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Abstract .  The effectiveness of parallelizing and optimizing compilers de- 
pends on the ability to do accurate dependence analysis. In the case of pro- 
grams that use arrays, array dependence analysis methods are critical, and 
powerful methods for dependence testing have been widely established. In 
order to collect the input required to actually apply the dependence tester, 
one must first apply the following support phases: (1) locate all admissible 
loop nests, (2) collect the normalized index expressions for each array ref- 
erence, and (3) determine which pairs of array references must be tested. 
When implementing a dependence testing framework in C, each of these 
support phases must deal with complexities such as the presence of pointers 
and complicated control flow due to complex loop structures. Furthermore, 
each phase must be performed as accurately as possible so as to maximize 
the number of admissible loop nests and minimize the number of dependence 
pairs requiring testing. 
This paper describes the design and implementation of the support phases 
as developed in the dependence testing framework for the McCAT (McGitl 
Compiler Architecture Testbed) optimizing/parallelizing C compiler. By tak- 
ing advantage of the simplified and structured intermediate representation, 
and the advanced points-to (alias) and reaching definition analyses available 
in the McCAT compiler, we provide a unified framework for implementing all 
of the support analyses required for array dependence testing. As part of this 
framework we demonstrate scalar backward analysis, generalized induction 
variable detection, canonical subscript analysis, symbolic manipulation, and 
demand-driven constant propagation in the presence of complex C features. 

1 Introduct ion  and Motivat ion 

Accurate and efficient data dependency analysis is an important cornerstone of any 
parallelizing compiler. For programs using arrays and nested loops, various powerful 
dependence analysis methods have been widely established [3, 5, 6, 11, 12, 13, 17]. 
The basic dependence problem is to decide whether two subscripted references to the 
same array in a loopnest access the same memory location under certain constraints 
imposed by the boundaries of the loop iteration space. In general, the dependence 
problem reduces to solving a system of linear diophantine equations subject to a 
set of linear inequality constraints. This is a two-step process. The first phase is to 
set up a system of dependence equations and inequalities. In the second phase, a 
decision algorithm determines if the system has integer solution [17]. The goal of the 
dependence testing is to disprove dependence of as many array subscripted pairs as 
possible and as early as possible. 

This mathematically well-defined problem of dependence testing requires, as in- 
put, a set of equations and equalities derived from the application program under 
analysis. These equations and equalities must be collected in as precise a manner as 
possible, even for complicated programs that use complex loops and/or pointer data 
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structures. Thus, one requires a complete framework of support analyses that can be 
used to collect accurate inputs for dependence testers. Without such a framework, 
even the most powerful dependence testers are useless. 

Unlike typical scientific programs written in Fortran, which often have regular 
loop nests and simple forms of aliasing (due to call-by-reference), the more general 
features found in C tend to promote more complex loops and the use of data structure 
abstractions that often involve pointers. Making overly conservative assumptions 
about loops and/or aliasing due to pointers can significantly reduce the quality of the 
dependence testing result. Thus, the development of support analyses in the context 
of C parallelizing compilers must effectively handle these additional complexities. 

1.1 M o t i v a t i n g  E x a m p l e s  

All dependence testing methods are usually built upon the following assumptions: 
(1) admissible loopnests have a nice, regular behaviour expressed by the behaviour 
of loop variables, (2) all the array subscripts and loop limits have been represented 
in canonical forms or affine functions of loop indices, (3) subscript-pairs are collected 
from pairs of references to the same array name. 

However, real C programs often do not fit nicely into these patterns, and the 
support analyses must deal with several complications. From the examples in Fig- 
ure 1, we can demonstrate that the following points need to be addressed before any 
dependence tests can be applied:  

E x a m p l e  1: This program illustrates the problem of detecting whether or not the 
loop is admissible. In general, admissible loops should not update the loop vari- 
able. The presence of pointer assignment in statement S1 means that an admis- 
sible loopnest detector should check that the assignment to *s does not update 
the loop variable i. Without precise alias or points-to analysis, one must conser- 
vatively assume that *s might refer to i. In our compiler context, we can use the 
results of our poinls-to (alias) analysis to decide whether or not s can point-to i 
[1, 2]. 

E x a m p l e  2: This program illustrates the case where the programmer has not pro- 
vided the array subscripts in terms of the loop variables. Thus, we need auto- 
matic methods to convert the array subscripts ind l  and ind2 into a canonical 
form relative to the loop variables. This involves scalar backward analysis, induc- 
tion variable analysis, demand-driven constant propagation, canonical subscript 
analysis, and possible involvement of symbolic manipulation of the canonical 
subscript expressions. Furthermore, these methods must all be able to handle 
expressions using pointer variables. 

