JAN 187 -0
Mechanized Support for Stepwise Refinement

Jan L.A. van de Snepscheut
California Institute of Technology

This note describes a notation for formula manipulation and an editor that pro-
vides support for the production of programs through the process of stepwise
refinement.

1 Introduction

Stepwise refinement is the method of gradually developing programs from their
specification through a number of steps. This method was first proposed by

E.W. Dijkstra [2], [3], [4] and N. Wirth [8], [9]. As [8] puts it

In each step, one or several instructions of the given program are de-
composed into more detailed instructions. This successive decompo-
sition or refinement of specifications terminates when all instructions
are expressed in terms of an underlying computer or programming
language, and must therefore be guided by the facilities available on
that computer or language. ...

Every refinement step implies some design decisions. It is important
that these decisions be made explicit, and that the programmer be
aware of the underlying criteria and of the existence of alternative
solutions.

Both authors give elegant and convincing examples of the application of this
method. In both cases, however, the process is an informal one. In [1], R.J. Back
lays a mathematical foundation under this process by viewing refinement as a
partial order on state transformers.

Although stepwise refinement is a simple method, it is not widely used in
practice because it is often tedious and, as a result, error-prone. In this note,
we describe an editor that is geared to the production of programs via stepwise

JAN 187 -1

refinement by automating the tedious parts and by making explicit the trans-
formations carried out in each step as well as the conditions under which they
apply. Numerous systems support program transformation or theorem proving
but (almost) none of them reduce the amount of labor required by the practicing
programmer who uses the system. There is (almost) always some aspect of the
mechanization that forces the programmer to pay attention to details that are
only tangential to the program development itself. The driving force behind our
design is to compete with paper and pencil, so to speak, by actually reducing
the amount of work done by the programmer. The editor is called prozac for
program and proof transformation and calculation.

2 Overview

The editor presents a number of windows, including a window that contains the
text being edited and a window that contains the transformation rules that can
be applied. For example, if the edit window contains the text

s=mss(n+1) AN 0<n<N
then application of rule
mss.n =MAX(j |0<j < np> mesj)

transforms the text into

s = mss.(n+ 1) A 0<n<N
= { mssln:=n+1] }
s=MAX(|0<j<n+1bmesj) A 0<n<N

(We will turn to the interpretation of these formulae later on.) In the current
version of the proxac system, a rule is selected by clicking with the mouse on the
rule (see [7] for details). The editor supports the tedious part of this rewriting
in the sense that it matches the given text to the selected rule; it determines the
“longest” subformula that matches one side of the rule (namely, mss.(n + 1) if
variable 7 in the rule is replaced by n 4+ 1); it then carries out this substitution
in the right-other side of the rule to produce the rewrite. The old and new
lines are connected by the hint 'm,ss['n, = n + 1] to indicate which rule was
applied and which substitution was carried out. Including this information in
the text helps in making the transformations explicit. The author of the text is
the one who selects the rule that is being applied, the edit program carries out
the other actions. Notice that the text being produced is in the format suggested
by W.H.J. Feijen.

We have cheated a little bit in the example since we did not indicate in
the rule that n is a variable and all the other quantities are constants. Also,
transformation rules are applicable only under certain conditions; in this case the

JAN 187 -2

condition is 0 < n < N. The full version of the transformation rule is, therefore,
as follows.

rule mss: (n |0 < n < Nopmss.sn=MAX(j | 0<j < n>mesj))

In addition to the actions described earlier, the editor checks that the applicability
condition is met. Since the transformation is applied in a conjunction where
0 < n < N is one of the terms, the condition holds and the rule applies.

We continue the example with one more rule.
rule split: (z,y.zp (2 <y<z4+1l)=(@<y<z V z<y=z+1))

Rules can be viewed in different ways. The split rule is an algebraic identity,
not a definition. But a rule like mss can be viewed as an explicit definition of
function mss. The second view is a special case of the first view. We prefer
the first view since it provides a great economy in formal labor, even though it
has the danger of leading to inconsistencies (since the algebraic properties are
postulated instead of proved).

