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Abstract 

The paper reports on extensions to the MAX system enabling the generation and re- 
finement of interpreters based on formal language specifications. In these specifications, 
static semantics is defined by an attribution mechanism that allows to enrich syntax 
trees by control flow graphs. The dynamic semantics is defined by evolving algebras, a 
framework that has been successfully used to specify realistic programming languages. 

We apply the combined framework to a non-trivial example language and show how 
the resulting language specification can be refined in order to improve the ei~ciency of 
the generated interpreters. The framework provides enough modularity and flexibility 
so that such refinements can be carried out by local changes within the framework. 
Finally, we explain the implementation of the extensions to MAX. 

1 Introduction 

Motivation Certainly, many agree with Tofte that "... a realistic language definition is 
a very delicate Object" ([Tofg0], p. 109). Nevertheless, different tasks and levels in lan- 
guage design and implementation are til now solved and supported based on different, often 
unrelated frameworks; consequently, for each task a specification has to be produced from 
scratch. E.g. there are frameworks for providing very high-level, readable, and formal lan- 
guage specifications (e.g. [Mos92]); and frameworks to specify compilation tasks focussing 
on efficiency: attribut~ grammars to express identification, typing, and context checking; 
control flow based specifications for data flow analyses to support optimizations; and pattern 
driven code generators. 

Our ideal picture to relate the different specifications is a tree the root of which is the 
high-level language specification; a step to a child represents refinements or enrichments 
eventually leading to implementations of specific language-dependent tools. And a child 
should use as much as possible from the parent specification. The framework we present in 
this paper should be understood as a step towards this picture, even though we focus here 
on a specific example, the development of interpreters. 

Approach In [PH93b], we showed how first-order recursive functions defined on occur- 
rence structures can be used like attributes~in an attribute grammar specification. In fact, 
recursive functions on occurrence structures provide a more expressive framework than at- 
tribute grammars in that they allow to formally specify an enrichment of the syntax tree by 
non-local edges. (On the other hand, attribute grammars allow in general for more efficient 
implementations; cf. relation to other work.) Here, we use a slightly extended version of oc- 
currence structures to specify control flow and use evolving algebras developed by Gurevich 
to specify the dynamic semantics of programming languages. 

Figure 1 shows the control flow graph for the expression 7 + f(a, 0) as syntax tree 
enrichment. The evolving algebra specifies how to interprete these graphs; in particular it 

1Supported by DFG grant Po 432/2-1. 
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specifies the semantics-of the graph nodes -- called tasks. These tasks may have parameters 
(omitted in the figure); e.g. the BinOp-task has the operator Add, the argument expressions 
"Int" and "CallExp" and the result expression "BinExp" as parameters (cf. section 3). The 
graph nodes denoted by "o" are called prt~3ram points; they are an auxiliary device enabling 
to specify the task graph locally for each tree production. 

~ /~ �9 o o �9 o.. �9 ~ .,\ 

Add o ~ o  

~t~f 

Ident 
t i l t  tt 

Figure I: Control flow for expression 7+ f(a~ 0) 

After providing the formal background, we illustrate the framework by specifying a non- 
trivial example language. In section 4, we refine this language specification to an interpreter 
specification. Section 5 explains how the MAX system ([PIi93b]) was extended. 

Rela t i on  to  o t h e r  W o r k  Our work should be understood as a step towards filling the 
gap between very high-level language specification frameworks that are optimized versus 
readability and formality and specification frameworks that are designed to generate tools 
that can compete in efficiency with hand-writen tools. 

To illustrate one of the differences between language specification frameworks like de- 
notational, natural, or action semantics ai/d our framework, let us consider a standard 
specification of an imperative language with loops and lo- 
cal blocks. If we interprete the shown program fragment 
according to such a specification, the environment has to 
be changed each time the loop is entered or exited (the 
binding for "a" has to be changed). In an interpreter one 
would like to avoid this overhead. As our specifications 
can be based on the occurrences of the syntax tree, we 
could refine such a specification by using a static func- 
tion from used identifier occurrences to thdr declaration 
occurrences and a global environment mapping variable 
declarations to values. I.e. we seperate a static aspect 

in~ a = 2; 
int b = 10 
o.. 

while( b > 9 ){ 

int a; 

a=a§ ; 
} 

(namely identifier binding) from 
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the dynamic semantics and globalize the environment. In a similar way, we can specify a 
static function yielding for each jump statement the corresponding target statement, thereby 
refining control flow. 

The goal of the presented work is not to substitute higher-level frameworks that are more 
convenient to use, trimmed versus readability, or have specific theoretical properties (all this 
is true e.g. for action semantics; see [Mos92]). The goal is to provide a system supported 
formal framework that allows to express stepwise refinement of specifications; in particular 
it should be flexible enough to express globaliz~ng transformations (cf. ISch851), seperation 
of static from dynamic aspects, improvements on the  control flow, and refinements based 
on data types. 