E x a m p l e  3: This program illustrates the problem of determining if two array names 
refer to the same array. In order to be safe, the dependence testers must be used 
in all cases where the array names may refer to the same array. In this program 
we need to detect whether or not the array names v and w refer to the same 
array. 

1.2 Our Support Analysis Framework 

In this paper we present a framework for support analyses to support array depen- 
dence testing that has been designed and implemented for the McCAT optimiz- 
ing/parallelizing C compiler. 1 This framework has been designed to handle the full 

1 The McGill Compiler/Architecture Testbed is being developed in order to study the 
interaction between compiler techniques and advanced architectural features [8]. 
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Example I : 

main() 
{ int w[lO0] ; 

int i,p; 
int *s ; 
s =&i; 

for (i=i ; i<=99 ;++i) 
{ 

Sl : *s= 2 * p; 
,[i] = ,[i+l]; 

} 
} 

Example 2 : 

main ( ) 
{ inZ w[lO] ; 

int i,p,q,a,indl ,ind2; 
int *s,*r; 
s =&i; 
r = &q; 
q = 2 ;  
for(i=l; i<=9;  i++) 
{ p = q + 3 ;  

*r=p-4; 
a =p-i; 
indl-a-2* ((*s)+3*i) ; 
ind2--p+2*i ; 
, [indl] =w [ind2] ; 

} 
} 

Example 3 : 

main ( ) 
{ i n t  v [ 1 0 ] ;  

int i, j ; 
int *w ; 
W=V ; 

for (i=l ; i<lO ;++i) 
{ 

Sl : vii-2] = w[i+l]; 
} 

} 

Fig. 1. Motivating Example C Programs 

complexities of the C language that affect array dependence analysis, while at the 
same time supporting complete information and compact representation for applying 
various dependence testing methods. 

The rest of this paper is organized as follows. First we discuss the overall structure 
and foundations of our approach in section 2. Section 3 presents the introduction of 
our support analysis framework, while sections 4, 5, 6 and 7 provides the details 
of the framework and illustrate them with some simple examples. Finally, we cover 
related work in section 8 and draw conclusions in section 9. 

2 F o u n d a t i o n s  

Although powerful features of C language make the support analyses nontrivial, the 
McCAT compiler provides an environment which provides the necessary founda- 
tions: (1) SIMPLE, a compositional structured intermediate representation that was 
designed to handle various complications in C in a standard, simple and structured 
manner, (2) precise interprocedural alias information as computed by points-to anal- 
ysis, and (3) reaching definition analysis that includes reaching definitions for pointer 
variables. 

Figure 2 illustrates these important parts of the McCAT environment. Note 
that the first phase takes a collection of C program files, and produces a simpli- 
fied and compositional structured representation called SIMPLE. Then, points-to 
analysis and reaching-definition analysis take as input the simplified representation 
and provides as output SIMPLE decorated with points-to information and reaching- 
definition information. The important points relevant for our topic are briefly de- 
scribed in Sections 2.1 and 2.2. A complete presentation of the points-to analysis 
and reaching-definition analysis is discussed elsewhere [1, 2, 9, 14]. Given the deco- 
rated SIMPLE representation, the next step is the support analysis for dependence 
testing, which is the main topic of this paper. This support analysis takes advan- 
tage of the simplification phase, the reaching-definition information and the points-to 
information. 
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[ Simplify and Restructuring } 

SIMPLE 

[Points-to Analysis J 

IReaching Definition 1 

SIMPLE with points-to info and reach-def info 
v/  

Dependence "resting 

Fig. 2. Overview of the McCAT Environment 

2.1 S I M P L E  I n t e r m e d i a t e  R e p r e s e n t a t i o n  

The first foundation of our approach is that McCAT provides a compositional struc- 
tured intermediate representation called SIMPLE that can represent all the complex- 
ities of C in a simple, standard and structured fashion. The simplify phase includes: 
breaking down complex statements into a series of basic statements, simplifying 
complex expressions and control structures into simple ones, simplifying function 
arguments to constants or variables, and moving initializations in the declarations 
into statements in the body. Even though simplified, SIMPLE retains the array 
and structure references for various analyses that need high-level variable references 
and type information. Therefore, this representation has been designed to be most 
suitable for compositional (structured) analysis framework [8]. 

In Figure 3, we present a simplification of an example program that we use 
throughout this paper. On the left is the original program, and on the right is the 
SIMPLE version. 