Application of these rules leads to the following text.

s=mss.(n+1) AN 0<n<N

1
—_

mss[n:=n+1] }
s=MAX(|0<j<n+1bmesj) AN 0<n<N

1
—_

splitlz .= 0,y :=j,z:=n] }
s=MAX(j |0<j<nb>mesj)Tmes(n+1) AN 0<n<N

1
—_

mss }

s=mss.nlmes(n+1) AN 0<n<N

Notice that the last step is the mss rule applied in the opposite direction. Also
notice that the second transformation step produces term

s=MAX(G|0<j<n V j=n+1b>mes.j)
but the editor reduces this further to
s=MAX(j |0<j<nvmesj)]mes.(n+1)

through an application of the range disjunction and one-point rules for quan-
tification. It shows that T is the infix operator that corresponds to quantifier
MAX just like V corresponds to 3 and 4+ corresponds to Y. These corre-
spondences are not built into the editor; they are specified through the following
statements.

declare INFIX 20 1

property ASSOCIATIVE(1) A DUAL(1) =1
declare QUANTIFIER MAX

property INFIXOPERATOR(MAX) = 1

JAN 187 -3

The first line declares T to be an infix operator with precedence level 20. The
second line states that it is associative and commutative (that is, it is its own
dual). The third line declares quantifier MAAX and the fourth line gives the
correspondence between the two new operators. The associativity and commu-
tativity of T are necessary to make MAX a well-defined quantifier. They also
enable a lot of simplifications that are automatically applied by the system. By
writing the rules and properties in a small but rather general language instead
of a richer language with more built-in facts, we gain the ability to extend the
application domain of our editor to algebraic manipulations that were not nec-
essarily foreseen. In particular, we show how it can be used to set up a calculus
of stepwise refinement.

3 Refinement calculus

In this section, we develop a formalization of the refinement calculus within the
framework of our transformation method. The refinement calculus introduced
by R.J. Back in [1] is based on the weakest preconditions introduced in [4]. Tt is
based on an ordering relation on programs, written as s0 C s1 for programs s0
and sl to denote that s0 can be refined by s1. Two properties are essential
for stepwise refinement. The first is that T be reflexive and transitive because
this justifies the fact that a sequence of steps can be used to refine a specification
into an executable program. The second is monotonicity of the program con-
structs because this justifies that refining one subprogram by another refines the
whole program. Notice that this view of refinement requires that programs and
specifications be treated on equal footing. Hence, specifications are treated as
programs, but we continue refining a program until it contains no specifications.
(See the quote in section 1.)

As a first attempt, we may introduce some program constructs. For example,
sequential composition will be denoted by semicolon and the empty statement
by skip.

declare INFIX 0 C

property TRANSITIVE(C) A REFLEXIVE(C)

declare INFIX 1 ;

declare skip

property UNIT(;) = skip

property ASSOCIATIVE(;)

property V(s0,s1,¢0.t1 | sOC s1 At0C ¢t1 > s0; t0 C s1; t1)
Notice that this does not provide a definition of ; even though it is claimed
to be an associative operator. A definition-based style would have to prove this

result from the definition, which would depend on the associativity of function
composition. The last line states the monotonicity of sequential composition.

JAN 187 -4

Though mathematically elegant, formalization of weakest preconditions leads
to a complication in their practical use. The complication is due to the difference
between program variables and mathematical variables. J.J. Lukkien provided
the following example to illustrate the confusion that may arise. Suppose we
want to prove the correctness of program

i:=100; DO i#0—i:=i—10D

with respect to precondition true and postcondition true. All we need to do is
to prove termination. Using invariant # > 0 and bound function i, our proof
obligation is to show that the conjunction of the invariant and the guard implies
a decrease of the bound function, that is,

i20Ni£0Ai=C = wp.(i:=i—-1).(: < ()

