
Developing Efficient Interpreters Based on
Formal Language Specifications

Arnd Poetzsch-Heffter i

Institut fiir Informatik
Technische Universit~.t
D-80290 Miinchen

poetzsch~informatik.tu-muenchen.de

Abstract

The paper reports on extensions to the MAX system enabling the generation and re-
finement of interpreters based on formal language specifications. In these specifications,
static semantics is defined by an attribution mechanism that allows to enrich syntax
trees by control flow graphs. The dynamic semantics is defined by evolving algebras, a
framework that has been successfully used to specify realistic programming languages.

We apply the combined framework to a non-trivial example language and show how
the resulting language specification can be refined in order to improve the ei~ciency of
the generated interpreters. The framework provides enough modularity and flexibility
so that such refinements can be carried out by local changes within the framework.
Finally, we explain the implementation of the extensions to MAX.

1 Introduction

Motivation Certainly, many agree with Tofte that "... a realistic language definition is
a very delicate Object" ([Tofg0], p. 109). Nevertheless, different tasks and levels in lan-
guage design and implementation are til now solved and supported based on different, often
unrelated frameworks; consequently, for each task a specification has to be produced from
scratch. E.g. there are frameworks for providing very high-level, readable, and formal lan-
guage specifications (e.g. [Mos92]); and frameworks to specify compilation tasks focussing
on efficiency: attribut~ grammars to express identification, typing, and context checking;
control flow based specifications for data flow analyses to support optimizations; and pattern
driven code generators.

Our ideal picture to relate the different specifications is a tree the root of which is the
high-level language specification; a step to a child represents refinements or enrichments
eventually leading to implementations of specific language-dependent tools. And a child
should use as much as possible from the parent specification. The framework we present in
this paper should be understood as a step towards this picture, even though we focus here
on a specific example, the development of interpreters.

Approach In [PH93b], we showed how first-order recursive functions defined on occur-
rence structures can be used like attributes~in an attribute grammar specification. In fact,
recursive functions on occurrence structures provide a more expressive framework than at-
tribute grammars in that they allow to formally specify an enrichment of the syntax tree by
non-local edges. (On the other hand, attribute grammars allow in general for more efficient
implementations; cf. relation to other work.) Here, we use a slightly extended version of oc-
currence structures to specify control flow and use evolving algebras developed by Gurevich
to specify the dynamic semantics of programming languages.

Figure 1 shows the control flow graph for the expression 7 + f(a, 0) as syntax tree
enrichment. The evolving algebra specifies how to interprete these graphs; in particular it

1Supported by DFG grant Po 432/2-1.

234

specifies the semantics-of the graph nodes -- called tasks. These tasks may have parameters
(omitted in the figure); e.g. the BinOp-task has the operator Add, the argument expressions
"Int" and "CallExp" and the result expression "BinExp" as parameters (cf. section 3). The
graph nodes denoted by "o" are called prt~3ram points; they are an auxiliary device enabling
to specify the task graph locally for each tree production.

~ /~ �9 o o �9 o.. �9 ~ .,\

Add o ~ o

~t~f

Ident
t i l t tt

Figure I: Control flow for expression 7+ f(a~ 0)

After providing the formal background, we illustrate the framework by specifying a non-
trivial example language. In section 4, we refine this language specification to an interpreter
specification. Section 5 explains how the MAX system ([PIi93b]) was extended.

Rela t i on to o t h e r W o r k Our work should be understood as a step towards filling the
gap between very high-level language specification frameworks that are optimized versus
readability and formality and specification frameworks that are designed to generate tools
that can compete in efficiency with hand-writen tools.

To illustrate one of the differences between language specification frameworks like de-
notational, natural, or action semantics ai/d our framework, let us consider a standard
specification of an imperative language with loops and lo-
cal blocks. If we interprete the shown program fragment
according to such a specification, the environment has to
be changed each time the loop is entered or exited (the
binding for "a" has to be changed). In an interpreter one
would like to avoid this overhead. As our specifications
can be based on the occurrences of the syntax tree, we
could refine such a specification by using a static func-
tion from used identifier occurrences to thdr declaration
occurrences and a global environment mapping variable
declarations to values. I.e. we seperate a static aspect

in~ a = 2;
int b = 10
o..

while(b > 9){

int a;

a=a§ ;
}

(namely identifier binding) from

235

the dynamic semantics and globalize the environment. In a similar way, we can specify a
static function yielding for each jump statement the corresponding target statement, thereby
refining control flow.

The goal of the presented work is not to substitute higher-level frameworks that are more
convenient to use, trimmed versus readability, or have specific theoretical properties (all this
is true e.g. for action semantics; see [Mos92]). The goal is to provide a system supported
formal framework that allows to express stepwise refinement of specifications; in particular
it should be flexible enough to express globaliz~ng transformations (cf. ISch851), seperation
of static from dynamic aspects, improvements on the control flow, and refinements based
on data types.