2.2 P o i n t s - t o  a n d  R e a c h i n g  Def in i t i on  Ana lys i s  

The compositional nature of SIMPLE allows regular and explicit control flow in the 
program representation that is suitable for compositional analyses. One of the most 
important analyses is points-to analysis which is an interprocedural analysis that  
computes all possible points-to relationships for each program point. We say that 
p definitely points-to x if p definitely contains the address of x. Similarly, we say 
that p possibly points-to x if p possibly contains the address of x. Unlike traditional 
alias analysis which computes alias pairs of the form (p ,*x)  and (*p ,**y) ,  our 
points-to analysis gives every important stack location a name, and encodes only 
the relationships between these names. In most cases the stack location names are 
just the variable names. The only special case is that we generate special names 
for stack locations corresponding to function parameters with pointer types. For 
example, a parameter a with type **• would have three stack locations a, a (1) ,  
and a(2)  where the names a(1)  and a(2)  are abstract names corresponding to 
locations accessible via *a and **a. This naming scheme and associated points- 



313  

main ( ) 
{ int  w[ l l ] ;  

in t  i , k , p , q , a ;  
int  *r,  *y ; 
r = &q; 
if(1) y = ~p; 
else y = &i; 

p=4; 
for (i = I; i <= I0; ++i) 

{q=p+2; 
k = q + 2 ;  
a = w[p-(*r+*y)] ; 
p=*r- 5; 
w[k] = p; 

} 

main ( ) 
( int  w [ l l ] , i , k ' , p , q , a ;  

int  *r ,*y; 
in t  temp_3, t emp_2, t emp_l, temp_0, temp_4 ; 
r = &q; 
if ( 1 )  y = l-p; e l s e  y = &i; 
p = 4 ;  
for ( i = l  ; i<= lO; i= i+ l )  
{ q = p + 2 ;  

k = q + 2 ;  
temp_2 = *r; 
t e m p _ 3  = * y ;  

t e m p _ l  = t e m p _ 2 + t e m p _ 3 ;  

temp_O = p - temp_l; 
a = w[temp_0]  ; 

temp_4  = *r;  
p = temp_4 - 5; 

,Ck] = p; 
} 

Fig. 3. Example of SIMPLE 

to abstraction provides a compact representation that  can be used directly in our 
support analyses. 

Based on the points-to analysis, the reaching-definition analysis provides a list 
of all definitions for uses at each program point. For the case of a use of the form z, 
the reaching definitions for x include all direct definitions of the form x = a op b as 
well as any definite or possible indirect definitions of the form *p = a op b where 
p points-to x. In the case of a use of the form *p, we include all reaching definitions 
(both direct and indirect) for all variables pointed to by p. 

3 Overview of the Support Analysis Framework 

The goal of the support  analysis is to provide a suitable environment for the appli- 
cation of dependence testing methods. Such a support analysis framework consists 
of three phases as given below and each of these phases are described more fully in 
subsequent sections. 

A d m i s s i b l e  l o o p n e s t  d e t e c t i o n :  The first phase is a mechanism to filter only 
certain types of loopnests that  are amenable for analysis with dependence testers. 
This filter should find as many admissible loopnests as possible. 

S u b s c r i p t  N o r m a l i z a t i o n :  Once the admissible loopnests have been detected, 
each array subscript must be expressed in a normalized form (most often in 
terms of the enclosing loop variables and loop bounds). In general this requires 
a variety of subscript normalizations such as: scalar backward analysis, gener- 
alized induction variable detection, canonical analysis, demand-driven constant 
propagation, and symbolic manipulation. 

A r r a y - p a i r  co l l ec t ion :  Given that  each array subscript is expressed in a canonical 
form, the next phase must determine which array reference pairs must be tested. 
In general, two array references a [ e x p l ]  and b[exp2]  must  be tested if a might 
refer to the same array as b. 
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4 Admissible Loopnest Detection 
Loopnest detection selects certain loopnests that are amenable to be analyzed. The 
idea behind this selection is to guarantee that the loopnest behaviour can be ex- 
pressed by the regular behaviour of the loop indices. In dealing with loops, one must 
address the following potential problems with loopnests that make them inadmissi- 
ble. Note that some of the problems are made more complex by the general form of 
loops in C, and the presence of pointers. 

P r o b l e m  1: Each loop should be defined with the initialization, increment and test 
on exactly one loop variable. If a pointer variable of the form *p is used as the 
loop variable, then p should point-to exactly one variable. 

P r o b l e m  2: Many dependence testers assume that the increment to the loop vari- 
able is 1. If the loop provided by the programmer has a different increment, then 
loop normalization must be applied [3, 5, 13, 19]. 

P r o b l e m  3: The body of the loop should be free from irregular control flow such 
as break and cont inue.  The loop body should not call functions that update 
the loop variables. 

P r o b l e m  4: The loopnest body should not modify the loop variables (either di- 
rectly, or indirectly through a pointer). 

P r o b l e m  5: The loopnest body should not modify the value of the increment or 
loop bound. There may exist some programs where there is an assignment to 
the increment or loop bound, but this assignment does not change the value. 