Compared to attribute grammar based system, our system supports the specification 
of dynamic semantics and is more expressiye as far as the formal part of specifications is 
concerned. On the other hand, if e.g. the flow graphs are encapsulated in semantic actions, 
attribute grammar specifications can be understood as refining our specifications towards 
efficiency. In addition to that, our work is related to systems enabling the implementation of 
data flow analyses ([WilS1]) and allows to bring data flow analysis and language semantics 
together (see [PH93a]; for a denotational approach cf. [Ven89]). 

Another very important relation is to works using programming language specifications 
to define the semantics of programming logics. In particular, it is related to positional se- 
mantics as defined in [CO78]. In deed, our framework can be understood as a generalization 
of positional semantics in that it provides very flexible formal methods to define positions 
and the transition relation. Thereby it makes the logic approach of [CO78] applicable to 
realistic programming languages. 

2 Formal Background 

This section introduces the formal concepts our specifications are based on. First, we define 
occurrence algebras, an extension of term algebras. Occurrence algebras provide occurrence 
sorts (e.g. the sort of the variable declaration occurrences in a syntax tree). Having the 
occurrences as elements in the formal framework allows to specify graphs and thereby enables 
very rich program representations. Then, we give a short introduction to evolving algebras 
that are used to specify the dynamic semantics. Both concepts use the notion of "algebras": 
An algebra is given by a set U, called the universe of the algebra, and a set of functions that 
take their arguments in U" and yield values in U. 

2.1 O c c u r r e n c e  A l g e b r a s  

Occurrence algebras extend order-sorted term algebras by providing sorts for the occur- 
rences of terms. They simplify and generalize the concept of occurrence structures as pre- 
sented in tPH93b]. Before the formal definition, we give an informal introduction. Consider 
the abstract syntax for the expressions of our example language: 

Exp = Int [ VarExp [ CallExp 
VarExp ( Iden~ ) 
CalIExp ( Ident ExpList ) 
ExpList * Exp 
BinExp ~ O p e r a t o r  Exp Exp ) 
O p e r a t o r  = Add l . .  �9 
Add ,( ) 

[ BinExp 
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i.e. an expression is in integer constant,  a variable occurrence, a function call, or a binary 
expression; and e.g. a call has two components: the identifier of the called function and the 
actual parameter list. To define control flow graphs as shown in the introduction, we must be 
able to refer to a "father" of a term. But in term algebras there is no "father" of a term. That  
is why we consider occurrences in terms. Occurrences are represented as usual by a pair (t, l), 
where t is a term and and I a list of positive integers i l , . . . ,  in describing the path from the 
root of t to the subterm occurrence. We use the notation ~(t ;  i l , . . . ,  i , )  and write @(t; e) 
for the root occurrence of t. E.g. @(CaUExp("f",ExpList(VarExp("x"),VarExp("x'))  ); 
2,1,1 ) represents the first occurrence of identifier x in the abstract syntax term f o r / ( x ,  x). 
The father of this occurrence is the first occurrence of the corresponding variable expression: 
@(CMIExp("f",ExpList(VarExp("x"),VarExp("x")) ); 2,1 ). 

It is useful to extend the sorting on terms to occurrences: An occurrence of a subterm 
s of sort S is said to be of sort S~; e.g. the occurrences given above are of sort Ident@ and 
VarExp~ respectively. Using occurrence sorts, we can define new sorts. For example the 
program points before and after expression occurrences as shown in figure 1 can be defined 
by the productions: 

E x p P o i n t  = B e f o r e  J A f t e r  
B e f o r e  ( Exp@ ) 
After ( Exp@ ) 

In the following, we define what the occurrence algebra for a set of productions is. 

Definition 2.1 Let PRODSORTS and PRIMSORTS be two disjunct sets of symbols called 
production and primitive 2 sort symbols. A sort symbol is a production or primitive sort 
symbol followed by a possibly empty sequence of ~-symbols, i.e. has the form S@*, where 
S E PRODSORTS U PRIMSORTS. The set of sort symbols is denoted by SORTS. 

* A production has one of the following forms: S ($1 . . .  Sin) (called tuple production), 
or S ,  T (called list production), or S = SoI. . .  [Sn (called class production), where 
S E PRODSORTS, S~,T E SORTS, and m , n  are natural  numbers; S is called the left 
hand side of the respective production. 

, Let II be a finite set of productions such that for each S E PRODSORTS there is 
exactly one production with left hand side S. For each sort in SORTS\PRIMSORTS 
we inductively define a set of elements assuming that the sets for the primitive sorts 
are given: 

- S ( t l , . . . , t , )  is an element of sort S if S(S1 . . . S , )  E I I  and each tl is of sort Si; 

- S ( t l , . . . ,  tn) is of sort S if S ,  T E I I  and each t~ is of sort T; 

- tisofsort Sif S=S01...ISn E II and t is of sort Si for one i, 0<i<n; 

- @(t; e) is of sort S@ if t is of sort S; 

- @(t; iz .... , i,~) is of sort S~ if t = T(tl, .., t~, .., t,) is of sort T and 
@(t~ ; i2,. �9 i,n) is of sort S@. 