for all constants C'. Using a naive formalization, we may proceed as follows

i>20Ni£0Ni=C = wp.(i:=i—-1).(i <)
= {i=C }

i>0Ni£0NIi=C = wp.(i:=i—-1).(C<(C)
= { algebra }

i>20Ni#£0Ni=C = wp.(i:=1i—1).false

{ law of excluded miracle }

1>20ANi#£0AN1=C = false

{ algebra }
—|(i =(C>0)

and we are stuck. The problem, of course, is that one should not allow the
substitution of C for ¢ in the argument of wp. The solution is to distinguish
between 4 on the left-hand side and ¢ on the right-hand side by making both
sides boolean functions instead of boolean scalars. In particular, the second
argument of wp becomes a boolean function that maps argument ¢ to the
boolean value i < C. We write this function as (i > i < C'). In this way the
problem disappears. Unfortunately, so does the practicality of the wp calculus.
For example, the weakest precondition of statement 4 := i — 1 with respect to
postcondition ¢ < C is written as wp.(i := i — 1).(4 > i < C). It becomes
even worse when the statement is to be understood in a state where 7 is not
the only program variable. If the program has variables i, j, and £k, then
the aforementioned precondition becomes wp.(i := i — 1).(,7,k > i < C). The
size of the formula grows with the number of program variables and this greatly
impacts its practical use.

In [6], C. Morgan provides an alternative formalization of the refinement
calculus. Tt is based on the specification statement, written as v : [pre, post],
in which v is called the frame, and pre and post are the precondition and
postcondition. Its effect is given as (see [6])

JAN 187 -5

If the initial state satisfies the precondition then change only the
variables listed in the frame so that the resulting final state satisfies
the postcondition.

The rules for calculating with specification statements do not involve wp ’s and
thereby avoid the problem mentioned above.

The notation used for a specification statement is not that of an infix oper-
ator. It is a notation involving three arguments; the first is a list of variables,
and the other two are single expressions. In our formalism, we write

notation !LIST : [!, !]

and, presently, we cannot express the restriction that the elements if the first list
are variables. We have no need for expressing the semantics of the specification
statement other than how it can be refined by other programs, as discussed below.

Using the specification statement, we postulate the following property of
sequential composition.

v:[P,R] C v:[P,Q];v:[Q,R]

for all predicates P, @, and R. Next, we introduce the assignment statement.
Assignment statement z := FE is a refinement of any specification statement
that contains 2 in its frame (in addition to a possibly empty list of variables v)
and such that the postcondition in which z is replaced by FE is implied by the
precondition. In our formalism, we write

v,z:[P,Q] € z:=E

forall v, =, E, P, and @ provided P = @[z := E|. Finally, we introduce
the loop construct. We write

notation DO ! — ! 0D

for a loop with one guarded command and we postulate

vi[P,P A =b]
C
DOb—ov:[P A b A bf=BF,P A bf <BF] OD

provided PA b = bf > 0. For our example, we can get away with a simpler
form of the loop in which there is an integer variable that is increased in steps of
one from one given value to another given value. Using a more specific refinement
rule implies less work upon application since part of the proof obligations can
be taken care of when constructing (or postulating) this rule. The rule we will
use is given in the text below. For the sake of completeness we also list a rule
for strengthening the postcondition and a rule for introducing local variables.
The latter notation is a bit more complicated because it restricts the scope of
local variables, an issue that we are not concerned with here. This text is the

JAN 187 -6

entire refinement calculus as far as we need it for the example. In other cases
we need more rules and the full version is about four times the size of the short
version listed here. Whenever we develop a new program, we want to use these
refinement rules and definitions in the same way we want to use a module of
procedures and definitions in a program. We use the same mechanism: rules and
definitions can be collected in a module, and the module can be imported by
another text.