Problems 1, 2 and 3 are very obvious. We choose to illustrate problems 4 and 5 
using the two examples in Figure 4. In example 1, at program point $1, the points-to 
information says that s definitely points- to  i. Since *s, which is exactly i, is modified 
in $1, we can not express any array subscripts in term of linear function of loop 
variable i anymore, because i is not regularly incremented by 1. Thus, the loopnest 
in example 1 is not admissible. Suppose if in $1 we have information saying that 
s definitely points- to some variable other than i, then the loopnest is admissible. 
Therefore, in an environment with pointers, without any points-to information, in 
order to be safe, the analysis may result in the worst assumption. In example 2, at 
program point S1, loop-bound variable temO is being modified in the loopnest scope. 
Yet, the redefinition does not really change the value of temO as recognized in the 
loop header since the modifiers are both defined outside the loopnest scope. Thus, 
this loopnest can be categorized as admissible. 

Example 1 : Bad-loop 
m a i n  ( ) 
{ int  w[lOO],i,p,*s; 

s -- &i; 

for (i ffi I; i <ffi 99; ++i) 
{ 

S1 : *s-- 2 * p; 

w[i] = w[i+l]; 
} 

} 

Example 2 : 
m=5;n=9; 
for(i--O; i<m; i--i+l) 
{ teml = n + m; 

temO = teml + n, 
for (jffiO ; j<temO; j=j+1) 
{ c[i][j]fc[i][j]; 

teml = n + m; 

SI: temO =teml + n; 
} 

} 

Fig. 4. Example Loopnests 
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5 Subscript Normalization 

Having filtered all admissible loopnests in the program, the next step is subscript 
normalization for every array reference appearing in the admissible loopnests. When 
designing and implementing the subscript analysis for C, the following three major 
problems may arise: 

P r o b l e m  1: The first problem is that programmers often reduce the number of 
redundant computations using a scalar variable as temporary variable to store 
the value of a common subexpression [19]. Then this temporary scalar variable 
is used as the array subscripts such that the array indices are not in the form 
of linear function of loop variables. In the case of our SIMPLE intermediate 
representation, each complex array reference is broken down into a series of 
three address statements. This causes a similar problem. 

P r o b l e m  2: The second problem is that there may exist some induction variables 
whose values are systematically incremented or decremented by a certain value 
in a loop. The use of such induction variables may hide the linearity and ad- 
missibility conditions of array subscripts. However, often the induction variables 
may be rewritten relative to the loop variables, thus making more subscripts 
admissible. 

P r o b l e m  3.'. The final major problem is that it is unlikely that all array subscript 
expressions are written in the standard canonical form a0 + al * il + . . .  + an * in, 
where a0, al, �9 �9 an are  integer coefficients and il, i2,.. -, in are loop variables, 
such that the dependence testing methods can not be applied directly. Thus, 
each index expression must be rewritten to conform to the standard canonical 
form. 

The goal of the subscript normalization is essentially to capture the canonical 
forms of array subscripts in order to apply dependence testing. This normalization 
is achieved through a three-step process: (1) build a general expression tree which 
captures all possible index expressions and induction variables (uses points-to and 
reaching definition analysis), (2) given the general expression tree, build a list of pos- 
sible subscript expression trees, and (3) express each subscript expression in canonical 
form. 

5.1 P h a s e  1 : Bu i ld ing  a G e n e r a l  E x p r e s s i o n  T ree  

In our SIMPLE intermediate form, each complex array subscript expression has 
been simplified to either a constant or a variable name. In order to collect all pos- 
sible expressions corresponding to a variable name index, we perform a backward 
demand-driven analysis at the loopnest level using reaching definition and points-to 
information to build a general expression tree. 

To illustrate our approach, consider the previous example in Figure 5(a). Con- 
sider that we want to build a general expression tree for index tern0 of array w in 
statement S1 as shown in Figure 5(b). The basic idea is that we trace back through 
all reaching definitions of tera0 building a general expression tree. In this case the 
index temO has definition temO = p-feral that reaches S1, so we build the expres- 
sion p - t eml  under the index temO. Similarly, we continue this process for p and teml 
recursively. When an indirect reference is reached, we use the points-to information 
to expand the indirection with all variables that the indirect reference points-to. For 
example, *r  is expanded to q and *y is expanded to p and i. Moreover, there is a 
possibility that an induction pattern is detected during the backward process. This 
is when the same variables with the same reaching-definitions are repeated in the 
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backward process, such as variable p inside the dashed box that shows induction 
pattern in the example in Figure 5(b). If this is the case, after the induction pattern 
tree is completely built, an induction processing function is called to calculate the 
induction formula for all the induction variables existing in the pattern. From our 
example, the induction calculation is done for variables p, tern4 and q. If later there 
is a use of an induction variable that already has a calculated formula, such as vari- 
ables p and q under *r and *y in Figure 5(b), the backward analysis stops for that 
particular path, and keeps the pointer to the calculated formula for later use. 

main() 
{ int w[ l l ] , i , k , p ,q , a ;  

int *r, *y ; 
int tem4, tem3 ,tem2 ,teml ,temO 
r = ~q;  
i f  (...) y = &p; 

else y = &i; 
p=4; 
for (i=l ;i<=lO;i=i+l) 
{ q=p+2; 

k=q+2; 
tem2 = *r; 
tem3 = *y; 
teml = tem2+tem3; 

temO = p - teml; 

a = ,[temO]; 
tem4 = * r ;  

p =tem4 - 5; 

w[k] = p; 
} 

(a) Example Simplified Program 

temO . . . . . . . .  I.egencJ- . . . . . . . . .  

J( ~1', tern2 tern3 
tern4 ~ ~ 

*r *y 

, q 
i 

k ' -  
iNtttem 

(b) General Expression Tree for gem0 

Fig. 5. Building Genera/Expression Tree 

To summarize, a general expression tree is represented with the original variable 
at the root, and leaves of the following form: (a) a constant, (b) a loop variable, (c) 
an induction variable, or (d) a loop invariant variable (i.e. a variable with a definition 
outside of the loopnest). Interior nodes in the expression tree are of the following 
form: (a) a variable (has children representing all binary or unary expressions that 
could define the variable), or (b) an indirect reference (has children representing all 
variables pointed to by the reference). 

In some respects, this general expression tree form is similar to SSA-form [4, 18] 
in the sense that it captures an induction pattern. The major difference is that 
our technique builds a structure specific for particular indices. Furthermore, our 
structure captures all possible expressions due to both control flow (multiple possible 
reaching expressions) and indirect pointer references (multiple possible pointed-to 
variables). 
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5.2 P h a s e  2 : B u i l d i n g  a List o f  E x p r e s s i o n  Trees  

The next step of subscript normalization is the process of building a list of allernative 
czpression trees for an array index from the general expression tree built in the 
previous phase. 

We use the previous example to illustrate this phase. If  we look at the root 
and the leaves of the general expression tree in figure 5, we can derive tha t  there 
are two possible canonical forms for array index temO that  comes from expression 
temO = p - (q + p) or the expression temO = p - (q + i). Furthermore,  p and q 
are induction variables where p is equivalent to - 3  * i + 7, and q is equivalent to 
- 3 ,  i + 9. Therefore, the array index temO has two possible canonical values, which 
are 3 * i - 9 and - 1 �9 i - 2. The list of subscript expression trees for temO built in this 
phase is shown in Figure 6 (left). The list of expression trees is built by traversing 
the general expression tree bo t tom up, building a list of possible expression trees for 
each sub-tree. In addition, all induction variables are expanded to their appropriate  
expressions. 

In~xNode 

Ix 

-3 . 3 ~  i 
(a) A List of expression Trees 

Index Node 

(b) Canonical Forms 

Fig. 6. Canonical Analysis 

5.3 Phase 3 : Canonical Analysis 

After creating the list of expression trees of indices, the next step is canonical analy- 
sis. This phase is a recursive traversal on the subscript expression tree of each index 
which applies rewriting rules to get the canonical form a0 + a l */I +" "'+ a,~ */n where 
/I,/2," "',/,~ are loop indices, and a0, al,.-., a,~ can be either integer coefficients or 
unresolved symbolic coefficients. For example, expression trees for index ternO in 
Figure 6(a) will generate arrays of integer coefficients (canonical form) as shown in 
Figure 6(b). The following rules are incorporated to get the canonical form : 

Rule I Constant Distribution: This is the case when we have an expression of the 
form c*(a0+az*{1 +'" "+an*/n) where a0, az,..., an are integer coefficients and c 
is integer constant, then we transform it into (c*a0)+(c*al)*/1 +'" .+(c*an)*in. 

Rule 2 Negative Propagation: This is the case when there are some additive terms 
scoped by a negative sign, we distribute the negative sign down to the coefficient 
level. For example expression ao-(al */z+a2*i2)+' �9 .+a,~*/n will be transformed 
into a0 -{- ( - a l )  * il + ( - a 2 )  * i2 + ' . .  + a,~, i,~. 
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R u l e  3 Coefficient Grouping: This is the case when there is more than one coeffi- 
cient of the same index expressed in some additive ~erms, such as a0 + al * il + 
- ' - +  an * in + p *  il - q* in. We transform it into a0 + (al +P)*  il + ' "  + (an - q)* in. 

