
JAN ��� ��

Mechanized Support for Stepwise Re�nement

Jan L�A� van de Snepscheut

California Institute of Technology

This note describes a notation for formula manipulation and an editor that pro�
vides support for the production of programs through the process of stepwise
re�nement�

� Introduction

Stepwise re�nement is the method of gradually developing programs from their
speci�cation through a number of steps� This method was �rst proposed by
E�W� Dijkstra 	
�� 	
�� 	�� and N� Wirth 	��� 	��� As 	�� puts it

In each step� one or several instructions of the given program are de�
composed into more detailed instructions� This successive decompo�
sition or re�nement of speci�cations terminates when all instructions
are expressed in terms of an underlying computer or programming
language� and must therefore be guided by the facilities available on
that computer or language� ���

Every re�nement step implies some design decisions� It is important
that these decisions be made explicit� and that the programmer be
aware of the underlying criteria and of the existence of alternative
solutions�

Both authors give elegant and convincing examples of the application of this
method� In both cases� however� the process is an informal one� In 	��� R�J� Back
lays a mathematical foundation under this process by viewing re�nement as a
partial order on state transformers�

Although stepwise re�nement is a simple method� it is not widely used in
practice because it is often tedious and� as a result� error�prone� In this note�
we describe an editor that is geared to the production of programs via stepwise



JAN ��� ��

re�nement by automating the tedious parts and by making explicit the trans�
formations carried out in each step as well as the conditions under which they
apply� Numerous systems support program transformation or theorem proving
but �almost	 none of them reduce the amount of labor required by the practicing
programmer who uses the system� There is �almost	 always some aspect of the
mechanization that forces the programmer to pay attention to details that are
only tangential to the program development itself� The driving force behind our
design is to compete with paper and pencil
 so to speak
 by actually reducing
the amount of work done by the programmer� The editor is called proxac for
program and proof transformation and calculation�

� Overview

The editor presents a number of windows
 including a window that contains the
text being edited and a window that contains the transformation rules that can
be applied� For example
 if the edit window contains the text

s � mss ��n � �	 � 
 � n � N

then application of rule

mss �n �MAX�j j 
 � j � n � mes �j 	

transforms the text into

s � mss ��n � �	 � 
 � n � N

� f mss �n �� n � �� g

s �MAX�j j 
 � j � n � � � mes �j 	 � 
 � n � N

�We will turn to the interpretation of these formulae later on�	 In the current
version of the proxac system
 a rule is selected by clicking with the mouse on the
rule �see ��� for details	� The editor supports the tedious part of this rewriting
in the sense that it matches the given text to the selected rule� it determines the
�longest� subformula that matches one side of the rule �namely
 mss ��n � �	 if
variable n in the rule is replaced by n �� 	� it then carries out this substitution
in the right�other side of the rule to produce the rewrite� The old and new
lines are connected by the hint mss �n �� n � �� to indicate which rule was
applied and which substitution was carried out� Including this information in
the text helps in making the transformations explicit� The author of the text is
the one who selects the rule that is being applied
 the edit program carries out
the other actions� Notice that the text being produced is in the format suggested
by W�H�J� Feijen�

We have cheated a little bit in the example since we did not indicate in
the rule that n is a variable and all the other quantities are constants� Also

transformation rules are applicable only under certain conditions� in this case the



JAN ��� ��

condition is � � n � N � The full version of the transformation rule is� therefore�
as follows	

rule mss 
 �n j � � n � N � mss �n �MAX�j j � � j � n � mes �j 



In addition to the actions described earlier� the editor checks that the applicability
condition is met	 Since the transformation is applied in a conjunction where
� � n � N is one of the terms� the condition holds and the rule applies	

We continue the example with one more rule	

rule split 
 �x � y � z � �x � y � z � �
 � �x � y � z � x � y � z � �



Rules can be viewed in di�erent ways	 The split rule is an algebraic identity�
not a de�nition	 But a rule like mss can be viewed as an explicit de�nition of
function mss � The second view is a special case of the �rst view	 We prefer
the �rst view since it provides a great economy in formal labor� even though it
has the danger of leading to inconsistencies �since the algebraic properties are
postulated instead of proved
	