module refine
notation !LIST : [!, !]
notation DO ! — ! OD
notation VAR ?7LIST(v) BEGIN !(v) END
declare INFIX 2 :=
declare INFIX 1 :
property ASSOCIATIVE(:)
rule StrengthenPost : (v, P, Q,R >
v:[P,Q]Cv:[P,QAR]
rule Block : (v, w,P,Q v
v:[P,Q)C VAR w BEGIN w,v :[P.Q] END)
rule Assignment : (v,z,E.P,Q | P = Q[z:= E]»
v,z :[P.Q] C z:=E)
rule Semicolon : (v, P, Q,R >
v:PR] C v:[P. QL o [Q.R)
rule SemicolonAssignment : (v,z, E. P, (Q v
v,z :[P,Q] C v,z:[P,Q[z:=E];z:=E)
rule UpLoop : (v,i,pre, P, from,to | P = from < to v
v,4: [pre, PAi = to]
C
v [pre, Pli:= from]]; i := from;
DO i#to— v:[PAfrom <i<to, Pli:=i+1]A from <1 < to;
1:=1+4+1
OD)
property V(s0,s1,10,¢1 | sOC s1 At0C t1 > s0; 0 C s1; £1)
property V(b,s0,81 | sOC s1> DO b — s0 OD £ DO b — s1 OD)
property V(w,s0,s1| s0C s1 >
VAR w BEGIN s0 END C VAR w BEGIN s1 END)

Notice that we have included a rule, viz. SemicolonAssignment, that is strictly
superfluous because it follows from the two rules that precede it. However, we
often have a situation in which we know that a specification statement v,z :
[P, Q] will include an assignment, z := E. By letting it be the last statement in a
sequential composition, we compute specification v,z : [P, Q[z := E]] preceding
it so that the combination is a proper refinement. By writing the combination as a
single rule, the proxac system will compute and simplify predicate Q[z := E]. If
we use the Semicolon rule instead, the author has to postulate this predicate and
the system will verify its use in the subsequent refinement steps. The additional
rule reduces the author’s work.

In the module that contains the definition, we might want to prove that the

JAN 187 -7

more specific loop rule follows from the general Loop rule. Such a proofis given
here.

rule UpLoop : (v,i,pre, P, from,to | P = from < to v

v,4: [pre, P N i = to]
C { Semicolon[P :=pre,Q := P A from <i<to,R:=PAi=to,v:=(v,1)] }
v,i: [pre, P A from < i < tol; v.i: [P Afrom <i<to,P Ai=to]
C { SemicolonAssignment|z := i, E := from, P := pre,
Q :=PA from < i< to] }
v : [pre, P[i := from]]; i := from; v,i: [P A from < i < to, P Ni = to]
C { Loop[P:=PAfrom <i<tobf :=to—i,v:=(v,4),b:=10%#to] }
v : [pre, P[i := from]]; i := from;
DO i#to—wv,i:[PAfrom <i<toAto—i=BF,
P A from <i<toAto— i< BF]
OD
C { SemicolonAssignment][P:= P A from < i< to,z:=i,FE:=1i+1,
Q:=PAfrom<i<toAto—i< BF] }
v : [pre, P[i := from]]; i := from;
DO i#to— v:[PAfrom <i<to,Pli:=i+1]Afrom < i< tol;
=1+ 1
0OD)

Usage of this long version of the UpLoop rule is identical to usage of the version
listed in the module text. The external view of a rule with a calculational body
is that of a rule with the body reduced to its first and last line with a connective
deduced from the sequence of connectives. In this reduction, transitivity of C
is essential. After a rule has been written it is shown in abbreviated form in the
rules window so that it can be applied by a mouse click.

Notice that we have now given a proof of the correctness of the UpLoop rule.
The mechanism for developing the proofis identical to the mechanism for refining
a program.

4 An example of a program derivation

In this section we illustrate the use of the refinement rules to derive a program
from its specification. The program is well-known and so is its derivation. Our
focus of attention is the support given by the proxac system.

In some steps of the proof above (and in some steps of program derivations
below, but not in any other earlier step), some variables of rules cannot be deter-
mined by pattern matching. As a result, the author of the text will need to give
the proxac system hints regarding these unresolved variables. In this section, we
indicate hints by underlining them.