R u l e  4 Symbolic Coefficient Resuming: This is the case where some coefficients 
are not integer. The above three rules are applied, but the remaining symbolic 
coefficients are expressed in symbolic expression sub~rees. 

When the above rules do not resolve the canonical forms totally (all integer 
coefficients are formed) or partially (some symbolic coefficients left), we then apply 
partial symbolic elimination/execution on the expression trees, which can result in 
canonical forms. 

6 C o l l e c t i n g  A r r a y - P a i r s  

The final phase of the support  analysis is to determine which array reference pairs 
must  be tested. When dealing with C this can be relatively complicated since the 
arrays are often referenced via pointers. Thus, we must use the points-to information 
to determine when two array references may refer to the same actual array. 

6.1 P o i n t s - t o  A n a l y s i s  fo r  A r r a y s  

When calculating points-to information, the most straight-forward approach is to 
approximate an entire array with one stack location. Thus, the information that  a 
definitely points to b means that  a points to the first location of array b. 

Example 1 in Figure 7 gives an example of points-to information collected for a 
simple program. After the s tatement  c = a we have the information the c definitely 
points-to a. This means that  direct references to array a and indirect references to 
array c might interfere, and they must be tested. 2 After the conditional we have the 
information that  d possibly points-to a or d possibly points to b. 

We may also get points-to relationships via parameters that  point to arrays. In 
Example 2, Figure 7, we see that  in the function g, we have the information that  
parameter  x definitely points-to an invisible location z (1),  while y definitely points- 
to a different invisible location y(1) .3  This means that  indirect references to array 
x and array y are guaranteed to be distinct, and there is no need to do dependence 
tests on such pairs. However, in function f we have the situation where x definitely 
points-to x(1)  and y definitely points-to x(1)  as well. Thus, the indirect references 
to x and y in function f may interfere, and the dependence tester must  be applied 
to such pairs. 

If we also consider the possibility of pointer arithmetic and the ability to capture 
the address of interior elements of arrays, a better approach for points-to analysis 
is to abstract the entire array as two stack locations: one stack location stands for 
the location of the first element of the array, and the other stack location stands for 
the rest of the array. Thus, for each array a, we have information about  a_head and 
a _ t a i l .  In Example 3, Figure 7, after the statement b = a we have the information 
that  b definitely points-to a_head, while after the statement c = ~a[exp]  we have 

2 Note that in C one must look at the type of the array to determine if it is a direct 
reference or an indirect reference. In Example 1 there will be direct references to a and 
b, and indirect references to c and d. 

3 These invisible location names are generated by the points-to analysis, and are used as 
anonymous names for variables that are not visible in the scope of the procedure under 
analysis. 
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the information that  c possibly points-to a_head or c possibly points-to a_~ail (as- 
suming that  exp could be any valid index into a, including 0.). The final statement,  
d = b++ illustrates that  after incrementing b, d definitely points-to a _ t a i l .  

:xample I 
main ( ) 
{ i n t  a l l 0 0 ] ,  b [ 1 0 0 ] ,  *c,  *d; 

c = a;  /*  c = &a[0] * /  
/* (c ->  a) */ 

i f  (exp)  
d = a ;  

e l s e  
d = b ;  

/*  (d -> a ) ?  (d -> b ) ?  * /  

Example 2 
ma in ( )  
i {  i n t  a l l 0 0 ] ,  b [ 1 0 0 ] ;  

g ( a , b )  ; 
f ( a , a )  ; 

} 
g(int *x, int *y) 
{ / ,  (x ->  x(1)) 

(y ->  y(1)) . 1  
. ~ 1 4 9  

x[i] = y[i+l]; 

f(int *x, int *y) 
{ /* (x -> x(1)) 

" '"  (y -> x(1)) */  

x[i] = y[i+l]; 

} 

Fig .  7. Examples of Points- to  analysis for arrays 

Example 3 
main ( ) 
{ i n t  a [ 1 0 0 ] ,  *b, *c,  *d; 

b = a;  /*  &a[0] * /  
/*  (b -> a_head)  * /  

c = &a[exp] ;  
/ *  (c -> a_head )?  

(c -> a _ t a i l ) ?  * /  

d -- b++; 
/*  (d -> a_tail) * /  

6.2 U s i n g  P o i n t s - t o  A n a l y s i s  

Given the points-to information as outlined in the previous section, the problem of 
collecting array pairs for dependence testing is vastly simplified. If one array reference 
is a write, and the other array reference is a read or write, then dependence testing 
must be performed if it is possible that  the array references refer to the same actual 
array. Given points-to analysis, there are three ways in which two array references 
refer to the same array: 

1. if both are direct references, and they refer to the same array name; or 
2. if one is a direct reference to some array a, and the other is an indirect reference 

to some array b, and b points-to a; or 
3. if both are indited references via some names a and b, and there exists a third 

abstract stack name c such that  a points-to c and b points-to c. 

