Abstract
The purpose of this paper is to present a short survey of possible results of an application of general concepts from categorical algebra to the specification of partial algebras with conditional existence equations. The general concept, which models theories (= formulas and equivalence classes of terms) as categories, is extended to 2-categories, such that rewriting between terms can be made explicit. To make clear the benefits of such an approach the results are presented in the usual terminology of algebraic specifications.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Michael Barr and Charles Wells. Toposes, triples, and theories. Springer Verlag, 1985.
Ingo Claßen, Martin Große-Rhode, and Uwe Wolter. Categorical concepts for parameterized partial specifications. Technical Report 92-42, TU Berlin, 1992.
Peter Freyd. Aspects of topoi. Bull. Austr. Math. Soc., (7):1–72, 1972.
Peter Freyd. Aspects of topoi, corrections. Bull. Austr. Math. Soc., (8):467–480, 1973.
P. Gabriel and F. Ulmer. Lokal präsentierbare Kategorien. Springer Lecture Notes in Mathematics 221, 1971.
P. T. Johnstone. Topos Theory. Academic Press, 1977.
G. M. Kelly. Elementary observations on 2-categorical limits. Bulletin Australian Mathematical Society, (39):301–317, 1989.
H. Kaphengst and H. Reichel. Operative Theorien und Kategorien von operativen Systemen. In Studien zur Algebra und ihren Anwendungen. Akademie Verlag, 1972.
J. Lambek and P. J. Scott. Introduction to higher order categorical logic. Cambridge studies in advanced mathematics. Cambridge University Press, 1986.
M. Makkai and G.E. Reyes. First order categorical logic, volume 611 of Lecture Notes in Mathematics. Springer Verlag, 1977.
Axel Poigné. Algebra categorically. Lecture Notes in Mathematics, (240):76–102, 1985.
A.J. Power and Charles Wells. A formalism for the specification of essentially algebraic structures in 2-categories. Technical report, University of Edinburgh, 1991.
R. A. G. Seely. Modeling computations: A 2-categorical framework. In Symposium on Logic in Computer Science, pages 65–71. IEEE, 1987.
Uwe Wolter. An algebraic approach to deduction in equational partial horn theories. J. Inf. Process. Cybern. EIK, 27(2):85–128, 1990.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1994 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Große-Rhode, M., Wolter, U. (1994). 2-Categorical specification of partial algebras. In: Ehrig, H., Orejas, F. (eds) Recent Trends in Data Type Specification. ADT COMPASS 1992 1992. Lecture Notes in Computer Science, vol 785. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57867-6_12
Download citation
DOI: https://doi.org/10.1007/3-540-57867-6_12
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-57867-3
Online ISBN: 978-3-540-48361-8
eBook Packages: Springer Book Archive