
A Functional Approach for Formalizing Regular
Hardware Structures�

Dirk Eisenbiegler�� Klaus Schneider� and Ramayya Kumar�

� Universit�at Karlsruhe� Institut f�ur Rechnerentwurf und Fehlertoleranz�
�Prof� D� Schmid�� P�O� Box ��	
� ���
	 Karlsruhe� Germany�

e�mail�schneide�ira�uka�de
� Forschungszentrum Informatik� Haid�und�Neustra�e �
���� ����� Karlsruhe� Germany�

e�mail�kumar�fzi�de

Abstract� An approach for formalizing hardware behaviour is presented
which is based on a small functional programming language called primitive

ML �PML�� Since the basic constructs of PML are simply typed ��terms�
PML lends itself both to simulation and veri�cation� The semantics of PML

is formally embedded in higher�order logic�
The formalization scheme is based on PML�functions that allow hardware
descriptions from the logical level up to the algorithmic level� Besides de�
scriptions of real circuits� abstract forms of hardware descriptions can also
be dealt with in PML� The main emphasis is thereby put on regular hard�
ware structures which are described by means of primitive recursion� PML�
descriptions can easily be converted to syntactic structures� called hardware
formulae� which can then be veri�ed by the MEPHISTO system�

� Introduction

Embedding hardware description languages �HDLs� in a logic or some calculi is
essential for veri�cation� The semantics of such embedded HDLs� which correspond
to certain formulae in the underlying formal framework� can then be used to

� verify certain properties of an implementation�
� prove equivalences of two or more implementations and
� perform correct HDL�to�HDL translations�

Existing HDLs such as VHDL and ELLA are very powerful and complex� The ex�
pressive power is an advantage for circuit design� but their semantics are not formally
de�ned due to their complexity� Formalizing the semantics of a HDL means bridging
the gap between a high level design language and the simpler elements of the logic
or a particular calculus�

Functional HDLs such as ELLA are rather close to logic� Those elements which
consist exclusively of ��terms can be converted to higher�order logic almost un�
changed� In contrast to functional languages� procedural languages are more di	cult
to be formalized due to their operational semantics� For every basic instruction� it

� This work has been partly �nanced by a german national grant� project Automated
System Design� SFB No���	�



must be described� how the execution of the instruction changes the global state�
The e
ect of compound instructions must be derived from the e
ect of the basic
instructions and the control structures�

There are several research projects about formalizing existing HDLs in higher�
order logic �BGGH�
� BGHT��� CaGM��� or other calculi �Hunt��� BoPS�
�� In
contrast to these projects� the starting�point of the approach presented in this paper
is not a given HDL� Instead� a simple functional language called primitive ML �PML�
is built on top of the logic such that its semantics is given right away� PML will be
the basis for hardware descriptions� It can be regarded as a common sublanguage
of HOL and ML ��gure �� � its syntax is similar to ML and every construct has a

HOL ML��
��
PML

Fig� �� Relation between HOL� ML and PML�

corresponding representation in HOL� The embedding of PML has been done in a
shallow manner �BGGH�
�� However� both PML�terms and the corresponding HOL�
terms are simply typed ��terms and there are only very small syntactical di
erences
which could simply be overcome by pretty�printing�

Relational descriptions are frequently used for formalizing circuits� i�e� input and
output signals need not be distinguished and signals can a
ect each other in an
arbitrary manner� However� relational circuit descriptions can be ambiguous or even
contradictory� In contrast� circuits are described in PML in a functional manner� i�e�
circuits are represented by functions mapping input signals onto output signals�

PML cannot be viewed as a hardware description language such as VHDL� but as
a general purpose programming language we use for describing hardware� In contrast
to VHDL� PML has no hardware speci�c syntactic elements such as signals� interfaces
and timing declarations� PML programmes can merely describe primitive recursive
and ��recursive functions and these functions can be regarded as a representation
of the corresponding hardware�

In our hardware formalization scheme� we will describe two kinds of PML�func�
tions� ones that represent single real circuits and others that describe sets of real
circuits� Functions representing exactly one real circuit are called concrete circuits

and functions describing a set of real circuits are called abstract circuits� Abstract
circuits do not represent real circuits� but correspond to a scheme for describing
regular hardware structures� Concrete circuits can be derived from abstract circuits
by type instantiation and variable substitution�

In this paper� only the formalization of circuits is described� PML can be viewed
as a more abstract layer for MEPHISTO �KuSK��� ScKK��c�� The veri�cation of
descriptions using PML is achieved by converting them into formulae which can be
handled by MEPHISTO�

After having given a description of PML in section 
� concrete and abstract
circuits are formalized in section � and �� respectively� Finally� we brie�y discuss the
use of PML in simulation and veri�cation in section ��



� Syntax and Semantics of PML

PML is a sublanguage of ML ��gure ��� The syntax is similar� but there are less
syntactical constructs � for example there are no exceptions and no side e
ects�
Furthermore� data types in PML correspond to HOL�style data types and therefore
they are weaker than ML data types �Gunt�
�� Although PML has only a small
number of basic elements� arbitrary ��recursive functions can be expressed by PML
functions� i�e� PML is Turing�complete�

��� Data Types and Primitive Recursion

In PML only HOL�style data types are allowed� For a detailed explanation of data
types in HOL and the mechanism for de�ning them see �Melh���� The syntax of a
PML data type declaration is as follows�

primitive�datatype string �

The parameter string de�nes the data type by giving the name of the type� the
names of the constructors and the types of their arguments� The syntax is the same
as in the HOL function de�ne type� e�g�

primitive�datatype � bool � T � F � �

primitive�datatype � num � Zero � Suc of num � �

The semantics of HOL�style data types is described by a theorem which states that
the primitive recursion over this type is unambiguous� In HOL� this theorem is de�
rived whenever a new data type is introduced by de�ne type� A data type declaration
in PML also introduces a basic function named PRIMREC type� which is generated
automatically� PRIMREC type is derived from the semantics of the data type and it
can be used for expressing primitive recursion over that data type� For example� the
data types num and bool lead to the functions PRIMREC bool and PRIMREC num�
respectively� They have the following semantics�

PRIMREC bool T a b � a

PRIMREC bool F a b � b

PRIMREC num Zero a f � a

PRIMREC num �Suc n� a f � f n �PRIMREC num n a f�

Arbitrary primitive recursive functions can be expressed by constant de�nitions
based on PRIMREC�functions�

��� Derived Functions

As in ML� functions and constants can be added by the language constructs fun and
val� respectively� However� function and constant de�nitions in PML both correspond
to constant de�nitions in HOL� Therefore� function and constant de�nitions of PML
are less powerful than those in ML� The restrictions are�

� There must be only one equation within a fun or val de�nition� e�g�
fun is zero � � T j is zero�Suc n� � F� is not a valid PML de�nition�



� The parameters on the left hand side of the equation may only be variables and
paired variables� e�g� val �Suc n� � y� is not allowed�

� The expressions on the right hand side are built up by function applications
�f a� and ��abstractions �fn x �� a�� The only basic functions are PRIMREC�
functions and WHILE �WHILE will be introduced later in section 
����

� The function being de�ned must not appear on the right hand side of the equa�
tion� e�g� fun odd n � PRIMREC num n F �fn a �� fn b �� not�odd a��� is
not a valid PML de�nition� Recursion can always be expressed by equivalent
de�nitions which use PRIMREC�functions and WHILE�

� There is no exception handling�
� �case � � �of � � �� has not yet been implemented�

��� Prede�ned Data Types

Some data types are already de�ned in order to support pretty�printing for them�
For example� it is possible to write � instead of Suc�Suc Zero�� However� there is no
pretty�printing for user de�ned types� The prede�ned data types are��

primitive�datatype � bool � T � F � �

primitive�datatype � prod � Comma of �a � �b � �

primitive�datatype � list � Nil � Cons of �a � list � �

primitive�datatype � num � Zero � Suc of num � �

The following syntactic sugar refers to the prede�ned types� They can all be put
down to expressions based on data type constructors and PRIMREC�functions�

� �a� b� may be used instead of �Comma a b�
� �fn �x� y� �� p�x� y�� may be used instead of

�fn z �� PRIMREC prod z �fn x �� fn y �� p�x� y���
� �let val x � p in q�x� end� may be used instead of ��fn x �� q�x�� p��
� numerals �� �� ��� � � may be used instead of Zero� �Suc Zero�� �Suc�Suc Zero��� � � �
� � �� �a�� �a� b��� � � may be used instead of Nil� �Cons a Nil�� �Cons a �Cons b Nil���� � �

��� Example

We illustrate the use of the language constructs by a tra	c light controller� First� a
new data type named state is de�ned� which represents the states of the tra	c light�

primitive�datatype � state � Green � Yellow � Red � �

This type declaration automatically introduces the function PRIMREC state with
the following semantics�

PRIMREC state Green a b c � a

PRIMREC state Yellow a b c � b

PRIMREC state Red a b c � c

� In PML� type variables are expressed by �a� �b� �c� etc� whereas the corresponding type
variables in HOL are expressed by �� �� �� etc� It should be noted that the polymorphism
in PML corresponds to that of HOL only�



A constant named init containing the initial state Red can be de�ned as�

val init � Red�

The function next takes a state as parameter and calculates the successor state� In
this simple tra	c light controller� the state changes from red directly to green� but
changes from green to red via yellow�

fun next x � PRIMREC�state x Yellow Red Green�

Figure 
 shows the entire programme and the corresponding HOL�formula describing
its semantics�

PML�Program

primitive datatype

�state � Green � Yellow � Red��

val init � Red�

fun next x �

PRIMREC state x Yellow Red Green�

Semantics

��a b c� ��g�
�g Green � a� � �g Yellow� b� �
�g Red � c� � �

��a b c�
�PRIMREC state Green a b c � a� �
�PRIMREC state Yellow a b c � b� �
�PRIMREC state Red a b c � c� � �

�init� Red� �
��x� next x �
PRIMREC state x Yellow Red Green �

Fig� �� Tra�c light programme�

��� ��Recursion

According to Church�s Thesis� there are several equivalent schemes for describ�
ing computable functions� ��recursive functions are one means for describing com�
putable functions� With the elements described until now� only primitive recursive
functions can be described� while ��recursive functions cannot� Primitive recursive
functions are su	cient for describing hardware implementations� but they are too
weak for formalizing algorithmic speci�cations� Previous work such as the approaches
followed by the Boyer�Moore community� are limited to primitive recursive speci��
cations that cannot express all kinds of algorithms�

Unlike primitive recursive functions� ��recursive functions need not be total� In
ML it is possible that the evaluation of a function application does not terminate� The
equations of anML function de�nition can be considered as a constant speci�cation in
HOL where the speci�ed function need not be described unambiguously� i�e� nothing
can be said about the value of a function application where the evaluation does not
terminate� In contrast to ML� the result of a PML function always has an explicitly
de�ned value� even if the function application does not terminate� In this case� the
value of the function is explicitly de�ned to be the constant Unde�ned� otherwise
the result is �De�ned y� for a certain y� The data type partial is used for describing
values of ��recursive functions�



primitive�datatype � partial � Defined of �a � Undefined � �

The corresponding function PRIMREC partial has the following semantics�

PRIMREC partial �De�ned x� f a � f x

PRIMREC partial Unde�ned f a � a

The function WHILE is the basis for ��recursion in PML and can be used to create
loops� Given functions f and g and a parameter x� it iterates f until a value x is
reached with g x � F�

� iota f � PRIMREC bool ��� f� �De�ned�� f�� Unde�ned
� terminates�f� n� � �f n� � ��m� m � n � ��f m��
� mu f � iota��m� terminates�f�m��

� power f n x �
PRIMREC num n �De�ned x� ��a b�PRIMREC partial b f Unde�ned�

� WHILE g f x �
PRIMREC partial

�mu��n�PRIMREC partial �power f n x�
��y�PRIMREC bool �g y� F T� F��

��n� power f n x�
Unde�ned

The semantics ofWHILE is described using four auxiliary constants� iota� terminates�
mu and power� The function iota resembles the Hilbert operator� But in contrast
to the Hilbert operator its value is �De�ned y� in case the predicate speci�es a
unique value and Unde�ned if it does not� The predicate terminates�f� n� states that
n is the smallest number such that �f n� becomes true� mu is a formalization of the
��operator where mu f � Unde�ned corresponds to ��f�� � and mu f � De�ned k

corresponds to ��f� � k� The function power computes the multiple application
of a function� i�e� �power f n x� computes fn�x�� The expression �WHILE g f x�
calculates f���n�g�f

n�x���F��x�� �

��	 Example

The tra	c light example of section 
�� is extended by a ��recursive function red time�
red time is calculating the next time when the tra	c light becomes red� The tra	c
light is described by a function fnum�state� that is assigning a state to every time�
For a given function fnum�state and a time tnum� the function red time calculates
the smallest n	 t with f n � Red�

Figure � shows an implementation in PML in comparison with an implementation
in ML� The implementations in PML and ML are not really equivalent� since their
types di
er� In PML the result of red time has the type �num partial� whereas in ML
it is num�
� ��f� is the smallest element of ff�x� � Tjx�Ng and ��f�� denotes that ff�x� � Tjx�Ng
is empty�

� Extending primitive recursive functions by WHILE is equivalent to the extension by
the ��operator� i�e� both extensions lead to computable functions� However� WHILE�
expressions can be evaluated more e�ciently by an interpreter than expressions using
the ��operator�



PML�Implementation

fun is not red x �

PRIMREC state x T T F�

fun red time f t �

WHILE

�fn n �� is not red�f n��

�fn n �� Defined�Suc n��

t�

ML�Implementation

fun red time f t �

if ��f t� � Red� then

t

else

�red time f �Suc t���

Fig� �� Implementations of red time�

� Concrete Circuits

The functions described in this section are called concrete circuits since each of
them corresponds to exactly one real circuit� A concrete circuit is represented by
a function that assigns an input signal onto an output signal� Hardware structures
are build up by function de�nitions� Expressing a structure by a function de�nition
is possible� if and only if the structure does not have cycles� Since structures of
sequential circuits essentially have cycles� sequential circuits are represented by a
triple consisting of a combinational transient circuit� a combinational output circuit
and an initial state� Instead of combining sequential circuits directly� their transient
circuits� output circuits and initial states are combined�

��� Combinational Circuits

Individual signals of combinational circuits have type bool� Other than individual
signals can be obtained by pairing individual signals� Combinational circuits are
represented by functions assigning an input signal to an output signal� Figure �
shows a ��bit fulladder implemented by the circuits and� or and xor�

and

xor

xor

and

or

a r
b r

cin

rw�

w�

r
sum

w�

cout

fun fulladder �cin	�a	b�� �

let val w
 � xor�a	b� in

let val w� � and�b	a� in

let val sum � xor�cin	w
� in

let val w� � and�cin	w
� in

let val cout � or�w�	w�� in

�sum	cout�

end end end end end�

Fig� �� Structure of a ��bit fulladder and the PML representation�

��� Sequential Circuits

The signals of sequential circuits are time dependent� Their type is num
 � where
the type num represents the discrete time and � is the type of a time independent



signal� Sequential circuits map time dependent input signals onto time dependent
output signals� thus they have the following type� �num
 	� 
 �num
 
��

The description style used for combinational circuits does not allow cycles which
are necessary for sequential circuits� In order to use this scheme also for sequential
circuits� we de�ne a sequential circuit by a triple �f� g� q� consisting of a combina�
tional transient circuit f � a combinational output circuit g and an initial state q�
Thus� sequential structures can be expressed by interconnecting combinational cir�
cuits� Since structures of Mealy machines might lead to zero�delay�cycles� in this
paper only Moore circuits will be considered �see �gure ���

f memory gr

Fig� �� Scheme of a Moore circuit�

A function named makeseq is introduced� which computes a sequential circuit for
a given triple �f� g� q�� makeseq can be de�ned by the equations below� The func�
tion de�nition given by these equations does not have the form of a PML function
de�nition� It can rather be regarded as a ML�style function de�nition or a constant
speci�cation in HOL� These equations describe the desired properties of the intended
PML function in a clearer manner�

makeseq �f� g� q� a � � f q

makeseq �f� g� q� a �Suc t� � makeseq �f� g� g�a t� q�� ��t� a�Suc t�� t

The corresponding implementation in PML�

fun makeseq 	f
g
q� a t �

f 	PRIMREC�num t q 	fn n �� fn r �� g	a n
r����

It shall be demonstrated� how structures of sequential circuits can be described in
PML by function de�nitions� Figure � shows an example for a structure consisting

A
B

C

x

y

zw


w


w�

w�

fun fD �qa	qb	qc� �

let val �z	w�� � �fB qb� in z end�

fun gD ��x	y�	�qa	qb	qc�� �

let val �w
	�z	w��	�w�	w
�� �

�fA qa	fB qb	fC qc�

in

�gA�x	w
�	gB�w
	w��	gC�w�	y��

end�

val qD � �qA	qB	qC��

Fig� �� Structure of a sequential circuit and the PML representation�

of three sequential circuits A� B and C� The circuits A� B and C are represented by
�fA� gA� qA�� �fB� gB� qB� and �fC� gC� qC�� The entire circuit is called D and its triple
�fD� gD� qD� can directly be extracted from the structure�



� Abstract Circuits

In the previous section� functions were used for describing single real circuits� In
contrast to concrete circuits� abstract circuits represent sets of �concrete� circuits
and are therefore more powerful than concrete circuits� Similar to concrete circuits�
abstract circuits can also be represented by PML�functions� Abstract circuits can be
polymorphic and allow parameters which have types that are not restricted to pairs
�e�g� lists and trees may be used for instance�� Concrete circuits can be obtained
from abstract circuits by type instantiation and variable substitution�
The function mux is an example for an abstract circuit�

fun mux		s
bool�
	a
�a�
	b
�a�� � PRIMREC�bool s b a�

Concrete circuits can be derived from mux by instantiating the type variable 	 �	
is expressed by �a within the PML syntax�� Figure � shows two instances of mux�

mux

bool

mux

bool

bool�bool
bool�bool

bool�bool

bool
bool

bool

mux
PPPPPq

� �bool�bool

��
����

� � bool

Fig� 	� Instances of a polymorphic 
���multiplexer�

Abstract circuits are used for formalizing regular hardware structures which can

f

���

f

f

Fig� 
�� Regular circuit�

be expressed by means of primitive recursion� In general�
regular circuit structures lead to regular signal struc�
tures� If for example� a structure is described� that con�
sists of n combinational circuits connected in parallel�
then it would be appropriate to use the type list for
grouping together the input and the output signals�
The structure of the input signal determines the struc�
ture of the circuit and the structure of the output signal�
Grouping signals together by recursive types such as list
is �exible� since the structure of the signals and espe�

cially the number of the individual signals depends on the value�
Other types than list can be used for grouping signals� In the next example�

signals are grouped together by a list and a binary tree�

primitive�datatype �list � Nil � Cons of �a � list��

primitive�datatype �btree � Bleaf of �a � Bnode of btree � btree��

The semantics of the corresponding PRIMREC�functions is�

PRIMREC list Nil a f � a

PRIMREC list �Cons x y� a f � f x y �PRIMREC list y a f�

PRIMREC btree �Bleaf x� f g � f x

PRIMREC btree �Bnode x y� f g �
g x y �PRIMREC btree x f g� �PRIMREC btree y f g�



The input of the 
n���multiplexer consists of a group of data inputs and an
address signal for selecting one of the data inputs� The data input signals have an
arbitrary type 	 and they are grouped together as �	btree�� The address signals are
represented by a list of booleans �see �gure ���

�������������
������������

� btree

z �� �bool list

mux

mux

r
mux

r

���

mux

r

���

� � �

mux �

Fig� �� 
n���multiplexer�

The structure of the 
n���multiplexer depends on the structure of the input
signals �i�e� it depends on the length of the boolean list� and it also depends on
the shape of the binary tree� The PML function representing the 
n���multiplexer
function is total and so the 
n���multiplexer has to be designed for arbitrary lists
and arbitrary binary trees� even though after instantiation the binary tree has a
constant depth which is equal to the length of the list�

Figure �� illustrates� how the the structure of the 
n���multiplexer bmux is de�
�ned� For a given structure of the input signals� a circuit structure describes how
the 
n���multiplexer can recursively be put down to other 
n���multiplexers having
�smaller� input structures in the sense of a canonical term�ordering�

The following equations give a formal de�nition of the description in �gure ��� The
equations correspond to the circuit structures of the �gure in a one�to�one manner�

bmux�x�Bleaf a� � a

bmux�Nil�Bnode b c� � bmux�Nil� b�
bmux�Cons h t�Bnode b c� � mux�h� bmux�t� b�� bmux�t� c��

Obviously bmux is a primitive recursive function� but these equations cannot directly
be used for the PML implementation� To implement bmux in PML� the de�nition has
to be transformed� the interlocking primitive recursions over list and btree have to
be broken up�

bmux�x�Bleaf a� � a

bmux�Nil�Bnode b c� � bmux�Nil� b�
bmux�Cons h t�Bnode b c� � mux�h� bmux�t� b�� bmux�t� c��

�



bmuxy

x

z

y � Bleaf a

�
�
�

�
�
��

y � Bnode b c

x � Nil
Q
Q
Q
Q
Qs

x � Cons h t
�
�
�
�
��

Q
Q
Q
Q
Q
Qs

a z

x

bmux zb
c

Nil

bmux

bmux

mux z

c
b

t
h

r

Fig� �
� Recursive description of the structure of the 
n���multiplexer�

bmux�Nil�Bleaf a� � a

bmux�Nil�Bnode b c� � bmux�Nil� b�

bmux�Cons h t�Bleaf a� � a

bmux�Cons h t�Bnode b c� � mux�h� bmux�t� b�� bmux�t� c��
�

bmux�Nil� y� � PRIMREC btree y �� a� a� �� a b v w� v�

bmux�Cons h t� y� � PRIMREC btree y �� a� a�
�� a b v w�mux�h� bmux�t� v�� bmux�t� w��
�

bmux�x� y� � PRIMREC list x
�� s� PRIMREC btree s �� a� a� �� a b v w� v��
��h t r s�

PRIMREC btree s �� a� a� �� b c v w�mux�h� r b� r c�� �
y

The corresponding implementation in PML is�

fun bmux 	x
	y
�a btree�� �

PRIMREC�list x

	fn s ��

PRIMREC�btree s 	fn a �� a�

	fn a �� fn b �� fn v �� fn w �� v� �

	fn h �� fn t �� fn r �� fn s ��

PRIMREC�btree s 	fn a �� a�



	fn b �� fn c �� fn v �� fn w �� mux	h
r b
r c�� �

y�

Up to now� merely regular structures of combinational circuits were considered� Reg�
ular structures of sequential circuits can also be described since sequential circuits
can be put down to combinational circuits� Figure �� shows a regular structure

A A
� � �

A

� �z �
n��

Fig� ��� A series of Moore circuits�

based on a Moore circuit called A� The function series has been implemented in
PML� It takes A and n as parameters and calculates the entire circuit as shown in
�gure ��� Both the parameter A and the result of the function application are Moore
circuits that are represented by the triple as described in the previous section�

� Simulation and Veri�cation

��� An Interpreter for PML

PML programmes can simply be executed by a ML interpreter� however� the ML
environment has to be extended by some functions and data types� The type dec�
laration construct primitive datatype has to be implemented as a ML�function� the
prede�ned data types of PML have to be declared and the function WHILE has to
be implemented�

As all PML programmes are also ML programmes and the extended ML inter�
preter still accepts ML programmes� it is not tested whether the input is a PML
programme or more general� a ML programme�

��� Simulation Tools

Some general tools for simulating circuits have been implemented in the extended
ML interpreter� These tools are not PML functions� but they take PML functions
which describe circuits as arguments� Moreover� they display values of output signals
during the simulation of combinational and sequential circuits�

For this reason� output functions called type to string have been implemented
for all prede�ned data types� These output functions convert a value of a certain
PML type to a string� When a new data type is added� a corresponding output
function should also be implemented� Output functions are used as parameters of
the following simulation tools�

A function called function table has been implemented for combinational circuits
for performing the simulation and displaying the results as a table�

Sequential circuits that are represented by triples �f� g� q� could be simulated
using the function makeseq� However� if the output is considered over a period�
the use of make seq would be very ine	cient because for every single output� the



calculation would start from the beginning� The simulation function for sequential
circuits that has been implemented does not have this disadvantage� The circuit is
simulated only once until the last point of time of the considered period is reached�
The parameters for a sequential simulation are� the circuit represented by �f� g� q� �
a time dependent input signal� a condition for terminating the simulation and an
output function for converting the circuits output to a string�

��� Veri�cation

A function called extend theory by pml is implemented for converting a PML pro�
gramme to HOL� Some tools are provided for reasoning about PML functions� They
are concerned with� extending constant abbreviations� evaluation and induction�

For concrete circuits and some classes of abstract circuits� a more direct approach
for veri�cation is used� The PML�terms can be converted into certain formulae�
called hardware�formulae �ScKK��c�� which can be automatically veri�ed within
the MEPHISTO system �KuSK��� �see �gure �
�� Thus PML descriptions can also
be used as a front�end speci�cation language within this veri�cation framework�

fun fulladder �cin��a�b�� �
let val w� � xor�a�b� in
let val w
 � and�b�a� in
let val sum � xor�cin�w�� in
let val w� � and�cin�w�� in
let val cout � or�w��w
� in
�sum�cout�

end end end end end�

�

�cin a b sumcout�

fulladder�cin� a� b� sum� cout� �
�w�w
w��
xor�a� b�w�� �
and�b� a� w
� �
xor�cin�w�� sum� �
and�cin�w��w�� �
or�w�� w
� cout�

Fig� ��� Converting PML circuit descriptions to hardware�formulae�

� Conclusion and Future Work

We have presented a general purpose programming language that is formally em�
bedded in higher�order logic and we have also demonstrated� how this language can
be used for formalizing both combinational and sequential circuits� The main em�
phasis has been put on demonstrating how regularity can be expressed by means of
primitive recursion�

PML is a very simple language and writing PML programmes can be rather tough
since all function de�nitions have to be broken up to the primitive recursion and
��recursion constructs� It is intended to improve the applicability of PML by adding
a more comfortable ML�style mechanism for expressing recursive functions�

In future research it shall be analyzed� how PML descriptions of circuits can be
used for hardware design� PML descriptions shall be used in several �elds� veri��
cation� simulation� symbolic simulation� synthesis and optimization �HDL�to�HDL
transformations��



References

�BGGH�
� R� Boulton� A� Gordon� M� Gordon� J� Herbert� and J� van Tassel� Experiences
with Embedding hardware description languages in HOL� In V� Stavridou�
T�F� Melham� and R� Boute� editors� Conference on Theorem Provers in Circuit

Design� IFIP Transactions A��
� pages �
������ North�Holland� ���
�
�BGHT��� R� Boulton� M� Gordon� J� Herbert� and J� van Tassel� The HOL veri�cation of

ELLA designs� In International Workshop on Formal Methods in VLSI Design�
January �����

�BoPS�
� D� Borrione� L� Pierre� and A� Salem� Formal veri�cation of VHDL descriptions
in Boyer�Moore� First results� In J� Mermet� editor� VDHL for Simulation�

Synthesis and Formal Proofs of Hardware� pages 

��
��� Kluwer Academic
Press� ���
�

�CaGM	�� A� Camilleri� M�J�C� Gordon� and Th� Melham� Hardware veri�cation using
higher order logic� In D� Borrione� editor� From HDL Descriptions to Guaran�

teed Correct Circuit Designs� pages ������ North�Holland� ��	��
�Cami		� J� Camilleri� Executing behavioural de�nitions in higher order logic� Technical

Report ��
� University of Cambridge Computer Laboratory� ��		�
�Cami��� J� Camilleri� Symbolic compilation and execution of programs by proof� a case

study in HOL� Technical Report 
�
� University of Cambridge Computer Lab�
oratory� �����

�Gunt�
� E� Gunter� Why we can�t have SML�style datatype declarations in HOL� In
L�J�M� Claesen and M�J�C� Gordon� editors� Higher Order Logic Theorem Prov�

ing and its Applications� volume A�

 of IFIP Transactions� pages ������	�
Leuven� Belgium� ���
� North�Holland�

�Hunt	�� W�A� Hunt� The mechanical veri�cation of a microprocessor design� In
D� Borrione� editor� From HDL Descriptions to Guaranteed Correct Circuit De�

signs� pages 	����
� North�Holland� ��	��
�Jone	�� S�L�P� Jones� The Implementation of Functional Programming Languages�

Prentice Hall� ��	��
�KuSK��� R� Kumar� K� Schneider� and Th� Kropf� Structuring and automating hard�

ware proofs in a higher�order theorem�proving environment� Journal of Formal
Methods in System Design� 
�
������

�� �����

�Melh		� T� F� Melham� Automating recursive type de�nitions in higher order logic�
Technical Report ���� University of Cambridge Computer Laboratory� Septem�
ber ��		�

�ScKK��c� K� Schneider� R� Kumar� and Th� Kropf� Eliminating higher�order quanitifers
to obtain decision procedures for hardware veri�cation� In International Work�

shop on Higher�Order Logic Theorem Proving and its Applications� Vancouver�
Canada� August �����

�Shee		� M� Sheeran� Retiming and slowdown in Ruby� In G�J� Milne� editor� The fu�

sion of Hardware Design and Veri�cation� pages 
	���
	� Glasgow� ��		� North
Holland�

This article was processed using the LaTEX macro package with LLNCS style