Thus,  to collect all array pairs to be tested, one just considers all read/write and 
write/write pairs, and determines if one of these three cases applies. If so, the pair 
must be tested. 

7 A d v a n c e d  F e a t u r e s  

7.1 S y m b o l i c  M a n i p u l a t i o n  

The symbolic manipulation and execution of expressions is extremely useful for solv- 
ing symbolic dependence analysis. As a result of our support analysis, the canonical 
forms for index expressions are expressed as an array of either integer coefficients 
or symbolic expression subtrees. This representation allows us to perform several 
symbolic manipulations in a straightforward manner. 
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First, when a pair of subscript expressions contain the same symbolic term, we 
have to make sure that the same definitions reach the pair of variables involved 
in both expressions. This is to guarantee that there is no update to the variables 
involved in the symbolic comparison along the control flow paths between the two 
references. If the above condition is satisfied, then we can apply symbolic inequality 
and symbolic elimination when forming the dependence equation for the dependence 
testers. 

To illustrate this, consider the examples in Figure 8. In example 1, after applying 
the subscript normalization phase, we get the canonical form (1)i+ (2)j + (x - y) as 
the index of array w in statement S1 and ( 1 ) i + ( 1 ) j + ( 2 + z - y )  as'the canonical index 
of statement $2. Since there are no updates to variables z and y along the control 
flow paths between statements S1 and $2, symbolic el imination can be applied in 
order to get the subscript dependence equation il + 2jl - i 2  - j 2  - 2  = 0. Similarly, in 
example 2, the symbolic elimination on the indirect addressing can be applied, since 
there are no updates of variable x or array b along the control flow path between S1 
and $2. 

Example 1 : 

main() 

{ i n t  w[100] ;  
i n t  i , j , x , y ;  
x = . . . ;  
y - - . . . ;  

o , .  

f o r  ( i = l  ; i < = 9 ; + + i )  
f o r  ( j = l  ; j < = 9 ; + + j )  
{ 

S1 : w l ' i+2 j+x -y ]  = . . . ;  
S2 : ... = w[i+j+2+x-y]; 

} 
} 

Example 2 : 

main () 
i n t  w[100] ; 
i n t  b [10 ]  ; 
int i , j  ,k,x; 
X = . . . ;  
. , .  

for ( i = l  ; i <=9 ;++ i )  
for ( j = l  ; j<=9;++ j )  
{ 

$I : w[i+2j+x-b[k]] = ...; 

$2 : ... =w[i+j+2+x-b[k]-2] 
} 

Fig. 8. Symbolic Elimination 

7.2 Extended Backward Analysis 
Currently, the backward analysis for subscript normalization is done in the scope 
of loopnests, since it is used to reveal the subscript expressions in terms of loop 
variables. The method used in this backward analysis is a solid foundation for more 
general uses of backward demand-driven analysis. For example, we can extend the 
backward analysis to handle complete function bodies, or even to handle interpro- 
cedural reaching definitions. The extension of the backward analysis to the function 
level would be useful for loop invariant  variables and it can improve the power of 
symbolic manipulation and constant propagation. 

Figure 9 shows us some examples of how the extended backward analysis gives 
some advantages in symbolic manipulation and constant propagation. In example 
1, if we apply backward analysis at the loopnest level, we get the canonical pair 
(1)i + (2)j + (y - 6) and (1)i + (1)j + (z + 2). Whereas, the extended backward 
analysis can capture the definition for y in terms of z so that the canonical pair will 
be (1)i + (2)j + (x - 11) and (1)i + (1)j + (z + 2). Applying symbolic elimination 
to this pair will result in il + 2 j l  - i2 - J2 - 13 = 0 for the dependence equation. In 
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example 2, the extended backward analysis captures the intraprocedural constant 
propagation. The backward analysis at the loopnest level produces the canonical 
pair (1)i + (2)j + (y - 6) and (1)i + (1)j + (z + 2). Whereas, the extended backward 
analysis can capture definitions for y = x - 4 and z = 8 such that the canonical pair 
will be (1)i + (2)j + (-2) and (1)i + (1)j + (10). 