The programming problem is known as the mazimum segment sum problem
(see [5]). Given is an array ¢ of N > 0 integers. A segment of the array is
a contiguous subsequence of the array. A segment has a segment sum, viz. the
sum of all its array elements. The problem is to write a program to determine
the maximum segment sum. We formalize the problem as

JAN 187 -8

module mss

import refine

declare QUANTIFIER

property INFIXOPERATOR(Y) = +

declare INFIX 20 7

property ASSOCIATIVE(]) A DUAL(1)=1 A IDEMPOTENT(})
declare QUANTIFIER MAX

property INFIXOPERATOR(MAX) =1

property 0 < N

rule mss: (n |0<n < Nopmss.n=MAX(j|0<j<nv>mess))
rule mes: (j | 0<j < N> mesj=MAX(G | 0<4i<j> sum.i.j))
rule sum: (i,j |0<i<j< Nob>sum.ij=Y,(h|i<h<j>ah))
edit s: [true,s = mss.N]|

We recognize the rules that we had in section 2. We use | for the infix maximum
operator. The problem is to write a program for computing mss. N, that is, a
program that refines s : [true,s = mss.N]. We will need a loop, and this
will lead to a specification statement in the loop body that contains mss.n in
the precondition and mss.(n + 1) in the postcondition. Given the calculation
in section 2, we know that the latter can be rewritten as mss.n | mes.(n + 1)
which means that we are tempted to introduce mes.(n+1) in the loop invariant.
However, upon termination of the loop, n = N, and mes.(N + 1) is undefined.
We must, therefore, decrease by one the argument of mes and calculate mes.(n+
1) from mes.n when needed. The programming problem can now be formalized
as finding a refinement for n,r, s : [true,s = mss.n. A r =mes.n A n = N].
If we had not noticed the problem with undefinedness of mes.(N +1), we would
have proceeded with mes.(n + 1) in the invariant. We would get stuck later on

where a step cannot be justified because
0<n<N = 0<n+1<N
cannot be established. We would not have been led into undefined results!

s [true, s = mss.N|
C { Block[v:=s,w:=(n,r), P :=true, Q) := s = mss.N| }

VAR n.r BEGIN n,r,s : [true,s = mss.N| END
C { StrengthenPost[v := (n,r.s), P := true,) := s = mss.N,

R:=r=mes NAn=N] }

VAR n.r BEGIN n,r,s : [true,s = mss.N Ar = mes.N An = N| END
= (=N)

VAR n.r BEGIN n,r,s : [true,s = mss.n Ar = mes.n An = N] END

Notice how the second step introduces () AR in which R in turnis a conjunction.
Since conjunction is associative, no parentheses surround R. We have found
these kind of aspects instrumental in keeping down the amount of detail that the
author has to deal with and, hence, the number of steps needed to complete a
program derivation. We now focus attention on the latter specification statement
and ignore the surrounding block. When doing so, the system keeps track of the
context in which this narrowing of attention occurs.

JAN 187 -9

n,r, 8 : [true,s = mss.n A = mes.n An = N
C { UpLooplv := (r,s),i:= n,pre := true, P := s = mss.n A 1 = mes.n,
from := 0,10 := N] }
r, s [true,s = mss.0 A 1= mes.0); n:=0;
DOn#N—r,s:[s=mssn A r=messn A 0<n<N,
=mss.(n+1) AN r=mes.(n+1) A 0<n<NJ;
n:=mn4+1

v

OD
C { ros:[true,s =mss.0 A 1= mes.0]
= {mss[n:=0]}

7,8 [true,s = mes.0 A r = mes.0

M

r, P := true,

{ Se'm,i(;ol(mA.s’sig'n,me'n,t['n =r,x =8 F =
O A r= mes.O] }

Q := s = mes
7,8 [true,m = mes.0]; s ;=1

= { mes[j:=0]}

r, s [true, v = sum.0.0]; s := 7
= {sum[i:=0,j7:=0]}

r,s: [true,r =0]; s :=r

M

{ Assignment[v := s,z :=r,E :=0,P := true, Q :=r =0] }
r:=0;s:=r
}
r:=0;8:=r;n:=0;
DOn#N—rs:[s=mssn AN r=mesn A 0<n<N,
s=mss.(n+1) A r=mes.(n+1) A 0<n<NJ
n:=n+1
oD

Notice that the above calculation contains a nested calculation. The step to
replace 7.5 : [true,s = mss.0 A 71 = mes.0] by 7 := 0; s := r consists
of five steps by itself. Replacing them in the context where that specification
statement occurs is justified by the monotonicity of sequential composition. We
continue by narrowing attention to the specification statement in the loop body.
We will need two more rules; they are not related to refinement but to ranges
in quantifications. Since we have both ranges of the form 0 <7 < j and of the
form 1 < h < 7, we have two split rules.

rule split: (z,y,zv (e <y<z+1)=(z
rule split : (z,y,z> (2 <y<z+1)=(=

y<z V z<y=z))

y<z V z<y=z+1))
We continue the refinement.

r.s:[s=mssn A r=mesmn A 0<n<N,
s=mss.(n+1) A r=mes.(n+1) A 0<n<N]
= {mssln:=n+1]}
r.s:[s=mssm A r=mesmn A 0<n<N,
s=MAX(G |0<j<n+1>mesj) A
r=mes.(n+1) A 0<n<N]
{ splitlz :== 0,y :=j,z:=n] }

JAN 187 -10

r,s:[s=mssn A r=mesn A 0<n<N,
MAX(j |0<j<nb>mesj)lmes.(n+1) A
r=mes.(n+1) A 0<n< N]
= { mss}
r,s:[s=mssm A r=mesn A 0<n<N,
s =mss.n | mes.(n + 1) AN r= 'm/es.('n, + 1) A 0<n< N]
{r=mes.(n+1)}
r,s:[s=mssn A r=mesn A 0<n<N,
s=mss.nlr A r=mes.{n+1) A 0<n<N]
{ SemicolonAssignment[v := r,x = s, E 1= s1r,
P:=s=mss.n A r=mesn A 0<n<N,
Q:=s=(mss.n)Tr A r=mes.(n+1) A 0<n<N]}
r.s:[s=mssm A r=mesn A 0<n<N,
str=mssnlr A r=mes.(n+1) A 0<n<NJ;
si=s1r
{ r=mes.(n+1)
= { 'm,es[j =n+ 1] }
r=MAX(i | 0<i<n+1p sum.i.(n+1))
{ split|le :== 0,y :=i,z:=n] }
r=MAX(i | 0<i<no sumi.(n+1))1(sum.(n+1).(n+1)))
= {sum[i:=n+1,j:=n+1]}
r=MAX(G | 0<i<n> sum.i.(n+1))70
= {sum[j:=n+1]}
r=MAX@G|0<i<np> d(h|i<h<n+1vah))l0
{ split|lz == i,y :=h,z:=n] }
r=MAXG|0<i<np> Y (h|i<h<nv>ah)+an)l0
= {suml[j:=n]}
r=MAX(i | 0<i<nb>sumi.n+an)]0
{ factor }
r=MAX(: |0<i<nbsumin)+an)l0
{meslj = n] }
r=(mes.n+an)l0

S

1M

r,s:[s=mssm A r=mesn A 0<n<N,
sTr=mssnlr A r=mesn+an A 0<n<NJ
s:=s1r
C { Assignment[v := s,z :=r,E:=(r+a.n)10,
P:=s=mss.n N r=mes.n AN 0<n<N,
Q:=slr=mssnlr A r=mesn+anl0 A 0<n<N]}
ri=(r4+an)10;s:=s7r

The last-but-one step in the subcalculation is a step labeled factor and this
is one of the built-in transformations. However, since we did not specify that
addition distributes over maximum, the proxac system is unable to verify the
correctness of this transformation and will print a question asking

Context implies: MAX (¢ | 0<i < n > sum.in+ an)=
MAX(i | 0<i<nb>sumin)+ an ?