Application of these rules leads to the following text	

s � mss ��n � �
 � � � n � N

� f mss �n 
� n � �� g

s � MAX�j j � � j � n � � � mes �j 
 � � � n � N

� f split �x 
� �� y 
� j � z 
� n� g

s � MAX�j j � � j � n � mes �j 
 �mes ��n � �
 � � � n � N

� f mss g

s � mss �n �mes ��n � �
 � � � n � N

Notice that the last step is the mss rule applied in the opposite direction	 Also
notice that the second transformation step produces term

s �MAX�j j � � j � n � j � n � � � mes �j 


but the editor reduces this further to

s �MAX�j j � � j � n � mes �j 
 �mes ��n � �


through an application of the range disjunction and one�point rules for quan�
ti�cation	 It shows that � is the in�x operator that corresponds to quanti�er
MAX just like � corresponds to � and � corresponds to

P
� These corre�

spondences are not built into the editor� they are speci�ed through the following
statements	

declare INFIX �� �

property ASSOCIATIVE ��
 � DUAL��
 � �

declare QUANTIFIER MAX

property INFIXOPERATOR�MAX
 � �



JAN ��� ��

The �rst line declares � to be an in�x operator with precedence level �	
 The
second line states that it is associative and commutative �that is� it is its own
dual

 The third line declares quanti�er MAX and the fourth line gives the
correspondence between the two new operators
 The associativity and commu�
tativity of � are necessary to make MAX a well�de�ned quanti�er
 They also
enable a lot of simpli�cations that are automatically applied by the system
 By
writing the rules and properties in a small but rather general language instead
of a richer language with more built�in facts� we gain the ability to extend the
application domain of our editor to algebraic manipulations that were not nec�
essarily foreseen
 In particular� we show how it can be used to set up a calculus
of stepwise re�nement


� Re�nement calculus

In this section� we develop a formalization of the re�nement calculus within the
framework of our transformation method
 The re�nement calculus introduced
by R
J
 Back in ��� is based on the weakest preconditions introduced in ���
 It is
based on an ordering relation on programs� written as s	 v s� for programs s	
and s� to denote that s	 can be re�ned by s�� Two properties are essential
for stepwise re�nement
 The �rst is that v be re�exive and transitive because
this justi�es the fact that a sequence of steps can be used to re�ne a speci�cation
into an executable program
 The second is monotonicity of the program con�
structs because this justi�es that re�ning one subprogram by another re�nes the
whole program
 Notice that this view of re�nement requires that programs and
speci�cations be treated on equal footing
 Hence� speci�cations are treated as
programs� but we continue re�ning a program until it contains no speci�cations

�See the quote in section �



As a �rst attempt� we may introduce some program constructs
 For example�
sequential composition will be denoted by semicolon and the empty statement
by skip�

declare INFIX 	 v

property TRANSITIVE �v
 � REFLEXIVE �v


declare INFIX � �

declare skip

property UNIT �� 
 � skip

property ASSOCIATIVE �� 


property ��s	� s�� t	� t� j s	 v s�� t	 v t� � s	� t	 v s�� t�


Notice that this does not provide a de�nition of � even though it is claimed
to be an associative operator
 A de�nition�based style would have to prove this
result from the de�nition� which would depend on the associativity of function
composition
 The last line states the monotonicity of sequential composition




JAN ��� ��

Thoughmathematically elegant� formalization of weakest preconditions leads
to a complication in their practical use� The complication is due to the di	erence
between program variables and mathematical variables� J�J� Lukkien provided
the following example to illustrate the confusion that may arise� Suppose we
want to prove the correctness of program

i 
� ���
 DO i �� �� i 
� i � � OD

with respect to precondition true and postcondition true� All we need to do is
to prove termination� Using invariant i � � and bound function i � our proof
obligation is to show that the conjunction of the invariant and the guard implies
a decrease of the bound function� that is�

i � � � i �� � � i � C � wp��i 
� i � ����i � C �

for all constants C � Using a naive formalization� we may proceed as follows

i � � � i �� � � i � C � wp��i 
� i � ����i � C �

� f i � C g

i � � � i �� � � i � C � wp��i 
� i � ����C � C �

� f algebra g

i � � � i �� � � i � C � wp��i 
� i � ���false

� f law of excluded miracle g

i � � � i �� � � i � C � false

� f algebra g

��i � C � ��

and we are stuck� The problem� of course� is that one should not allow the
substitution of C for i in the argument of wp� The solution is to distinguish
between i on the left�hand side and i on the right�hand side by making both
sides boolean functions instead of boolean scalars� In particular� the second
argument of wp becomes a boolean function that maps argument i to the
boolean value i � C � We write this function as �i � i � C �� In this way the
problem disappears� Unfortunately� so does the practicality of the wp calculus�
For example� the weakest precondition of statement i 
� i � � with respect to
postcondition i � C is written as wp��i 
� i � ����i � i � C �� It becomes
even worse when the statement is to be understood in a state where i is not
the only program variable� If the program has variables i � j � and k � then
the aforementioned precondition becomes wp��i 
� i � ����i � j � k � i � C �� The
size of the formula grows with the number of program variables and this greatly
impacts its practical use�

In ���� C� Morgan provides an alternative formalization of the re�nement
calculus� It is based on the speci�cation statement� written as v 
 �pre� post ��
in which v is called the frame� and pre and post are the precondition and
postcondition� Its e	ect is given as �see ����



JAN ��� ��

If the initial state satis�es the precondition then change only the
variables listed in the frame so that the resulting �nal state satis�es
the postcondition�

The rules for calculating with speci�cation statements do not involve wp 	s and
thereby avoid the problem mentioned above�

The notation used for a speci�cation statement is not that of an in�x oper�
ator� It is a notation involving three arguments
 the �rst is a list of variables�
and the other two are single expressions� In our formalism� we write

notation �LIST 
 � � � � �

and� presently� we cannot express the restriction that the elements if the �rst list
are variables� We have no need for expressing the semantics of the speci�cation
statement other than how it can be re�ned by other programs� as discussed below�

Using the speci�cation statement� we postulate the following property of
sequential composition�

v 
 �P �R� v v 
 �P �Q �
 v 
 �Q �R�

for all predicates P � Q � and R� Next� we introduce the assignment statement�
Assignment statement x 
� E is a re�nement of any speci�cation statement
that contains x in its frame �in addition to a possibly empty list of variables v �
and such that the postcondition in which x is replaced by E is implied by the
precondition� In our formalism� we write

v � x 
 �P �Q � v x 
� E

for all v � x � E � P � and Q provided P � Q �x 
� E �� Finally� we introduce
the loop construct� We write

notation DO � � � OD

for a loop with one guarded command and we postulate

v 
 �P �P � �b�

v

DO b � v 
 �P � b � bf � BF �P � bf � BF � OD

provided P � b � bf � �� For our example� we can get away with a simpler
form of the loop in which there is an integer variable that is increased in steps of
one from one given value to another given value� Using a more speci�c re�nement
rule implies less work upon application since part of the proof obligations can
be taken care of when constructing �or postulating� this rule� The rule we will
use is given in the text below� For the sake of completeness we also list a rule
for strengthening the postcondition and a rule for introducing local variables�
The latter notation is a bit more complicated because it restricts the scope of
local variables� an issue that we are not concerned with here� This text is the



JAN ��� ��

entire re�nement calculus as far as we need it for the example� In other cases
we need more rules and the full version is about four times the size of the short
version listed here� Whenever we develop a new program	 we want to use these
re�nement rules and de�nitions in the same way we want to use a module of
procedures and de�nitions in a program� We use the same mechanism
 rules and
de�nitions can be collected in a module	 and the module can be imported by
another text�

module re�ne

notation �LIST 
 � � � � 

notation DO � � � OD
notation VAR �LIST �v� BEGIN ��v� END
declare INFIX � 
�
declare INFIX � �
property ASSOCIATIVE �� �
rule StrengthenPost 
 �v �P �Q �R �

v 
 �P �Q 
 v v 
 �P �Q � R
�
rule Block 
 �v �w �P �Q �

v 
 �P �Q 
 v VAR w BEGIN w � v 
 �P �Q 
 END �
rule Assignment 
 �v � x �E �P �Q j P � Q �x 
� E 
 �

v � x 
 �P �Q 
 v x 
� E �
rule Semicolon 
 �v �P �Q �R �

v 
 �P �R
 v v 
 �P �Q 
� v 
 �Q �R
�
rule SemicolonAssignment 
 �v � x �E �P �Q �

v � x 
 �P �Q 
 v v � x 
 �P �Q �x 
� E 

� x 
� E �
rule UpLoop 
 �v � i � pre�P � from� to j P � from � to �

v � i 
 �pre� P � i � to

v
v 
 �pre� P �i 
� from

� i 
� from�
DO i �� to � v 
 �P � from � i � to� P �i 
� i � �
 � from � i � to
�

i 
� i � �
OD�

property ��s�� s�� t�� t� j s� v s�� t� v t� � s�� t� v s�� t��
property ��b� s�� s� j s� v s� � DO b � s� OD v DO b � s� OD �
property ��w � s�� s� j s� v s� �

VAR w BEGIN s� END v VAR w BEGIN s� END �

Notice that we have included a rule	 viz� SemicolonAssignment � that is strictly
super�uous because it follows from the two rules that precede it� However	 we
often have a situation in which we know that a speci�cation statement v � x 

�P �Q 
 will include an assignment x 
� E � By letting it be the last statement in a
sequential composition	 we compute speci�cation v � x 
 �P �Q �x 
� E 

 preceding
it so that the combination is a proper re�nement� By writing the combination as a
single rule	 the proxac system will compute and simplify predicate Q �x 
� E 
� If
we use the Semicolon rule instead	 the author has to postulate this predicate and
the system will verify its use in the subsequent re�nement steps� The additional
rule reduces the author�s work�

In the module that contains the de�nition	 we might want to prove that the



JAN ��� ��

more speci�c loop rule follows from the general Loop rule� Such a proof is given
here�

rule UpLoop � 	v � i � pre�P � from� to j P � from � to �

v � i � 
pre�P � i � to�
v f Semicolon
P �� pre�Q �� P � from � i � to�R �� P � i � to� v �� 	v � i
� g
v � i � 
pre�P � from � i � to�� v � i � 
P � from � i � to�P � i � to�

v f SemicolonAssignment 
x �� i �E �� from�P �� pre�

Q �� P � from � i � to� g
v � 
pre�P 
i �� from��� i �� from� v � i � 
P � from � i � to�P � i � to�

v f Loop
P �� P � from � i � to� bf �� to � i � v �� 	v � i
� b �� i �� to� g
v � 
pre�P 
i �� from��� i �� from�
DO i �� to � v � i � 
 P � from � i � to � to � i � BF �

P � from � i � to � to � i � BF �
OD

v f SemicolonAssignment 
 P �� P � from � i � to� x �� i �E �� i � ��
Q �� P � from � i � to � to � i � BF � g

v � 
pre�P 
i �� from��� i �� from�
DO i �� to � v � 
P � from � i � to�P 
i �� i � �� � from � i � to��

i �� i � �
OD


Usage of this long version of the UpLoop rule is identical to usage of the version
listed in the module text� The external view of a rule with a calculational body
is that of a rule with the body reduced to its �rst and last line with a connective
deduced from the sequence of connectives� In this reduction� transitivity of v
is essential� After a rule has been written it is shown in abbreviated form in the
rules window so that it can be applied by a mouse click�

Notice that we have now given a proof of the correctness of the UpLoop rule�
The mechanism for developing the proof is identical to the mechanism for re�ning
a program�

� An example of a program derivation

In this section we illustrate the use of the re�nement rules to derive a program
from its speci�cation� The program is well�known and so is its derivation� Our
focus of attention is the support given by the proxac system�

In some steps of the proof above 	and in some steps of program derivations
below� but not in any other earlier step
� some variables of rules cannot be deter�
mined by pattern matching� As a result� the author of the text will need to give
the proxac system hints regarding these unresolved variables� In this section� we
indicate hints by underlining them�

The programming problem is known as the maximum segment sum problem
	see 
��
� Given is an array a of N � � integers� A segment of the array is
a contiguous subsequence of the array� A segment has a segment sum� viz� the
sum of all its array elements� The problem is to write a program to determine
the maximum segment sum� We formalize the problem as