Example 1 : 
main() 
{ int w[lO0]; 

int i,j,x,y; 
x-- ...; 
y = x-5; 
. . .  

for (i=I; i<=9 ;++i) 
for ( j = l  ; j < = 9 ; + + j )  
{ 

s l  : w [ i + 2 j + y - 6 ]  = . . . ;  
$2 : . . .  = w [ i + j + 2 + x ] ;  

} 
} 

E x a m p l e  2 : 
m a i n  ( ) 
{ i n t  w [ 1 0 0 ] ;  

int  i , j , x , y ;  
x = 8 ;  
y = x - 4 ;  

f o r  ( i = l  ; i <=9  ; + + i )  
for (j=l ; j<=9;++j) 
{ 

Sl : w[i+2j+y-6] = . . . ;  
S2 : ... = w[i+j+2+x]; 

} 
} 

Fig. 9. Extended Backward Analysis 

8 Related  Work 

The traditional treatment of support analyses usually consists of several phases such 
as scalar forward substitution, induction variable substitution, canonical transforma- 
tion and constant propagation, where each phase is a transformation of program code 
segments [19]. Since subscript normalization is the inverse of redundant expression 
elimination, applying the sequences of subscript transformations will result in some 
new code segments which require dead code elimination and redundant expression 
elimination to be reapplied, which is inefficient. 

Recently, an implementation based on SSA using use-def chains has been de- 
scribed [15]. Instead of using def-use chains for each definition, as in [10, 16], which 
supports forward-flow analysis due to consistency of direction between flow anal- 
ysis and def-use chains, the SSA-based method offers a demand-driven data-flow 
analysis which typically requests information at a program point from its data-flow 
predecessors. In some respects, the SSA-based approach is similar to our approach 
- our reaching definition information is basically use-def chains which enable the 
demand-driven analysis. The key difference is that we base our analysis on tree- 
based compositional intermediate representation and structured analysis, while the 
SSA-based approach is built on graph-based analysis. 

Detecting induction variables using the SSA form has also been discussed [4, 18]. 
The proposed technique is based on SSA graphs and a modified Tarjan's algo- 
rithm for recognizing SCRs (Strongly Connected Regions) of CFG. This technique 
is then expanded to recognize other types of IVs such as Wrap-Around Variables 
(WAV), Flip-Flop and Periodic variables (FPV), Non-Linear Induction Variables 
(NLIV) and Monotonic Variables (MV). In addition, the algorithm can also iden- 
tify Nested Induction Variables (NI.V) in the presence of determinable trip counts 
of the loop. Currently, our induction processing (based on the patterns collected 
during the backwards demand-driven analysis) can handle basic, multiply-defined, 
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mutually-updated and nested induction variables properly, and can detect periodic 
and monotonic induction variables, but does not calculate the formulas. Non-linear 
and geometric induction variables are currently being incorporated without any se- 
rious problems. 

A framework to solve the dependence problem in the presence of unknown sym- 
bolic expressions has also been introduced [6, 7]. This approach uses forward flow 
analysis in order to do symbolic constant propagation, partial symbolic execution 
and approximate semantic analysis in the program, before applying classical data 
dependence testers. The symbolic constant flow analysis is applied on multi-level 
linked list representing symbolic expressions. These symbolic manipulations are also 
available in our support analysis using a different approach. Instead of going for- 
ward, our approach is demand-driven backward analysis at the loopnest level, which 
is currently extended to backward analysis the top of the functions for the loop 
invariant variables. This extension exposes more opportunities for symbolic.manip- 
ulation and will allow for demand-driven constant propagation in the presence of 
points-to information. 

A major difference in our approach is that we fully incorporate points-to infor- 
mation in detecting loopnests, collecting array-pairs and replacing any occurrences 
of indirect reference and indirect component reference along the backward path in 
the demand-driven subscript analysis. This allows us to get more precise canonical 
expressions and thus more precise dependence results. 

9 C on c l u s i on s  and Further  Work 

This paper has discussed the design and implementation of the support analyses re- 
quired for precise array dependence testing in our optimizing/parallelizing McCAT 
C compiler. We have presented this support analysis as three phases: (1) admissible 
loopnest detection, (2) the collection of normalized index expressions (subscript nor- 
malization), and (3) the determination of array-reference pairs that must be tested. 

Our approach builds on the structured intermediate representation (SIMPLE), 
and the results of points-to and reaching-definition analysis. The SIMPLE represen- 
tation provides a good environment for detecting admissible loop nests, while the 
points-to analysis and reaching-definition analysis enables our subscript normaliza- 
tion. The points-to analysis is also a key factor in detecting admissible loops and 
determining the array-pairs that must be tested. Without such analyses, overly con- 
servative assumptions would have to be made, and spurious dependence tests would 
be required. 

We have implemented this support analysis and connected it to a practical depen- 
dence testing framework based on a wide variety of dependence testers [5, 11, 12, 17]. 
We plan to continue this work by incorporating more advanced features in the sup- 
port analysis, and by experimenting with the effect of precise points-to analysis on 
the accuracy of the dependence testing. 
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