JAN 187 -11

The author of the text can decide to add the distribution property, to prove it,
or to ignore the question.

When we widen the focus again from the specification statement in the loop
body, we end up with the text

VAR n,r
BEGIN
r:=0;s:=r;n:=0;
DOn#N—-r:=(r+an)l0;s:=sTr;n:=n+10D
END

and this program solves the problem at hand.

5 Conclusion

The total text of the program derivation is quite long, much longer than the
program text itself. This observation is often used as an argument against the
use of stepwise refinement or against formal methods. The derivation consists
of a total of 31 steps, 8 of them being narrowing and widening the focus of
attention. Of the remaining 23 steps, 16 steps require no hint at all. The 7 hints
that had to be given have been underlined. These hints are the only input given
to the system in addition to each mouse click that selects a rule and triggers its
application. As a result, the total input is comparable in size to the resulting
program and not to the derivation. One major benefit of using this system is
that design decisions have been made explicit. Another major benefit is that all
steps have been mechanically verified. We feel that this derivation shows that
the use of a formal system for stepwise refinement of programs puts no extra
burden on the programmer, and competes well with paper and pencil. Of course,
we have used a set of rules that constitute the refinement calculus, but this is
an investment that is amortized over the development of many programs. We
have also written explicitly what the specification of the problem is. We don’t
think that a responsible programmer delivers a program without a specification,
so this does not constitute extra work.

The transformation rules we have used are rather elementary. One can come
up with more complicated rules that correspond to many steps in our present
repertoire. This reduces the number of steps to complete a program derivation;
however, the increase in the number of rules may make it harder to use them.

One can view the transformations as the commands of a programming lan-
guage for formula manipulation. The transformations that we have described
here, correspond to the elementary commands. We have used the notation of
functions for describing those rules. By extending the notation with function
composition, we construct composite transformation commands. By extending
the notation with conditionals and a fixpoint operator, we obtain a complete pro-
gramming language. These extensions allow us to construct what are sometimes

JAN 187 -12

called tactics. Tactics and their semantics are beyond the scope of the present
paper.

6 Acknowledgement

The prozxac editor can be found in £tp directory jan/proxac on ¢s.caltech.edu.
A more detailed description can be found in [7] and an up-to-date version thereof
can be found in the same ftp directory. Writing this editor and developing the
notations used was, and is, a challenging undertaking. Diana Finley was instru-
mental in getting this project underway. Greg Davis contributed many ideas and
helped get the program to the point where it actually became usable. My thanks
go to both of them.

References

[1] R.J.R. Back. On the Correctness of Refinement Steps in Program Develop-
ment. PhD thesis, University of Helsinki, 1978. Report A-1978-4.

[2] E.W. Dijkstra. A Constructive Approach to the Problem of Program Cor-
rectness. BIT, 8:174 186, 1968.

[3] E.W. Dijkstra. Notes on Structured Programming. In O.J. Dahl, E.-W. Di-
jkstra, and C.A.R. Hoare, editors, Structured Programming. Academic Press,

1971.
[4] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[6] D. Gries. A Note on the Standard Strategy for Developing Loop Invariants
and Loops. Science of Computer Programming, 12:207 214, 1982.

[6] C. Morgan. Programming from Specifications. Series in Computer Science
(C.A.R. Hoare, ed.). Prentice-Hall International, 1990.

[7] J.L.A. van de Snepscheut. JAN 183. Proxac: an Editor for Program Trans-
formation. Technical Report CS 93-33, California Institute of Technology,
1993.

[8] N. Wirth. Program Development by Stepwise Refinement. Communications
of the ACM, 14:221-227, 1971.

[9] N. Wirth. Systematic Programming. Prentice-Hall, 1973.