Elements generated by the first two rules are called terms; elements generated by the 
last two rules are called occurrences. 

e The universe of the occurrence algebra defined by II consists of the elements as defined 
above, the elements of the primitive sorts, and the extra element nil; the functions of 
the occurrence algebra defined by II are: 

2Throughout this paper, we assume the primitive sorts Ident, Int, and Bool 
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- func t ions  defined on occurrences: lath(x),  lbrath(z), rbrath(x), son(i ,z) ,  the 
father, left/right brother, i-th son of occurrence z; term(x),  the subterm that 
corresponds to occurrence z. 

- functions defined on terms: subterm(i,t) ,  the i-th subterm of t; append(e,l), 
first(1), rest(l) with the usual meaning on list terms; for each list production 
S * T the empty list constructor S(); and for each tuple production S * T the 
constructor S ( t l , . . . , t , ) .  (For convenience, we use the same name for the sort 
(roman font) and the corresponding constructor (italic).) 

- for each sort S a boolean function i sS(x)  tesiing whether x is of sort S. 

- the functions defined on the primitive sorts. 

Whenever a function is applied to elements where the meaning as described 3 above is 
not defined, it yields the extra element nil. 

2.2 E v o l v i n g  A l g e b r a s  

Evolving algebras are a powerful framework for specifying programming language semantics. 
They have been used to specify the semantics of many different programming languages 
including C ([GH92]), PROLOG ([BR92]), and Occam ([GM89]). Here, we summarize the 
definition of evolving algebras given in [Gut91]. 

In an evolving algebra specification, the computation states axe described by algebras. 
The evolving algebra specifies how the states are related to their successor states; i.e. it 
specifies a successor relation on algebras: Given an algebra A, it describes how the functions 
of A may be "updated" to get a successor algebra - -  reflecting the intuition that in a 
computation step only a small ~ part of the state is changed. 

As an introductory example let us specify the semantics of lists of assignments of the 
form (variable) := (variable). We assume the list functions isempty, .first, and rest, and the 
selector functions lhs, rhs yielding the left/right hand sides of assignments. The state infor- 
mation that changes during execution is represented by the unary function VAL mapping 
variables to values and the "0-ary function" AL holding the rest of the assignment list. In 
the following, we call functions that may change during execution dynamic; and dynamic 
0-ary functions are called dynamic variables. Here is an evolving algebra specifying the 
semantics of assignment lists: 

IF ~isemp~y(AL) THEN AL := res~(AL) FI 

IF ~isemp~y(AL) THEN VAL(lhs(firs~(AL))) := VAL(rhs(firs~(AL))) FI 

The evolving algebra has two rules. Rules are executed in parallel: Given an algebra A, 
evaluate the guards, the right hand side expressions of the updates, and the arguments on 
the left hand sides of the updates (here l h s ( f i r s t ( A L ) ) ) .  Then, perform those updates 
with a true guard. The following definition makes this more precise: 

Def in i t ion  2.2 An evolving algebra EA is given by a finite set of rules of the form 
I F  guam T H E N  f (argl ,  . . . , arg, ) := rhsexp FI ,  where guaM, argo, and rhsexp are variable 
free expressions and n is the arity of f .  

3A technical report spelling this out in mote rigorous terms by algebraic laws is in preparation. 
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�9 Let A be an algebra containing the boolean values and a fu~iction for all function 
symbols occurring in EA. An algebra A' is an EA-successor of A if updating the 
functions of A according to the following procedure yields A': Let UPDATES be 
the set of updates of those rules the guard of which evaluate to true in A. Evaluate 
all arguments and right hand side expressions occurring in UPDATES and replace 
them by their values. The resulting set may contain subsets of contradicting updates, 
e.g. g(bl,...,b,) := r and g(bl,...,bn) := q with r ~ q. From these subsets of 
contradicting updates eliminate non-deterministically all updates but one, resulting 
in a set of non-contradicting updates. Change the functions of A according to this 
set of updates, i.e. change the value of function f at point a l , . . . , a ,  to r if there is 
an update f(al , . . . ,a.)  := r .  

�9 A sequence (Ai)ie~ of algebras such that Ai+l is an EA-successor of Ai for all i is 
called a computation of EA with initial algebra A0. 

r-I 

For practical purposes, the restricted syntax of evolving algebras as defined above is rather 
inconvenient. Assuming that the considered algebras always contain a binary function A 
yielding true exactly if both arguments are true and a unary function -~ yielding true for the 
argument false, we can introduce the following four syntactical extensions - -  the associated 
rules show how to transform the extended syntax into the restricted syntax above: 

�9 unguarded assignments as rules: f(~) := rhsexp 
=~ IF  true T H E N  f(g) := rhsezp FI~ 

�9 nested if-rules: IF  guard1 T H E N  IF  guard2 T H E N  body FI  FI  
=~ IF  guard1 A guardZ T H E N  body FI  

�9 rule lists in the body of if-rules: IF  guard T H E N  Ri . . .R .  FI  
=~ IF guard T H E N  R1 FI  . . .  IF  guard T H E N  R. FI  

�9 if-then-else-rules: IF  guard T H E N  body1 ELSE body2 FI  
=~ IF  guard T H E N  bodyl FI  IF  -~ guard T H E N  body2 FI  

It goes without saying that any combination of these extensions is allowed. 

3 Specifying Control  Flow and Dynamic Semantics 

In this section, we apply occurrence algebras and evolving algebras to specify the semantics 
of an imperative example language called TOY in the following. Even though necessar- 
ily small, TOY contains some features that are difficult to handle in many other language 
specification frameworks, namely return statements (showing how to handle jumps or ex- 
ceptions) and recursive function procedures with side effects (showing how to handle such 
procedure calls in expressions). The TOY specification demonstrates how to enrich syntax 
trees by control flow information and how to use this information to specify dynamic se- 
mantics. This modularization of the dynamic semantics specification into two parts may 
seem complicated at first sight. However, its advantages become clear when applying it to 
realistic size languages (cf. the discussion in section 5) or to the implementation of efficient 
interpreters (cf. section 4). In addition to this, the flow information or similar enrichments 
of the syntax tree can be used for data flow analysis and code generation in compilers. 

The semantics specification in the following two subsections proceeds as follows: First, 
we specify the state space of TOY programs. Then, we introduce a set of atomic actions - -  
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so-ca/led t a s k s -  and give an evolving algebra semantics for them. Finally, we specify the 
control flow of TOY in terms of program points and tasks. But before that,  we have to give 
the missing productions of the abstract syntax of TOY (the expression syntax was given in 
section 2): 

Program ( VeclList ) 
DeclLis~ * Decl 
Decl = Vat I Proc 
Var ( Iden~ ) 
Proc ( Iden~ PaxamList .params Body ) 
Body ( S~a~Lis~ ) 
ParamList * Param 
Param ( Ident ) 

S~atList * Star 
S~at = WhileS~at J IfS~at J AssignStat J Re~urnStat 
WhileS~at ( Exp S~atList ) 
If Star ( Exp Sta~List StatLis~ ) 
AssignS~at ( Ident Exp ) 
Re~urnStat ( Exp ) 

As shown in the production for Proc, we allow to define selectors for tuple components; 
i.e. if P is of sort Proc, the expressions "P.paxams" and "subterm(2,P)" are equivalent. 

3.1 T h e  D y n a m i c  S e m a n t i c s  o f  T a s k s  

This section has three parts: The first defines objects and locations; the second provides 
the sort definitions for tasks; and the third gives the evolving algebra for TOY. 

Objects and Locations TOY has globM objects and objects that axe local to a procedure 
incarnation. Global objects need exactly one location to store the corresponding value; local 
objects need a location for each procedure incarnation. The global objects of TOY axe the 
variables and integer constants 4. Parameters are local objects. Are there other local objects? 
As we have to deal with procedure calls in expressions, we must keep track of those paxts 
of expressions that are evaluated before a call. The easiest way to do this is to consider 
expression occurrences as local objects (this is called a store semantics in [MS76] and reflects 
the notion of temporary objects in compiler construction). Beside this, it is convenient to 
consider procedures as local objects for passing their return wlues. These considerations 
are formally expressed by the following productions: 

0b jeer = G1obal0bject [ Local0bject 
Globa lObjec t  = Vat@ [ In to  
LocalObjec~  = VarExp@ I CallExp@ I BinExp@ I Paxam@ I Proc@ 
L o c a t i o n  = GlobalObjec~  I Automatic  
a u t o m a t i c  ( Loca lObjec t  Incar  ) 
I n c a r  = Nat 

The relation between locations and wlues is captured by the function VAL, 

DYE VAL( Location'L ) Int: IF Int@ L: term(L) ELSE ?? 

where the keyword DYN indicates that VAL is a dynamic function. The body of a dynamic 
function defines its values in the initial state: VAL yields for an integer node the corre- 
sponding value and an arbitrary value of sort Int (the result sort) for all other locations. 

4Treating constants as objects simplifies the specification. 
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Tasks  a n d  C o n t r o l  I n f o r m a t i o n  The atomic actions the TOY semantics is based on are 
the tasks defined by the following productions. A branch task has three components: the 
expression node of the corresponding condition and the two possible successors. A return 
task has the returning procedure as component.  A call task the expression where it is called. 
A move task its source and destination etc. The precise usage of the tasks is specified in 
section 3.2 - -  in particular the successors of tasks. 

Task = 
SinglSucc = 
Branch ( 
Return ( 
Call ( 
Move ( 
MovePar ( 
BinOp ( 
Sta r t  () 
End () 
TaskStack * 
IncarStack * 

Branch [ Return ] SinglSucc [ S ta r t  [ End [ Point 
Move I MovePar [ HinOp ] Call 
Exp~.cond Task.ttsucc Task.ffsucc ) 
Proc@.l~pror ) 
CallExp@.cexp Task.suet ) 
0bject@.src 0bject@.dst Task.suet  ) 
Local0bject@.src Local0bject@.dst Task.succ ) 
0perator.op E x p r  Exp@.risht Exp@.dst Task.suet  ) 

Task 

Incar 

The control information in a state consists of the current task CT, the control stack CTR_S 
recording the return points of the active procedures, the current incarnation CI, the stack 
of active incarnations INCAR_S, and an incarnation counter NEXTINCAR:  

DYN CT () Task: S t a r t ( )  
DYN CTR_S () TaskStack: push (End( ) ,  TaskStack() ) 
DYN CI () Incar: 0 

DYN INCAR_S () IncarS~ack: IncarStack() 
DYN NEXTINCAE() Incar: 1 

As explained above, the bodies of these dynamic variables specify their initial values. 

E v o l v i n g  A l g e b r a  fo r  T O Y  The evolving algebra for TOY essentially contains for each 
task sort one rule. The first rule specifies the semantics of a branch: 

IF isHranch(CT) TEEN 
IF VAL(loc(CT.cond,CI)) = 0 THEN CT := CT.ffsucc ELSE CT := CT.tCsucc FI 

FI 

As in C, the value .false is represented by 0 in TOY. The function loc yields for each object 
its current location: 

FCT loc(  Object@ 0B3, Incar  IC ) Location:  
IF LocalObject@ OHJ : Automatic( OBJ, IC ) ELSE OBJ 

The start  task initializes CT to the point before the main procedure and the parameter of 
the main procedure to the input value (the specification of mproc and the declaration of the 
dynamic variables P R O G R A M  and I N P U T  are given in the appendix): 

IF i s S t a r t  (CT) TEEN 
CT := Bef ore (mproc (PEOGEAM)) 
VAL( loc(son(l,mproc(PROGRAM).params), CI ) ) := INPUT 

FI 

The rules for the tasks with a single successor are rather straightforward. The function eual 
evaluates a binary operator  on two arguments (cf. appendix). In order to understand the 
rule for the return task below, one should notice here that  a call task pushes the point after 
the call expression on the control stack: 
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IF isSinglSucc(CT) THEN 
CT := CT.succ 
IF isMove(CT) THEN VAL(loc(CT.dst,CI)) := VAL(loc(CT.src,CI) ) FI 
IF isMovePar(CT) THEY VAL(Ioc(CT.dst,CI)) := VAL(loc(CT.src,top(INCAR_S))) FI 
IF isBin0p(CT) THEY VAL(Ioc(CT.dst,CI)) := 

eva1( CT.op, VAL(loc(CT.left,CI)), VAL(loc(CT.right,CI)) ) 
FI 
IF isCall(CT) THEY 

CTR_S := push(After(CT.cexp), CTR_S) 
INCAR_S := push( CI, INCAR_S ) 
CI := NEXTINCAR 

HEXTINCAR := NEXTINCAR + i 

FI 
FI 

On return of a procedure: If the end task is on top of the control stack, then the return value 
of the procedure is copied to the dynamic variable OUTPUT. Otherwise the return value 
is copied to the expression node corresponding to the continuation point of the returning 
procedure: 

IF isReturn(CT) THEY 
CT := top(CTR_S) 
CTR_S := pop(CTR_S) 
IF top(CTR_S) = End() 

THEY OUTPUT := VAL(loc(CT.rproc,CI) ) 
ELSE VAL( loc( top(CTR_S).node, top(INCAR_S)) ) := VAL(loc(CT.rproc,CI) ) 

CI := ~op(INCAR_S) 
pop(INCAR_S) INCAR_S := 

FI 
FI 
IF ieEnd(CT) THEY skip FI 
IF isPoint(CT) THEY CT := sucr FI 

The specification of the successor function for program points (used in the last line) is the 
topic of the next section. 

3.2 C o n t r o l  F low 

As illustrated in the introduction, control flow can be understood as an enrichment of the 
syntax trees. Such enrichments are specified in two steps: First, we specify the set of program 
points; then, we specify by an attribution process how the syntax trees are enriched. To 
describe control flow for TOY, we introduce program points before and after statements, 
statement lists, expressions, expression lists, and procedures: 

ExecNode = Exp�9 J ExpList@ I Star@ ] StatList@ ] Proc@ 
Before ( ExecNode.node ) 