Compared to attribute grammar based system, our system supports the specification
of dynamic semantics and is more expressiye as far as the formal part of specifications is
concerned. On the other hand, if e.g. the flow graphs are encapsulated in semantic actions,
attribute grammar specifications can be understood as refining our specifications towards
efficiency. In addition to that, our work is related to systems enabling the implementation of
data flow analyses ([WilS1]) and allows to bring data flow analysis and language semantics
together (see [PH93a]; for a denotational approach cf. [Ven89]).

Another very important relation is to works using programming language specifications
to define the semantics of programming logics. In particular, it is related to positional se-
mantics as defined in [CO78]. In deed, our framework can be understood as a generalization
of positional semantics in that it provides very flexible formal methods to define positions
and the transition relation. Thereby it makes the logic approach of [CO78] applicable to
realistic programming languages.

2 Formal Background

This section introduces the formal concepts our specifications are based on. First, we define
occurrence algebras, an extension of term algebras. Occurrence algebras provide occurrence
sorts (e.g. the sort of the variable declaration occurrences in a syntax tree). Having the
occurrences as elements in the formal framework allows to specify graphs and thereby enables
very rich program representations. Then, we give a short introduction to evolving algebras
that are used to specify the dynamic semantics. Both concepts use the notion of "algebras":
An algebra is given by a set U, called the universe of the algebra, and a set of functions that
take their arguments in U" and yield values in U.

2.1 O c c u r r e n c e A l g e b r a s

Occurrence algebras extend order-sorted term algebras by providing sorts for the occur-
rences of terms. They simplify and generalize the concept of occurrence structures as pre-
sented in tPH93b]. Before the formal definition, we give an informal introduction. Consider
the abstract syntax for the expressions of our example language:

Exp = Int [VarExp [CallExp
VarExp (Iden~)
CalIExp (Ident ExpList)
ExpList * Exp
BinExp ~ O p e r a t o r Exp Exp)
O p e r a t o r = Add l . . �9
Add ,()

[BinExp

236

i.e. an expression is in integer constant, a variable occurrence, a function call, or a binary
expression; and e.g. a call has two components: the identifier of the called function and the
actual parameter list. To define control flow graphs as shown in the introduction, we must be
able to refer to a "father" of a term. But in term algebras there is no "father" of a term. That
is why we consider occurrences in terms. Occurrences are represented as usual by a pair (t, l),
where t is a term and and I a list of positive integers i l , . . . , in describing the path from the
root of t to the subterm occurrence. We use the notation ~(t ; i l , . . . , i ,) and write @(t; e)
for the root occurrence of t. E.g. @(CaUExp("f",ExpList(VarExp("x"),VarExp("x')));
2,1,1) represents the first occurrence of identifier x in the abstract syntax term f o r / (x , x).
The father of this occurrence is the first occurrence of the corresponding variable expression:
@(CMIExp("f",ExpList(VarExp("x"),VarExp("x"))); 2,1).

It is useful to extend the sorting on terms to occurrences: An occurrence of a subterm
s of sort S is said to be of sort S~; e.g. the occurrences given above are of sort Ident@ and
VarExp~ respectively. Using occurrence sorts, we can define new sorts. For example the
program points before and after expression occurrences as shown in figure 1 can be defined
by the productions:

E x p P o i n t = B e f o r e J A f t e r
B e f o r e (Exp@)
After (Exp@)

In the following, we define what the occurrence algebra for a set of productions is.

Definition 2.1 Let PRODSORTS and PRIMSORTS be two disjunct sets of symbols called
production and primitive 2 sort symbols. A sort symbol is a production or primitive sort
symbol followed by a possibly empty sequence of ~-symbols, i.e. has the form S@*, where
S E PRODSORTS U PRIMSORTS. The set of sort symbols is denoted by SORTS.

* A production has one of the following forms: S ($1 . . . Sin) (called tuple production),
or S , T (called list production), or S = SoI. . . [Sn (called class production), where
S E PRODSORTS, S~,T E SORTS, and m , n are natural numbers; S is called the left
hand side of the respective production.

, Let II be a finite set of productions such that for each S E PRODSORTS there is
exactly one production with left hand side S. For each sort in SORTS\PRIMSORTS
we inductively define a set of elements assuming that the sets for the primitive sorts
are given:

- S (t l , . . . , t ,) is an element of sort S if S(S1 . . . S ,) E I I and each tl is of sort Si;

- S (t l , . . . , tn) is of sort S if S , T E I I and each t~ is of sort T;

- tisofsort Sif S=S01...ISn E II and t is of sort Si for one i, 0<i<n;

- @(t; e) is of sort S@ if t is of sort S;

- @(t; iz , i,~) is of sort S~ if t = T(tl, .., t~, .., t,) is of sort T and
@(t~ ; i2,. �9 i,n) is of sort S@.

Elements generated by the first two rules are called terms; elements generated by the
last two rules are called occurrences.

e The universe of the occurrence algebra defined by II consists of the elements as defined
above, the elements of the primitive sorts, and the extra element nil; the functions of
the occurrence algebra defined by II are:

2Throughout this paper, we assume the primitive sorts Ident, Int, and Bool

237

- func t ions defined on occurrences: lath(x), lbrath(z), rbrath(x), son(i ,z) , the
father, left/right brother, i-th son of occurrence z; term(x), the subterm that
corresponds to occurrence z.

