformed: the interlocking primitive recursions over list and btree have to
be broken up:

bmux(z, Bleaf a) = a
bmux(Nil, Bnode b ¢) = bmux(Nil, 5)
bmux(Cons h t,Bnode b ¢) = mux(h, bmux(¢,b), bmux(?, ¢))

U



X—

Y —bmux—z

y = Bleaf a y = Bnode b ¢

. x = Nil r=Consht
T

—_————

b —+——bmuxH—z

I_I

bmux

bemmmscme s e

Fig. 10. Recursive description of the structure of the 2™:1-multiplexer.

bmux(Nil, Bleaf a) = a

bmux(Nil, Bnode b ¢) = bmux(Nil, )

bmux(Cons h t,Bleafa) = a

bmux(Cons h t,Bnode b ¢) = mux(h, bmux(¢,b), bmux(?, ¢))

4
bmux(Nil, y) = PRIMREC.btree y (Aa.a) (Aabvw.v)

bmux(Cons h t,y) = PRIMREC btree y (Aa.a)
(Aabvw. mux(h, bmux(t, v), bmux(t, w))

4
bmux(z,y) = PRIMREC.list
(As. PRIMREC. btree s (Aa.a) (Aabvw.v))
(Ahtrs.
PRIMREC btree s (Aa.a) (Abcvw.mux(h,rb,rc)))
Y

The corresponding implementation in PML is:

fun bmux (x,(y:’a btree)) =
PRIMREC_list x
(fn s =>
PRIMREC_btree s (fn a => a)
(fna=>fnb=>fnv=>fnw=>v))
(fnh =>fn t => fnr => fn s =>
PRIMREC_btree s (fn a => a)



(fan b => fn ¢ => fn v => fn w => mux(h,r b,r c)) )
Vs
Up to now, merely regular structures of combinational circuits were considered. Reg-

ular structures of sequential circuits can also be described since sequential circuits
can be put down to combinational circuits. Figure 11 shows a regular structure

— A A— —A—

n+1
Fig.11. A series of Moore circuits.

based on a Moore circuit called A. The function series has been implemented in
PML. It takes A and n as parameters and calculates the entire circuit as shown in
figure 11. Both the parameter A and the result of the function application are Moore
circuits that are represented by the triple as described in the previous section.

5 Simulation and Verification

5.1 An Interpreter for PML

PML programmes can simply be executed by a ML interpreter, however, the ML
environment has to be extended by some functions and data types. The type dec-
laration construct primitive_datatype has to be implemented as a ML—function, the
predefined data types of PML have to be declared and the function WHILE has to
be implemented.

As all PML programmes are also ML programmes and the extended ML inter-
preter still accepts ML programmes, it is not tested whether the input is a PML
programme or more general, a ML programme.

5.2 Simulation Tools

Some general tools for simulating circuits have been implemented in the extended
ML interpreter. These tools are not PML functions, but they take PML functions
which describe circuits as arguments. Moreover, they display values of output signals
during the simulation of combinational and sequential circuits.

For this reason, output functions called type_to_string have been implemented
for all predefined data types. These output functions convert a value of a certain
PML type to a string. When a new data type 1s added, a corresponding output
function should also be implemented. Output functions are used as parameters of
the following simulation tools.

A function called function_table has been implemented for combinational circuits
for performing the simulation and displaying the results as a table.

Sequential circuits that are represented by triples (f, ¢,¢) could be simulated
using the function makeseq. However, if the output is considered over a period,
the use of makeseq would be very inefficient because for every single output, the



calculation would start from the beginning. The simulation function for sequential
circuits that has been implemented does not have this disadvantage. The circuit is
simulated only once until the last point of time of the considered period is reached.
The parameters for a sequential simulation are: the circuit represented by (f, g,4),
a time dependent input signal, a condition for terminating the simulation and an
output function for converting the circuits output to a string.

5.3 Verification

A function called extend_theory_by_pml is implemented for converting a PML pro-
gramme to HOL. Some tools are provided for reasoning about PML functions. They
are concerned with: extending constant abbreviations, evaluation and induction.
For concrete circuits and some classes of abstract circuits, a more direct approach
for verification is used. The PML—terms can be converted into certain formulae,
called hardware—formulae [ScKK93c], which can be automatically verified within
the MEPHISTO system [KuSK93] (see figure 12). Thus PML descriptions can also

be used as a front—end specification language within this verification framework.

fun fulladder (cin,(a,b)) = Ycin a b sum cout.
let val wl = xor(a,b) in fulladder(cin, a, b, sum, cout) <
let val w2 = and(b,a) in Jwl w2 w3.
let val sum = xor(cin,w1) in — xor(a,b, wl) A
let val w3 = and(cin,wl) in and(b, a, w2) A
let val cout = or(w3,w2) in xor(cin, wl, sum) A
(sum,cout) and(cin, wl, w3) A
end end end end end; or(w3, w2, cout)

Fig. 12. Converting PML circuit descriptions to hardware—formulae.

6 Conclusion and Future Work

We have presented a general purpose programming language that is formally em-
bedded in higher—order logic and we have also demonstrated, how this language can
be used for formalizing both combinational and sequential circuits. The main em-
phasis has been put on demonstrating how regularity can be expressed by means of
primitive recursion.

PML is a very simple language and writing PML programmes can be rather tough
since all function definitions have to be broken up to the primitive recursion and
p—recursion constructs. It i1s intended to improve the applicability of PML by adding
a more comfortable ML—style mechanism for expressing recursive functions.

In future research it shall be analyzed, how PML descriptions of circuits can be
used for hardware design. PML descriptions shall be used in several fields: verifi-
cation, simulation, symbolic simulation, synthesis and optimization (HDL-to-HDL
transformations).
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