After ( E x e c N o d e . n o d e  ) 
Point = Before J After 

We specify the control flow as a function s u c c  that returns for each program point the 
successor task. For reasons that become clear when we discuss implementation aspects 
(cf. section 5), we consider s u c c  to be an attribute of the points, i.e. a function the values of 
which are computed once for a given program and stored for use during program execution. 
From a formal point of view, an attribute is just a unary function. The successor of a point 
depends on the context of the node to which the point belongs. We use the pattern notation 
of the MAX system to refer to the different contexts in which such a node may occur. 
E.g. let P be the point after a node N and N be the node representing the condition of a 
while statement; then the successor of P is the branch task that has N as first component, the 
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point before the body of the loop as tt-successor, and the point after the loop as/f-successor; 
this is expressed as follows (for conditional expressions in the specification language, we use 
a colon to seperate conditions from then-branches in order to distinguish it from EA-rules): 

IF WhileStat@<N,BD> W : Branch( N, Bsfore(BD), After(W) ) 

The following specification shows the other cases for points after nodes (the cases for points 
before nodes are trivial and given in the appendix). The function decl maps every identifier 
to its declaration and the function pmc maps each element of sort ExecNode to the enclosing 
procedure (cf. appendix). The function next yields the next program point in a left to right 
tree traversal (cf. section 5). The most interesting case is a call with parameters, because 

ATT succ( Point P ) Task: 
LET N == P.node : 
IF P = After(N) : 

IF Proc@ B : Return( N ) 
WhileStat@<N,BD> W : Branch( N, Bsfore(BD), After(W) ) 
WhileStat@<E,N> : Before( E ) 
IfStatO<B,TB,EB> : Branch( N, Before(TB), Before(EB) ) 
IfStatQ<_,N,_> IS : After( IS ) 
AssignStat@<iD,N> A : Move( N, dscl(ID), After(A) ) 
ReturnStat@<E> N : Move( E, proc(N), After(proc(B)) ) 
BinExp@<O,L,N> E : BinOp(term(0), L, N, E, After(E)) 
CallExp@<ID,<>N> C : Call( C, Before(decl(ID)) ) 
CalIExp@<ID,<PAR,*> N> C: 

Call( C, parcopy( PAR, eon(1,dec1(ID).params), Before(decl(ID)) ) ) 
ELSE next(P) 

I P = B e f o r e ( N )  : 
. . . .  / /  s e e  appendix  

ELSE nil() 

it demonstrates how to construct task structures that are not directly related to the syntax 
tree (cf. the picture in the introduction): In the case here, we build up the sequence of 
parameter moves using the function parcopy: 

FCT parcopy( Exp@ APAR, Param@ FPAR, Task SUCC ) Task: 
IF rbroth(APAR) = nil() : MovePar(APAR,FPAE,SUCC) 
ELSE MovePar( APAR, FPAR, parcopy(rbroth(APhR),rbroth(FPAR),SUCC) ) 

4 Towards Specification of Efficient Interpreters 

If we add a concrete syntax to the TOY specification given in the previous section and the 
appendix ([PHE93] shows how to do that) ,  we can execute TOY programs using the proto- 
type system described in section 5. However, the stepping from program point to program 
point would make these executions slow and the storage consumption would make them 
almost unfeasible, because we would need storage proportional to the total number of pro- 
cedure incarnations occurring in an execution (and not proportional to the maximal number 
of simultaneously active incarnations). In this section, we refine the language specification 
of TOY to a specification of a reasonably eiticient interpreter by eliminating unnecessary 
stepping and by switching to a stack organisation for the automatic storage. The point we 
want to make here is that both refinements can be achieved by small and local modifica- 
tions of the TOY specification and that  these modifications can be carried out within the 
presented framework. 
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Avoid ing  U n n e c e s s a r y  S t epp ing  The stepping from program point to program point 
without executing a "real" task can be avoided by using the attribute tasksucc instead of 
succ in the evolving algebra rule for points: tasksucc yields for each point the next task to 
be 

ATT t a s k s u c c (  P o i n t  P ) Task: 
IF i s P o i n t ( s u c c ( P )  ) : ~ a s k s u c c ( s u c c ( P ) )  ELSE � 9  

executed. We could even do a little better by avoiding all program points except those that 
break up loops; in TOY, these are the points before conditions of while statements and 
before procedures (because of recursion). To do this, we essentially have to make tasksucc 
and succ mutually recursive. 

Stacks for A u t o m a t i c  S to rage  This paragraph shows how the TOY specification can be 
refined to implement automatic storage by a standard stack organization (cf. e.g. [AU77]). 
Locations will be simp/y natural numbers (i.e. the dynamic function VAL can be considered 
as an array). We assume the two attributes size and addr with the following signature: 

ATT size( Proc@- ) Nat 
ATT add r (  Object@ ) Nat 

size(P) is the number of locations needed for an incarnation of procedure P; addr yields for 
a global object its location, for a local object its relative address, i.e. the offset from the first 
location in a procedure incarnation. (It should be clear that the well-known algorithms to 
compute size and addr can be expressed in our framework.) 

Using the dynamic variable CI as first location in a procedure incarnation (i.e. as "stack 
pointer"), we need the following changes to the TOY specification: 

. replace the definition for Location by "Location = Nat" and the definition for Incur 
by "Incur = Location"; 

�9 change the body.of the function loc to 

IF LocalObject@ OBJ : IC + addr(OBJ) ELSE addr(OBJ) 

�9 replace the updates of CI in the rules for the start and call task by: 

CI := numberolvars(PROGRAM) // for the �9 task 

CI := size( dec1(son(l,CT.c�9 ) ) // for the call task 

where the function numbero~ars yields the number of variable declarations. 

After these changes all occurrences of NEXTINCAR can be removed. (And a renaming of 
Incur, etc. is advisable for mnemonic re~ons.)  

Further I m p r o v e m e n t s  Of course, further improvements are possible - -  approximating 
more and more what a compiler does. To mention only one s, the costly calls to loc can be 
eliminated by splitting the move task into three tasks reflecting the "addressing modes": 
MoveGlobToLoc, MoveLocToLoc, and MoveLocToGlob. After a replacement of all occur- 
rences of the move task, the calls to loc can be replaced either by the global address or by 
the relative address plus CI. 

The focus of this section was to demonstrate how systematic refinements can be carried 
out in the presented formal framework. It goes without saying that the illustrated method 
apply to compiler construction as well. 

~According to our performance analysis, the most pzotitable one. 
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5 Implementation Aspects and Experiences 

We implemented a prototype on top of the MAX system that generates interpreters from 
specifications based on occurrence algebras, attribute and function specifications, and evolv- 
ing algebras. This section summarizes the implementation aspects of this prototype and 
discusses the experiences we made so far. 

5.1 I m p l e m e n t a t i o n  A s p e c t s  

This section sketches the extensions to the MAX system and the prototype implementation 
used for executing evolving algebras. For the following it is helpful to consider the run of a 
generated interpreter as a three step process: 

1. Reading: includes parsing and encoding of the nodes; see below. 

2. Attribution: includes attribute evaluation (and context checking). 

3. Interpretation: execute the input program according to the evolving algebra. 

E x t e n s i o n s  t o  M A X  The efficiency of our occurrence algebra implementation stems from 
the fact that during the attribution and interpretation phase for a program PROG we only 
have to deal with occurrences of one term or a very small number of terms, namely the syntax 
tree of PROG and possibly some intermediate representations. This allows us to work with 
efficient encodings s for these occurrences (instead of using a direct implementation of the 
term-natlist-palrs).  Let us call this set of occurrences the nodes 7 of a program. Encodings of 
nodes were already explointed in the MAX implementation (see [PH93b] p. 144). As program 
points showed up to be helpful for many purposes (cf. section 5.2), we implemented program 
points as well by encodings. Essentially, the system provides a predefined sort PredefPoint 
and functions before(n), after(n) yielding the point before and after a node n as well as the 
functions node(p), next(p) yielding the node corresponding to a point p and the next point 
according to a left to right tree traversal. The encoding allows us to implement before, after, 
and node by an array access and next by an addition. User-defined program points are then 
treated as subsorts of sort PredefPoint. 

In the specifications, we distinguished functions and attributes (e.g. succ was specified 
as an attribute). As mentioned earlier, the semantics of attributes and unary functions are 
the  same. But the implementation is different. The relevant values of the attributes, i.e. the 
attribute values for the nodes and points, are computed once and cached for later use. One 
of the main advantages of encodings is that caching becomes simple: As the encodings of 
all elements of one sort form an integer interval, the attribute values can be stored in an 
array having this interval as range. In particular, we can handle attributes on points in an 
efficient way, in particular control flow information as given by succ. 

E x e c u t i n g  E v o l v i n g  A l g e b r a s  The implementation of evolving algebras has two as- 
pects: the representation of the dynamic functions and the stepwise execution of the rules. 
In our prototype, we only allow dynamic variables and unary s dynamic functions. Dynamic 
functions are implemented by arrays. If the parameter sort has an encoding, this is done 
the same simple way as for the attributes. If the parameter sort is Int or Nat, the needed 
parts of the array are dynamically allocated in blocks; the mapping from indices to blocks is 
recorded by a binary tree. For all other,parameter sorts, we hash the term representation of 

SOur implementation uses a four byte integer for all codings mentioned in the following. 
7This definition is cons'~tent with the informal use of "node = in the previous sections. 
8Functions with greater arlty can be handled by defining a tuple sort for their parameter sort tuple. 
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the parameters. Of course, this can drastically slow down reads and updates (and by that 
the interpretation): E.g. an update to VAL in the version of section 3 can be more than 
50 times slower than an update to VAL in the version of section 4 with parameters of sort 
Location = Nat. 

As all rules of an evolving algebra have to be executed in parallel s we divide each com- 
putation step in two substeps: Compute all arguments and right hand sides of updates with 
true guard and then perform the updates in some order. To avoid testing the guards twice, 
we keep track of the updates that have to be performed in a list of pointers to parameterless 
procedures; each of these procedures performs the set of updates corresponding to one node 
in the tree of conditionals that reflects the nesting of rules in the evolving algebra. As a 
small optimization, we use case statements to implement branching according to sort tests. 