- functions defined on terms: subterm(i,t) , the i-th subterm of t; append(e,l),
first(1), rest(l) with the usual meaning on list terms; for each list production
S * T the empty list constructor S(); and for each tuple production S * T the
constructor S (t l , . . . , t ,) . (For convenience, we use the same name for the sort
(roman font) and the corresponding constructor (italic).)

- for each sort S a boolean function i sS(x) tesiing whether x is of sort S.

- the functions defined on the primitive sorts.

Whenever a function is applied to elements where the meaning as described 3 above is
not defined, it yields the extra element nil.

2.2 E v o l v i n g A l g e b r a s

Evolving algebras are a powerful framework for specifying programming language semantics.
They have been used to specify the semantics of many different programming languages
including C ([GH92]), PROLOG ([BR92]), and Occam ([GM89]). Here, we summarize the
definition of evolving algebras given in [Gut91].

In an evolving algebra specification, the computation states axe described by algebras.
The evolving algebra specifies how the states are related to their successor states; i.e. it
specifies a successor relation on algebras: Given an algebra A, it describes how the functions
of A may be "updated" to get a successor algebra - - reflecting the intuition that in a
computation step only a small ~ part of the state is changed.

As an introductory example let us specify the semantics of lists of assignments of the
form (variable) := (variable). We assume the list functions isempty, .first, and rest, and the
selector functions lhs, rhs yielding the left/right hand sides of assignments. The state infor-
mation that changes during execution is represented by the unary function VAL mapping
variables to values and the "0-ary function" AL holding the rest of the assignment list. In
the following, we call functions that may change during execution dynamic; and dynamic
0-ary functions are called dynamic variables. Here is an evolving algebra specifying the
semantics of assignment lists:

IF ~isemp~y(AL) THEN AL := res~(AL) FI

IF ~isemp~y(AL) THEN VAL(lhs(firs~(AL))) := VAL(rhs(firs~(AL))) FI

The evolving algebra has two rules. Rules are executed in parallel: Given an algebra A,
evaluate the guards, the right hand side expressions of the updates, and the arguments on
the left hand sides of the updates (here l h s (f i r s t (A L))) . Then, perform those updates
with a true guard. The following definition makes this more precise:

Def in i t ion 2.2 An evolving algebra EA is given by a finite set of rules of the form
I F guam T H E N f (argl , . . . , arg,) := rhsexp FI , where guaM, argo, and rhsexp are variable
free expressions and n is the arity of f .

3A technical report spelling this out in mote rigorous terms by algebraic laws is in preparation.

238

�9 Let A be an algebra containing the boolean values and a fu~iction for all function
symbols occurring in EA. An algebra A' is an EA-successor of A if updating the
functions of A according to the following procedure yields A': Let UPDATES be
the set of updates of those rules the guard of which evaluate to true in A. Evaluate
all arguments and right hand side expressions occurring in UPDATES and replace
them by their values. The resulting set may contain subsets of contradicting updates,
e.g. g(bl,...,b,) := r and g(bl,...,bn) := q with r ~ q. From these subsets of
contradicting updates eliminate non-deterministically all updates but one, resulting
in a set of non-contradicting updates. Change the functions of A according to this
set of updates, i.e. change the value of function f at point a l , . . . , a , to r if there is
an update f(al , . . . ,a.) := r .

�9 A sequence (Ai)ie~ of algebras such that Ai+l is an EA-successor of Ai for all i is
called a computation of EA with initial algebra A0.

r-I

For practical purposes, the restricted syntax of evolving algebras as defined above is rather
inconvenient. Assuming that the considered algebras always contain a binary function A
yielding true exactly if both arguments are true and a unary function -~ yielding true for the
argument false, we can introduce the following four syntactical extensions - - the associated
rules show how to transform the extended syntax into the restricted syntax above:

�9 unguarded assignments as rules: f(~) := rhsexp
=~ IF true T H E N f(g) := rhsezp FI~

�9 nested if-rules: IF guard1 T H E N IF guard2 T H E N body FI FI
=~ IF guard1 A guardZ T H E N body FI

�9 rule lists in the body of if-rules: IF guard T H E N Ri . . .R . FI
=~ IF guard T H E N R1 FI . . . IF guard T H E N R. FI

�9 if-then-else-rules: IF guard T H E N body1 ELSE body2 FI
=~ IF guard T H E N bodyl FI IF -~ guard T H E N body2 FI

It goes without saying that any combination of these extensions is allowed.

3 Specifying Control Flow and Dynamic Semantics

In this section, we apply occurrence algebras and evolving algebras to specify the semantics
of an imperative example language called TOY in the following. Even though necessar-
ily small, TOY contains some features that are difficult to handle in many other language
specification frameworks, namely return statements (showing how to handle jumps or ex-
ceptions) and recursive function procedures with side effects (showing how to handle such
procedure calls in expressions). The TOY specification demonstrates how to enrich syntax
trees by control flow information and how to use this information to specify dynamic se-
mantics. This modularization of the dynamic semantics specification into two parts may
seem complicated at first sight. However, its advantages become clear when applying it to
realistic size languages (cf. the discussion in section 5) or to the implementation of efficient
interpreters (cf. section 4). In addition to this, the flow information or similar enrichments
of the syntax tree can be used for data flow analysis and code generation in compilers.

The semantics specification in the following two subsections proceeds as follows: First,
we specify the state space of TOY programs. Then, we introduce a set of atomic actions - -

239

so-ca/led t a s k s - and give an evolving algebra semantics for them. Finally, we specify the
control flow of TOY in terms of program points and tasks. But before that, we have to give
the missing productions of the abstract syntax of TOY (the expression syntax was given in
section 2):

Program (VeclList)
DeclLis~ * Decl
Decl = Vat I Proc
Var (Iden~)
Proc (Iden~ PaxamList .params Body)
Body (S~a~Lis~)
ParamList * Param
Param (Ident)

S~atList * Star
S~at = WhileS~at J IfS~at J AssignStat J Re~urnStat
WhileS~at (Exp S~atList)
If Star (Exp Sta~List StatLis~)
AssignS~at (Ident Exp)
Re~urnStat (Exp)

As shown in the production for Proc, we allow to define selectors for tuple components;
i.e. if P is of sort Proc, the expressions "P.paxams" and "subterm(2,P)" are equivalent.

3.1 T h e D y n a m i c S e m a n t i c s o f T a s k s

This section has three parts: The first defines objects and locations; the second provides
the sort definitions for tasks; and the third gives the evolving algebra for TOY.

Objects and Locations TOY has globM objects and objects that axe local to a procedure
incarnation. Global objects need exactly one location to store the corresponding value; local
objects need a location for each procedure incarnation. The global objects of TOY axe the
variables and integer constants 4. Parameters are local objects. Are there other local objects?
As we have to deal with procedure calls in expressions, we must keep track of those paxts
of expressions that are evaluated before a call. The easiest way to do this is to consider
expression occurrences as local objects (this is called a store semantics in [MS76] and reflects
the notion of temporary objects in compiler construction). Beside this, it is convenient to
consider procedures as local objects for passing their return wlues. These considerations
are formally expressed by the following productions:

0b jeer = G1obal0bject [Local0bject
Globa lObjec t = Vat@ [In to
LocalObjec~ = VarExp@ I CallExp@ I BinExp@ I Paxam@ I Proc@
L o c a t i o n = GlobalObjec~ I Automatic
a u t o m a t i c (Loca lObjec t Incar)
I n c a r = Nat

The relation between locations and wlues is captured by the function VAL,

DYE VAL(Location'L) Int: IF Int@ L: term(L) ELSE ??

where the keyword DYN indicates that VAL is a dynamic function. The body of a dynamic
function defines its values in the initial state: VAL yields for an integer node the corre-
sponding value and an arbitrary value of sort Int (the result sort) for all other locations.

4Treating constants as objects simplifies the specification.

240

Tasks a n d C o n t r o l I n f o r m a t i o n The atomic actions the TOY semantics is based on are
the tasks defined by the following productions. A branch task has three components: the
expression node of the corresponding condition and the two possible successors. A return
task has the returning procedure as component. A call task the expression where it is called.
A move task its source and destination etc. The precise usage of the tasks is specified in
section 3.2 - - in particular the successors of tasks.

Task =
SinglSucc =
Branch (
Return (
Call (
Move (
MovePar (
BinOp (
Sta r t ()
End ()
TaskStack *
IncarStack *

Branch [Return] SinglSucc [S ta r t [End [Point
Move I MovePar [HinOp] Call
Exp~.cond Task.ttsucc Task.ffsucc)
Proc@.l~pror)
CallExp@.cexp Task.suet)
0bject@.src 0bject@.dst Task.suet)
Local0bject@.src Local0bject@.dst Task.succ)
0perator.op E x p r Exp@.risht Exp@.dst Task.suet)

Task

Incar

The control information in a state consists of the current task CT, the control stack CTR_S
recording the return points of the active procedures, the current incarnation CI, the stack
of active incarnations INCAR_S, and an incarnation counter NEXTINCAR:

DYN CT () Task: S t a r t ()
DYN CTR_S () TaskStack: push (End() , TaskStack())
DYN CI () Incar: 0

DYN INCAR_S () IncarS~ack: IncarStack()
DYN NEXTINCAE() Incar: 1

As explained above, the bodies of these dynamic variables specify their initial values.

E v o l v i n g A l g e b r a fo r T O Y The evolving algebra for TOY essentially contains for each
task sort one rule. The first rule specifies the semantics of a branch:

IF isHranch(CT) TEEN
IF VAL(loc(CT.cond,CI)) = 0 THEN CT := CT.ffsucc ELSE CT := CT.tCsucc FI

FI

As in C, the value .false is represented by 0 in TOY. The function loc yields for each object
its current location:

FCT loc(Object@ 0B3, Incar IC) Location:
IF LocalObject@ OHJ : Automatic(OBJ, IC) ELSE OBJ

The start task initializes CT to the point before the main procedure and the parameter of
the main procedure to the input value (the specification of mproc and the declaration of the
dynamic variables P R O G R A M and I N P U T are given in the appendix):

IF i s S t a r t (CT) TEEN
CT := Bef ore (mproc (PEOGEAM))
VAL(loc(son(l,mproc(PROGRAM).params), CI)) := INPUT

FI

The rules for the tasks with a single successor are rather straightforward. The function eual
evaluates a binary operator on two arguments (cf. appendix). In order to understand the
rule for the return task below, one should notice here that a call task pushes the point after
the call expression on the control stack:

241

IF isSinglSucc(CT) THEN
CT := CT.succ
IF isMove(CT) THEN VAL(loc(CT.dst,CI)) := VAL(loc(CT.src,CI)) FI
IF isMovePar(CT) THEY VAL(Ioc(CT.dst,CI)) := VAL(loc(CT.src,top(INCAR_S))) FI
IF isBin0p(CT) THEY VAL(Ioc(CT.dst,CI)) :=

eva1(CT.op, VAL(loc(CT.left,CI)), VAL(loc(CT.right,CI)))
FI
IF isCall(CT) THEY

CTR_S := push(After(CT.cexp), CTR_S)
INCAR_S := push(CI, INCAR_S)
CI := NEXTINCAR

HEXTINCAR := NEXTINCAR + i

FI
FI

On return of a procedure: If the end task is on top of the control stack, then the return value
of the procedure is copied to the dynamic variable OUTPUT. Otherwise the return value
is copied to the expression node corresponding to the continuation point of the returning
procedure:

IF isReturn(CT) THEY
CT := top(CTR_S)
CTR_S := pop(CTR_S)
IF top(CTR_S) = End()

THEY OUTPUT := VAL(loc(CT.rproc,CI))
ELSE VAL(loc(top(CTR_S).node, top(INCAR_S))) := VAL(loc(CT.rproc,CI))

CI := ~op(INCAR_S)
pop(INCAR_S) INCAR_S :=

FI
FI
IF ieEnd(CT) THEY skip FI
IF isPoint(CT) THEY CT := sucr FI

The specification of the successor function for program points (used in the last line) is the
topic of the next section.

3.2 C o n t r o l F low

As illustrated in the introduction, control flow can be understood as an enrichment of the
syntax trees. Such enrichments are specified in two steps: First, we specify the set of program
points; then, we specify by an attribution process how the syntax trees are enriched. To
describe control flow for TOY, we introduce program points before and after statements,
statement lists, expressions, expression lists, and procedures:

ExecNode = Exp�9 J ExpList@ I Star@] StatList@] Proc@
Before (ExecNode.node)

After (E x e c N o d e . n o d e)
Point = Before J After

We specify the control flow as a function s u c c that returns for each program point the
successor task. For reasons that become clear when we discuss implementation aspects
(cf. section 5), we consider s u c c to be an attribute of the points, i.e. a function the values of
which are computed once for a given program and stored for use during program execution.
From a formal point of view, an attribute is just a unary function. The successor of a point
depends on the context of the node to which the point belongs. We use the pattern notation
of the MAX system to refer to the different contexts in which such a node may occur.
E.g. let P be the point after a node N and N be the node representing the condition of a
while statement; then the successor of P is the branch task that has N as first component, the

242

point before the body of the loop as tt-successor, and the point after the loop as/f-successor;
this is expressed as follows (for conditional expressions in the specification language, we use
a colon to seperate conditions from then-branches in order to distinguish it from EA-rules):

IF WhileStat@<N,BD> W : Branch(N, Bsfore(BD), After(W))

The following specification shows the other cases for points after nodes (the cases for points
before nodes are trivial and given in the appendix). The function decl maps every identifier
to its declaration and the function pmc maps each element of sort ExecNode to the enclosing
procedure (cf. appendix). The function next yields the next program point in a left to right
tree traversal (cf. section 5). The most interesting case is a call with parameters, because

ATT succ(Point P) Task:
LET N == P.node :
IF P = After(N) :

IF Proc@ B : Return(N)
WhileStat@<N,BD> W : Branch(N, Bsfore(BD), After(W))
WhileStat@<E,N> : Before(E)
IfStatO<B,TB,EB> : Branch(N, Before(TB), Before(EB))
IfStatQ<_,N,_> IS : After(IS)
AssignStat@<iD,N> A : Move(N, dscl(ID), After(A))
ReturnStat@<E> N : Move(E, proc(N), After(proc(B)))
BinExp@<O,L,N> E : BinOp(term(0), L, N, E, After(E))
CallExp@<ID,<>N> C : Call(C, Before(decl(ID)))
CalIExp@<ID,<PAR,*> N> C:

Call(C, parcopy(PAR, eon(1,dec1(ID).params), Before(decl(ID))))
ELSE next(P)

I P = B e f o r e (N) :
. . . . / / s e e appendix

ELSE nil()

it demonstrates how to construct task structures that are not directly related to the syntax
tree (cf. the picture in the introduction): In the case here, we build up the sequence of
parameter moves using the function parcopy:

FCT parcopy(Exp@ APAR, Param@ FPAR, Task SUCC) Task:
IF rbroth(APAR) = nil() : MovePar(APAR,FPAE,SUCC)
ELSE MovePar(APAR, FPAR, parcopy(rbroth(APhR),rbroth(FPAR),SUCC))

4 Towards Specification of Efficient Interpreters

If we add a concrete syntax to the TOY specification given in the previous section and the
appendix ([PHE93] shows how to do that) , we can execute TOY programs using the proto-
type system described in section 5. However, the stepping from program point to program
point would make these executions slow and the storage consumption would make them
almost unfeasible, because we would need storage proportional to the total number of pro-
cedure incarnations occurring in an execution (and not proportional to the maximal number
of simultaneously active incarnations). In this section, we refine the language specification
of TOY to a specification of a reasonably eiticient interpreter by eliminating unnecessary
stepping and by switching to a stack organisation for the automatic storage. The point we
want to make here is that both refinements can be achieved by small and local modifica-
tions of the TOY specification and that these modifications can be carried out within the
presented framework.

243

Avoid ing U n n e c e s s a r y S t epp ing The stepping from program point to program point
without executing a "real" task can be avoided by using the attribute tasksucc instead of
succ in the evolving algebra rule for points: tasksucc yields for each point the next task to
be

ATT t a s k s u c c (P o i n t P) Task:
IF i s P o i n t (s u c c (P)) : ~ a s k s u c c (s u c c (P)) ELSE � 9

executed. We could even do a little better by avoiding all program points except those that
break up loops; in TOY, these are the points before conditions of while statements and
before procedures (because of recursion). To do this, we essentially have to make tasksucc
and succ mutually recursive.

Stacks for A u t o m a t i c S to rage This paragraph shows how the TOY specification can be
refined to implement automatic storage by a standard stack organization (cf. e.g. [AU77]).
Locations will be simp/y natural numbers (i.e. the dynamic function VAL can be considered
as an array). We assume the two attributes size and addr with the following signature:

ATT size(Proc@-) Nat
ATT add r (Object@) Nat

size(P) is the number of locations needed for an incarnation of procedure P; addr yields for
a global object its location, for a local object its relative address, i.e. the offset from the first
location in a procedure incarnation. (It should be clear that the well-known algorithms to
compute size and addr can be expressed in our framework.)

Using the dynamic variable CI as first location in a procedure incarnation (i.e. as "stack
pointer"), we need the following changes to the TOY specification:

. replace the definition for Location by "Location = Nat" and the definition for Incur
by "Incur = Location";

�9 change the body.of the function loc to

IF LocalObject@ OBJ : IC + addr(OBJ) ELSE addr(OBJ)

�9 replace the updates of CI in the rules for the start and call task by:

CI := numberolvars(PROGRAM) // for the �9 task

CI := size(dec1(son(l,CT.c�9)) // for the call task

where the function numbero~ars yields the number of variable declarations.

After these changes all occurrences of NEXTINCAR can be removed. (And a renaming of
Incur, etc. is advisable for mnemonic re~ons.)

Further I m p r o v e m e n t s Of course, further improvements are possible - - approximating
more and more what a compiler does. To mention only one s, the costly calls to loc can be
eliminated by splitting the move task into three tasks reflecting the "addressing modes":
MoveGlobToLoc, MoveLocToLoc, and MoveLocToGlob. After a replacement of all occur-
rences of the move task, the calls to loc can be replaced either by the global address or by
the relative address plus CI.

The focus of this section was to demonstrate how systematic refinements can be carried
out in the presented formal framework. It goes without saying that the illustrated method
apply to compiler construction as well.

~According to our performance analysis, the most pzotitable one.

244

5 Implementation Aspects and Experiences

We implemented a prototype on top of the MAX system that generates interpreters from
specifications based on occurrence algebras, attribute and function specifications, and evolv-
ing algebras. This section summarizes the implementation aspects of this prototype and
discusses the experiences we made so far.

5.1 I m p l e m e n t a t i o n A s p e c t s

This section sketches the extensions to the MAX system and the prototype implementation
used for executing evolving algebras. For the following it is helpful to consider the run of a
generated interpreter as a three step process:

1. Reading: includes parsing and encoding of the nodes; see below.

2. Attribution: includes attribute evaluation (and context checking).

3. Interpretation: execute the input program according to the evolving algebra.

E x t e n s i o n s t o M A X The efficiency of our occurrence algebra implementation stems from
the fact that during the attribution and interpretation phase for a program PROG we only
have to deal with occurrences of one term or a very small number of terms, namely the syntax
tree of PROG and possibly some intermediate representations. This allows us to work with
efficient encodings s for these occurrences (instead of using a direct implementation of the
term-natlist-palrs). Let us call this set of occurrences the nodes 7 of a program. Encodings of
nodes were already explointed in the MAX implementation (see [PH93b] p. 144). As program
points showed up to be helpful for many purposes (cf. section 5.2), we implemented program
points as well by encodings. Essentially, the system provides a predefined sort PredefPoint
and functions before(n), after(n) yielding the point before and after a node n as well as the
functions node(p), next(p) yielding the node corresponding to a point p and the next point
according to a left to right tree traversal. The encoding allows us to implement before, after,
and node by an array access and next by an addition. User-defined program points are then
treated as subsorts of sort PredefPoint.

In the specifications, we distinguished functions and attributes (e.g. succ was specified
as an attribute). As mentioned earlier, the semantics of attributes and unary functions are
the same. But the implementation is different. The relevant values of the attributes, i.e. the
attribute values for the nodes and points, are computed once and cached for later use. One
of the main advantages of encodings is that caching becomes simple: As the encodings of
all elements of one sort form an integer interval, the attribute values can be stored in an
array having this interval as range. In particular, we can handle attributes on points in an
efficient way, in particular control flow information as given by succ.

E x e c u t i n g E v o l v i n g A l g e b r a s The implementation of evolving algebras has two as-
pects: the representation of the dynamic functions and the stepwise execution of the rules.
In our prototype, we only allow dynamic variables and unary s dynamic functions. Dynamic
functions are implemented by arrays. If the parameter sort has an encoding, this is done
the same simple way as for the attributes. If the parameter sort is Int or Nat, the needed
parts of the array are dynamically allocated in blocks; the mapping from indices to blocks is
recorded by a binary tree. For all other,parameter sorts, we hash the term representation of

SOur implementation uses a four byte integer for all codings mentioned in the following.
7This definition is cons'~tent with the informal use of "node = in the previous sections.
8Functions with greater arlty can be handled by defining a tuple sort for their parameter sort tuple.

245

the parameters. Of course, this can drastically slow down reads and updates (and by that
the interpretation): E.g. an update to VAL in the version of section 3 can be more than
50 times slower than an update to VAL in the version of section 4 with parameters of sort
Location = Nat.

As all rules of an evolving algebra have to be executed in parallel s we divide each com-
putation step in two substeps: Compute all arguments and right hand sides of updates with
true guard and then perform the updates in some order. To avoid testing the guards twice,
we keep track of the updates that have to be performed in a list of pointers to parameterless
procedures; each of these procedures performs the set of updates corresponding to one node
in the tree of conditionals that reflects the nesting of rules in the evolving algebra. As a
small optimization, we use case statements to implement branching according to sort tests.

5.2 G e n e r a t i o n o f L a n g u a g e - S p e c i f i c P r o g r a m m i n g T o o l s

The experiences we made so far are very promissing. We generated some tools for small
languages like TOY and miniML, and developed a specification for a C subset that includes
the entire expression and statement syntax. The control flow graphs based on tasks are
not only a good technique for closing the gap between formal language specifications and
interpreter specifications, but provide as well a flexible basis for the development of other
language specific programming tools. E.g. it showed to be fairly simple to enrich interpreter
specifications to get source level debuggers; and for them program points are a very natural
way to specify the stepping. In another application we built a (hand-coded) data flow
analysis on top of control flow graphs; and again we could reuse almost the whole static part
of the language/interpreter specification. Last but not least, some aspects of code generation
become simpler in our approach; in particular the generation of jumps and instruction labels
is simplified.

6 C on c l u s i on s

We proposed a combination of occurrence algebras, recursive first-order functions, and
evolving algebras as a programming specification framework. Even though its formal foun-
dations are comparably simple, the framework is sufficiently expressive to specify all kinds of
programming languages including parallel ones (cf. [GM89]). Its flexibility makes it attrac-
tive for stepwise refinements of specifications. We attempted to demonstrate this by refining
a non-trivial language specification. Finally, we described a prototype implementation that
generates interpreters or other language-dependent programming tools from specifications.

As described in the introduction, one of the motivations for this research was to fill the
gap between high-level language specifications and efficiency oriented specification tech-
niques and to learn how to refine the former towards the latter. Whereas we consider the
relation between high-level specifications and our framework a topic for future research,
the refinements needed to acheive more efficient language implementations are much better
understood. E.g. to develop a production quality compiler from the refined TOY speci-
fication of section 4, add optimization techniques, refine the set of tasks w.r.t, a suitable
intermediate representation for code generators and then adapt this refined specification to
more specialized and more efficient compiler construction tools. The refinement approach
not only helps to systematize compiler development and allows for early prototyping~ but
should eventually provide the techniques to prove realistic compilers correct.

The development of the MAX system is still in progress. Currently, we improve the
efficiency of the attribute evaluation ([Mer93]). The next envisaged extension is a fixpoint
evaluator to prototype high-level data flow analyses based on control flow graphs.