JAN ��� ��

module mss

import re�ne

declare QUANTIFIER
P

property INFIXOPERATOR�
P

� � 	
declare INFIX 
� �
property ASSOCIATIVE ��� � DUAL��� � � � IDEMPOTENT ���
declare QUANTIFIER MAX

property INFIXOPERATOR�MAX� � �
property � � N

rule mss � �n j � � n � N � mss �n �MAX�j j � � j � n � mes �j ��
rule mes � �j j � � j � N � mes �j � MAX�i j � � i � j � sum�i �j ��
rule sum � �i � j j � � i � j � N � sum�i �j �

P
�h j i � h � j � a�h��

edit s � 
true� s � mss �N �

We recognize the rules that we had in section 
� We use � for the in�x maximum
operator� The problem is to write a program for computing mss �N � that is� a
program that re�nes s � 
true� s � mss �N � � We will need a loop� and this
will lead to a speci�cation statement in the loop body that contains mss �n in
the precondition and mss ��n 	 �� in the postcondition� Given the calculation
in section 
� we know that the latter can be rewritten as mss �n �mes ��n 	 ��
which means that we are tempted to introduce mes ��n	�� in the loop invariant�
However� upon termination of the loop� n � N � and mes ��N 	 �� is unde�ned�
We must� therefore� decrease by one the argument of mes and calculate mes ��n	
�� from mes �n when needed� The programming problem can now be formalized
as �nding a re�nement for n� r � s � 
true� s � mss �n � r � mes �n � n � N � �
If we had not noticed the problem with unde�nedness of mes ��N 	��� we would
have proceeded with mes ��n 	 �� in the invariant� We would get stuck later on
where a step cannot be justi�ed because

� � n � N � � � n 	 � � N

cannot be established� We would not have been led into unde�ned results�

s � 
true� s � mss �N �
v f Block 
v �� s �w �� �n� r��P �� true�Q �� s � mss �N � g

VAR n� r BEGIN n� r � s � 
true� s � mss �N � END
v f StrengthenPost 
v �� �n� r � s��P �� true�Q �� s � mss �N �

R �� r � mes �N � n � N � g
VAR n� r BEGIN n� r � s � 
true� s � mss �N � r � mes �N � n � N � END

� f n � N g
VAR n� r BEGIN n� r � s � 
true� s � mss �n � r � mes �n � n � N � END

Notice how the second step introduces Q�R in which R in turn is a conjunction�
Since conjunction is associative� no parentheses surround R� We have found
these kind of aspects instrumental in keeping down the amount of detail that the
author has to deal with and� hence� the number of steps needed to complete a
program derivation� We now focus attention on the latter speci�cation statement
and ignore the surrounding block� When doing so� the system keeps track of the
context in which this narrowing of attention occurs�



JAN ��� ��

n� r � s � �true� s 	 mss �n � r 	 mes �n � n 	 N 

v f UpLoop�v �	 �r � s�� i �	 n� pre �	 true�P �	 s 	 mss �n � r 	 mes �n�

from �	 
� to �	 N 
 g
r � s � �true� s 	 mss �
 � r 	 mes �

� n �	 
�
DO n �	 N � r � s � �s 	 mss �n � r 	 mes �n � 
 � n � N �

s 	 mss ��n � �� � r 	 mes ��n � �� � 
 � n � N 
�
n �	 n � �

OD

v f r � s � �true� s 	 mss �
 � r 	 mes �


	 f mss �n �	 

 g
r � s � �true� s 	 mes �
 � r 	 mes �



v f SemicolonAssignment �v �	 r � x �	 s �E �	 r �P �	 true�

Q �	 s 	 mes �
 � r 	 mes �

 g
r � s � �true� r 	 mes �

� s �	 r

	 f mes �j �	 

 g
r � s � �true� r 	 sum�
�

� s �	 r

	 f sum�i �	 
� j �	 

 g
r � s � �true� r 	 

� s �	 r

v f Assignment �v �	 s � x �	 r �E �	 
�P �	 true�Q �	 r 	 

 g
r �	 
� s �	 r

g
r �	 
� s �	 r � n �	 
�
DO n �	 N � r � s � �s 	 mss �n � r 	 mes �n � 
 � n � N �

s 	 mss ��n � �� � r 	 mes ��n � �� � 
 � n � N 
�
n �	 n � �

OD

Notice that the above calculation contains a nested calculation� The step to
replace r � s � �true� s 	 mss �
 � r 	 mes �

 by r �	 
� s �	 r consists
of �ve steps by itself� Replacing them in the context where that speci�cation
statement occurs is justi�ed by the monotonicity of sequential composition� We
continue by narrowing attention to the speci�cation statement in the loop body�
We will need two more rules� they are not related to re�nement but to ranges
in quanti�cations� Since we have both ranges of the form 
 � i � j and of the
form i � h � j � we have two split rules�

rule split � �x � y � z � �x � y � z � �� 	 �x � y � z � x � y 	 z ��
rule split � �x � y � z � �x � y � z � �� 	 �x � y � z � x � y 	 z � ���

We continue the re�nement�

r � s � �s 	 mss �n � r 	 mes �n � 
 � n � N �

s 	 mss ��n � �� � r 	 mes ��n � �� � 
 � n � N 

	 f mss �n �	 n � �
 g
r � s � �s 	 mss �n � r 	 mes �n � 
 � n � N �

s 	MAX�j j 
 � j � n � � � mes �j � �
r 	 mes ��n � �� � 
 � n � N 


	 f split �x �	 
� y �	 j � z �	 n
 g



JAN ��� ���

r � s � �s 	 mss �n � r 	 mes �n � � � n � N �

s 	MAX
j j � � j � n � mes �j � �mes �
n � �� �
r 	 mes �
n � �� � � � n � N 


	 f mss g
r � s � �s 	 mss �n � r 	 mes �n � � � n � N �

s 	 mss �n �mes �
n � �� � r 	 mes �
n � �� � � � n � N 

	 f r 	 mes �
n � �� g
r � s � �s 	 mss �n � r 	 mes �n � � � n � N �

s 	 mss �n � r � r 	 mes �
n � �� � � � n � N 

v f SemicolonAssignment �v �	 r � x �	 s �E �	 s � r �

P �	 s 	 mss �n � r 	 mes �n � � � n � N �

Q �	 s 	 
mss �n� � r � r 	 mes �
n � �� � � � n � N 
 g
r � s � �s 	 mss �n � r 	 mes �n � � � n � N �

s � r 	 mss �n � r � r 	 mes �
n � �� � � � n � N 
�
s �	 s � r

	 f r 	 mes �
n � ��
	 f mes �j �	 n � �
 g

r 	MAX
i j � � i � n � � � sum�i �
n � ���
	 f split �x �	 �� y �	 i � z �	 n
 g

r 	MAX
i j � � i � n � sum�i �
n � ��� �
sum�
n � ���
n � ����
	 f sum�i �	 n � �� j �	 n � �
 g

r 	MAX
i j � � i � n � sum�i �
n � ��� ��
	 f sum�j �	 n � �
 g

r 	MAX
i j � � i � n �
P


h j i � h � n � � � a�h�� � �
	 f split �x �	 i � y �	 h� z �	 n
 g

r 	MAX
i j � � i � n �
P


h j i � h � n � a�h� � a�n� � �
	 f sum�j �	 n
 g

r 	MAX
i j � � i � n � sum�i �n � a�n� � �
	 f factor g

r 	 
MAX
i j � � i � n � sum�i �n� � a�n� � �
	 f mes �j �	 n
 g

r 	 
mes �n � a�n� � �
g

r � s � �s 	 mss �n � r 	 mes �n � � � n � N �

s � r 	 mss �n � r � r 	 mes �n � a�n � � � n � N 
�
s �	 s � r

v f Assignment �v �	 s � x �	 r �E �	 
r � a�n� � ��
P �	 s 	 mss �n � r 	 mes �n � � � n � N �

Q �	 s � r 	 mss �n � r � r 	 mes �n � a�n � � � � � n � N 
 g
r �	 
r � a�n� � �� s �	 s � r