5.2 G e n e r a t i o n  o f  L a n g u a g e - S p e c i f i c  P r o g r a m m i n g  T o o l s  

The experiences we made so far are very promissing. We generated some tools for small 
languages like TOY and miniML, and developed a specification for a C subset that includes 
the entire expression and statement syntax. The control flow graphs based on tasks are 
not only a good technique for closing the gap between formal language specifications and 
interpreter specifications, but provide as well a flexible basis for the development of other 
language specific programming tools. E.g. it showed to be fairly simple to enrich interpreter 
specifications to get source level debuggers; and for them program points are a very natural 
way to specify the stepping. In another application we built a (hand-coded) data flow 
analysis on top of control flow graphs; and again we could reuse almost the whole static part 
of the language/interpreter specification. Last but not least, some aspects of code generation 
become simpler in our approach; in particular the generation of jumps and instruction labels 
is simplified. 

6 C on c l u s i on s  

We proposed a combination of occurrence algebras, recursive first-order functions, and 
evolving algebras as a programming specification framework. Even though its formal foun- 
dations are comparably simple, the framework is sufficiently expressive to specify all kinds of 
programming languages including parallel ones (cf. [GM89]). Its flexibility makes it attrac- 
tive for stepwise refinements of specifications. We attempted to demonstrate this by refining 
a non-trivial language specification. Finally, we described a prototype implementation that 
generates interpreters or other language-dependent programming tools from specifications. 

As described in the introduction, one of the motivations for this research was to fill the 
gap between high-level language specifications and efficiency oriented specification tech- 
niques and to learn how to refine the former towards the latter. Whereas we consider the 
relation between high-level specifications and our framework a topic for future research, 
the refinements needed to acheive more efficient language implementations are much better 
understood. E.g. to develop a production quality compiler from the refined TOY speci- 
fication of section 4, add optimization techniques, refine the set of tasks w.r.t, a suitable 
intermediate representation for code generators and then adapt this refined specification to 
more specialized and more efficient compiler construction tools. The refinement approach 
not only helps to systematize compiler development and allows for early prototyping~ but 
should eventually provide the techniques to prove realistic compilers correct. 

The development of the MAX system is still in progress. Currently, we improve the 
efficiency of the attribute evaluation ([Mer93]). The next envisaged extension is a fixpoint 
evaluator to prototype high-level data flow analyses based on control flow graphs. 
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A Completing the TOY Specification 

The foUowing par t s  of the  TOY specification describe the identification and complete the  
specification given in section 3: 

DeclOrParam = Decl [ Param 
EnvSi~e = DeclOrParam [ Body 
DeclOrParamList * VeclOrParamO 

FCT idstr( DeclOrParamr D ) String: idtos(term(son(1,D)) ) 

ATT env( EnvSite% ES ) Dec10rParamList : 
IF Program@< <ES,*> > : append( ES, DeclOrParamLis~() ) 
I Proc@<_,<ES,*>,_> FD : append( ES, env(FD) ) 
l Proc@<_,<>,ES> FD : env(FD) 
[ Proc@<_,<*,PD>,ES> : env(PD) 
[ VeclList@<*,VC,ES,*> : append( ES, env(DC) ) 

ELSE nil() 

FCT corr_env( Execgode N ) DeclOrParamList: 
IF Body@<N> : .env(1) ELSE corr_env(fa~h(N) ) 

FCT lookup( S~ring ID, DsclOrParamList ENV ) DeclOrParam%: 
IF ENV = DeclOrParamList() : nil() 
J ID = idstr(first(ENV)) : first(ENV) 

ELSE lookup( ID, rest(ENV) ) 

ATT decl( Ident@ IDN ) DeclOrParam@: 
IF DeclOrParamQ<IDN,*> D : D 
ELSE lookup(idtos(term(IDN)), corr_env(fath(IDN)) ) 

ATT proc( Execgode N ) Proc@ : IF Body@<N> B: B ELSE proc(lath(N) ) 
FCT mproc( Program@ P ) Proc�9 : lookup( "main", env(son(-1,son(1,P))) ) 

ATT succ( Poin~ P ) Task: 
LET N == P.node : 
IF P = After(N) : 

// see section 3 
[ P = B e f o r e ( N )  : 
IF Proc@<_,_,<SL>> N : 
l AssignS~at@<ID,E> N : 
[ VarExp@<iD> S 
[ Ca/1Exp@<ID,EL> N : 
[ BinExp@<_,LO,_> N : 

ELSE next (P)  
ELSE nil() 

Before(SL) 
Before(E) 
Move(decl(ID), N, After(N) ) 
Before(EL) 
Before(LO) 

FCT eva/( Operator OP, Int L, Int R ) Int: 
IF OP = Add() : L + R 

J .*. 

ELSE nil() 

DYN INPUT () I n t  : ?? 
.DYN OUTPUT () i n t  : ?? 
DYN PROGRAM() Programr ?? 