246

R e f e r e n c e s

[AU77]

[BR92]

[CO78]

[GH92]

[GM89]

[Gurgl]

[Mer93]

[Mos92]

[MS76]

[Pn93a]

[PIi93b]

[PHE93]

[Sch8~]

[Wo~0]

[Ven89]

[wi181]

A. V. Aho and J. D. UUman. Principles of Compiler Design. Addison-Wesley,
1977.

E. BSrger and D. Rosenzweig. A simple mathematical model for full Prolog. Tech-
nical Report TR-33/92, Dipartimento di Informatica, Universita di Pisa, 1992.

R. L. Constable and M. J. O'Donnell. A Programming Logic: With an Introduction
to the PL/CV Verifier. Winthrop Publishers, 1978.

Y. Gurevich and J. Huggins. The semantics of the C programming language. In
E. BSrger et al., editor, Computer Science Logic, pages 274-308, 1992. LNCS 702.

Y. Gurevich and L. Moss. Algebraic operational semantics and Occam. In
E. BSrger et al., editor, Computer Science Logic, pages 176-192, 1989. LNCS
440.

Y. Gurevich. Evolving Algebras, volume 43, pages 264-284. EATCS Bulletin, 1991.

R. Merk. Generierung yon MAX-Attributauswertern. Master's thesis, Technische
Universit~t Miinchen, 1993.

P. Mosses. Action Semantics. Cambridge University Press, 1992. "Tracts in
Theoretical Computer Science".

R. Milner and C. Stratchey. A Theory of Programming Language Semantics. Chap-
man and Hall, 1976.

A. Poetzsch-Heffter. Interprocedural data flow analysis based on temporal speci-
fications. Technical Report 93-1397, CorneU University, 1993.

A. Poetzsch-Heffter. Programming language specification and prototyping using
the MAX system. In J. Penjam M. Bruynooghe, editor, Programming Language
Implementation and Logic Programming, 1993. LNCS 714.

A. Poetzsch-Heffter and T. Eisenbarth. The MAX system: A tutorial introduction.
Technical Report TUM-I9307, TU, April 1993.

D. A. Schmidt. Detecting global variables in denotational specifications. Transac-
tions on Programming Languages and Systems, 7:299-310, 1985.

M. Tofte. Compiler Generators. Springer-Verlag, 1990.

G. A. Venkatesh. A framework for construction and evaluation of high-level specifi-
cation of program analysis techniques. A CM Conference on Progamming Language
Design and Implementation, 1989.

R. Wilhelm. Global flow analysis and optimization in the MUG2 compiler gener-
ating system. In S. Muchnick and N. D. Jones, editors, Program Flow Analysis:
Theory and Applications, pages 132-159. Prentice-Hall, 1981.

247

A Completing the TOY Specification

The foUowing par t s of the TOY specification describe the identification and complete the
specification given in section 3:

DeclOrParam = Decl [Param
EnvSi~e = DeclOrParam [Body
DeclOrParamList * VeclOrParamO

FCT idstr(DeclOrParamr D) String: idtos(term(son(1,D)))

ATT env(EnvSite% ES) Dec10rParamList :
IF Program@< <ES,*> > : append(ES, DeclOrParamLis~())
I Proc@<_,<ES,*>,_> FD : append(ES, env(FD))
l Proc@<_,<>,ES> FD : env(FD)
[Proc@<_,<*,PD>,ES> : env(PD)
[VeclList@<*,VC,ES,*> : append(ES, env(DC))

ELSE nil()

FCT corr_env(Execgode N) DeclOrParamList:
IF Body@<N> : .env(1) ELSE corr_env(fa~h(N))

FCT lookup(S~ring ID, DsclOrParamList ENV) DeclOrParam%:
IF ENV = DeclOrParamList() : nil()
J ID = idstr(first(ENV)) : first(ENV)

ELSE lookup(ID, rest(ENV))

ATT decl(Ident@ IDN) DeclOrParam@:
IF DeclOrParamQ<IDN,*> D : D
ELSE lookup(idtos(term(IDN)), corr_env(fath(IDN)))

ATT proc(Execgode N) Proc@ : IF Body@<N> B: B ELSE proc(lath(N))
FCT mproc(Program@ P) Proc�9 : lookup("main", env(son(-1,son(1,P))))

ATT succ(Poin~ P) Task:
LET N == P.node :
IF P = After(N) :

// see section 3
[P = B e f o r e (N) :
IF Proc@<_,_,<SL>> N :
l AssignS~at@<ID,E> N :
[VarExp@<iD> S
[Ca/1Exp@<ID,EL> N :
[BinExp@<_,LO,_> N :

ELSE next (P)
ELSE nil()

Before(SL)
Before(E)
Move(decl(ID), N, After(N))
Before(EL)
Before(LO)

FCT eva/(Operator OP, Int L, Int R) Int:
IF OP = Add() : L + R

J .*.

ELSE nil()

DYN INPUT () I n t : ??
.DYN OUTPUT () i n t : ??
DYN PROGRAM() Programr ??