The last�but�one step in the subcalculation is a step labeled factor and this
is one of the built�in transformations� However� since we did not specify that
addition distributes over maximum� the proxac system is unable to verify the
correctness of this transformation and will print a question asking

Context implies� MAX
i j � � i � n � sum�i �n � a�n� 	

MAX
i j � � i � n � sum�i �n� � a�n �



JAN ��� ���

The author of the text can decide to add the distribution property� to prove it�
or to ignore the question�

When we widen the focus again from the speci�cation statement in the loop
body� we end up with the text

VAR n� r

BEGIN

r 	
 �� s 	
 r � n 	
 ��

DO n �
 N � r 	
 
r � a�n� � �� s 	
 s � r � n 	
 n � � OD

END

and this program solves the problem at hand�

� Conclusion

The total text of the program derivation is quite long� much longer than the
program text itself� This observation is often used as an argument against the
use of stepwise re�nement or against formal methods� The derivation consists
of a total of �� steps� � of them being narrowing and widening the focus of
attention� Of the remaining �� steps� �� steps require no hint at all� The � hints
that had to be given have been underlined� These hints are the only input given
to the system in addition to each mouse click that selects a rule and triggers its
application� As a result� the total input is comparable in size to the resulting
program and not to the derivation� One major bene�t of using this system is
that design decisions have been made explicit� Another major bene�t is that all
steps have been mechanically veri�ed� We feel that this derivation shows that
the use of a formal system for stepwise re�nement of programs puts no extra
burden on the programmer� and competes well with paper and pencil� Of course�
we have used a set of rules that constitute the re�nement calculus� but this is
an investment that is amortized over the development of many programs� We
have also written explicitly what the speci�cation of the problem is� We don�t
think that a responsible programmer delivers a program without a speci�cation�
so this does not constitute extra work�

The transformation rules we have used are rather elementary� One can come
up with more complicated rules that correspond to many steps in our present
repertoire� This reduces the number of steps to complete a program derivation�
however� the increase in the number of rules may make it harder to use them�

One can view the transformations as the commands of a programming lan�
guage for formula manipulation� The transformations that we have described
here� correspond to the elementary commands� We have used the notation of
functions for describing those rules� By extending the notation with function
composition� we construct composite transformation commands� By extending
the notation with conditionals and a �xpoint operator� we obtain a complete pro�
gramming language� These extensions allow us to construct what are sometimes



JAN ��� ���

called tactics� Tactics and their semantics are beyond the scope of the present
paper�

� Acknowledgement

The proxac editor can be found in ftp directory jan�proxac on cs�caltech�edu�
A more detailed description can be found in ��	 and an up�to�date version thereof
can be found in the same ftp directory� Writing this editor and developing the
notations used was
 and is
 a challenging undertaking� Diana Finley was instru�
mental in getting this project underway� Greg Davis contributed many ideas and
helped get the program to the point where it actually became usable� My thanks
go to both of them�

References

��	 R�J�R� Back� On the Correctness of Re�nement Steps in Program Develop�

ment� PhD thesis
 University of Helsinki
 ����� Report A��������

��	 E�W� Dijkstra� A Constructive Approach to the Problem of Program Cor�
rectness� BIT
 �
�������
 �����

��	 E�W� Dijkstra� Notes on Structured Programming� In O�J� Dahl
 E�W� Di�
jkstra
 and C�A�R� Hoare
 editors
 Structured Programming� Academic Press

�����

��	 E�W� Dijkstra� A Discipline of Programming� Prentice�Hall
 �����

��	 D� Gries� A Note on the Standard Strategy for Developing Loop Invariants
and Loops� Science of Computer Programming
 ��
�������
 �����

��	 C� Morgan� Programming from Speci�cations� Series in Computer Science
�C�A�R� Hoare
 ed��� Prentice�Hall International
 �����

��	 J�L�A� van de Snepscheut� JAN ���� Proxac
 an Editor for Program Trans�
formation� Technical Report CS �����
 California Institute of Technology

�����

��	 N� Wirth� Program Development by Stepwise Re�nement� Communications

of the ACM
 ��
�������
 �����

��	 N� Wirth� Systematic Programming� Prentice�Hall
 �����


