
Supporting Array Dependence Testing for an
Optimizing/Parallelizing C Compiler

Justiani and Laurie J. Hendren

McGill University, Montreal, Quebec, Canada

Abstract . The effectiveness of parallelizing and optimizing compilers de-
pends on the ability to do accurate dependence analysis. In the case of pro-
grams that use arrays, array dependence analysis methods are critical, and
powerful methods for dependence testing have been widely established. In
order to collect the input required to actually apply the dependence tester,
one must first apply the following support phases: (1) locate all admissible
loop nests, (2) collect the normalized index expressions for each array ref-
erence, and (3) determine which pairs of array references must be tested.
When implementing a dependence testing framework in C, each of these
support phases must deal with complexities such as the presence of pointers
and complicated control flow due to complex loop structures. Furthermore,
each phase must be performed as accurately as possible so as to maximize
the number of admissible loop nests and minimize the number of dependence
pairs requiring testing.
This paper describes the design and implementation of the support phases
as developed in the dependence testing framework for the McCAT (McGitl
Compiler Architecture Testbed) optimizing/parallelizing C compiler. By tak-
ing advantage of the simplified and structured intermediate representation,
and the advanced points-to (alias) and reaching definition analyses available
in the McCAT compiler, we provide a unified framework for implementing all
of the support analyses required for array dependence testing. As part of this
framework we demonstrate scalar backward analysis, generalized induction
variable detection, canonical subscript analysis, symbolic manipulation, and
demand-driven constant propagation in the presence of complex C features.

1 Introduct ion and Motivat ion

Accurate and efficient data dependency analysis is an important cornerstone of any
parallelizing compiler. For programs using arrays and nested loops, various powerful
dependence analysis methods have been widely established [3, 5, 6, 11, 12, 13, 17].
The basic dependence problem is to decide whether two subscripted references to the
same array in a loopnest access the same memory location under certain constraints
imposed by the boundaries of the loop iteration space. In general, the dependence
problem reduces to solving a system of linear diophantine equations subject to a
set of linear inequality constraints. This is a two-step process. The first phase is to
set up a system of dependence equations and inequalities. In the second phase, a
decision algorithm determines if the system has integer solution [17]. The goal of the
dependence testing is to disprove dependence of as many array subscripted pairs as
possible and as early as possible.

This mathematically well-defined problem of dependence testing requires, as in-
put, a set of equations and equalities derived from the application program under
analysis. These equations and equalities must be collected in as precise a manner as
possible, even for complicated programs that use complex loops and/or pointer data

310

structures. Thus, one requires a complete framework of support analyses that can be
used to collect accurate inputs for dependence testers. Without such a framework,
even the most powerful dependence testers are useless.

Unlike typical scientific programs written in Fortran, which often have regular
loop nests and simple forms of aliasing (due to call-by-reference), the more general
features found in C tend to promote more complex loops and the use of data structure
abstractions that often involve pointers. Making overly conservative assumptions
about loops and/or aliasing due to pointers can significantly reduce the quality of the
dependence testing result. Thus, the development of support analyses in the context
of C parallelizing compilers must effectively handle these additional complexities.

1.1 M o t i v a t i n g E x a m p l e s

All dependence testing methods are usually built upon the following assumptions:
(1) admissible loopnests have a nice, regular behaviour expressed by the behaviour
of loop variables, (2) all the array subscripts and loop limits have been represented
in canonical forms or affine functions of loop indices, (3) subscript-pairs are collected
from pairs of references to the same array name.

However, real C programs often do not fit nicely into these patterns, and the
support analyses must deal with several complications. From the examples in Fig-
ure 1, we can demonstrate that the following points need to be addressed before any
dependence tests can be applied:

E x a m p l e 1: This program illustrates the problem of detecting whether or not the
loop is admissible. In general, admissible loops should not update the loop vari-
able. The presence of pointer assignment in statement S1 means that an admis-
sible loopnest detector should check that the assignment to *s does not update
the loop variable i. Without precise alias or points-to analysis, one must conser-
vatively assume that *s might refer to i. In our compiler context, we can use the
results of our poinls-to (alias) analysis to decide whether or not s can point-to i
[1, 2].

E x a m p l e 2: This program illustrates the case where the programmer has not pro-
vided the array subscripts in terms of the loop variables. Thus, we need auto-
matic methods to convert the array subscripts ind l and ind2 into a canonical
form relative to the loop variables. This involves scalar backward analysis, induc-
tion variable analysis, demand-driven constant propagation, canonical subscript
analysis, and possible involvement of symbolic manipulation of the canonical
subscript expressions. Furthermore, these methods must all be able to handle
expressions using pointer variables.

E x a m p l e 3: This program illustrates the problem of determining if two array names
refer to the same array. In order to be safe, the dependence testers must be used
in all cases where the array names may refer to the same array. In this program
we need to detect whether or not the array names v and w refer to the same
array.

1.2 Our Support Analysis Framework

In this paper we present a framework for support analyses to support array depen-
dence testing that has been designed and implemented for the McCAT optimiz-
ing/parallelizing C compiler. 1 This framework has been designed to handle the full

1 The McGill Compiler/Architecture Testbed is being developed in order to study the
interaction between compiler techniques and advanced architectural features [8].

311

Example I :

main()
{ int w[lO0] ;

int i,p;
int *s ;
s =&i;

for (i=i ; i<=99 ;++i)
{

Sl : *s= 2 * p;
,[i] = ,[i+l];

}
}

Example 2 :

main ()
{ inZ w[lO] ;

int i,p,q,a,indl ,ind2;
int *s,*r;
s =&i;
r = &q;
q = 2 ;
for(i=l; i<=9; i++)
{ p = q + 3 ;

*r=p-4;
a =p-i;
indl-a-2* ((*s)+3*i) ;
ind2--p+2*i ;
, [indl] =w [ind2] ;

}
}

Example 3 :

main ()
{ i n t v [1 0] ;

int i, j ;
int *w ;
W=V ;

for (i=l ; i<lO ;++i)
{

Sl : vii-2] = w[i+l];
}

}

Fig. 1. Motivating Example C Programs

complexities of the C language that affect array dependence analysis, while at the
same time supporting complete information and compact representation for applying
various dependence testing methods.

The rest of this paper is organized as follows. First we discuss the overall structure
and foundations of our approach in section 2. Section 3 presents the introduction of
our support analysis framework, while sections 4, 5, 6 and 7 provides the details
of the framework and illustrate them with some simple examples. Finally, we cover
related work in section 8 and draw conclusions in section 9.

2 F o u n d a t i o n s

Although powerful features of C language make the support analyses nontrivial, the
McCAT compiler provides an environment which provides the necessary founda-
tions: (1) SIMPLE, a compositional structured intermediate representation that was
designed to handle various complications in C in a standard, simple and structured
manner, (2) precise interprocedural alias information as computed by points-to anal-
ysis, and (3) reaching definition analysis that includes reaching definitions for pointer
variables.

Figure 2 illustrates these important parts of the McCAT environment. Note
that the first phase takes a collection of C program files, and produces a simpli-
fied and compositional structured representation called SIMPLE. Then, points-to
analysis and reaching-definition analysis take as input the simplified representation
and provides as output SIMPLE decorated with points-to information and reaching-
definition information. The important points relevant for our topic are briefly de-
scribed in Sections 2.1 and 2.2. A complete presentation of the points-to analysis
and reaching-definition analysis is discussed elsewhere [1, 2, 9, 14]. Given the deco-
rated SIMPLE representation, the next step is the support analysis for dependence
testing, which is the main topic of this paper. This support analysis takes advan-
tage of the simplification phase, the reaching-definition information and the points-to
information.

312

[Simplify and Restructuring }

SIMPLE

[Points-to Analysis J

IReaching Definition 1

SIMPLE with points-to info and reach-def info
v/

Dependence "resting

Fig. 2. Overview of the McCAT Environment

2.1 S I M P L E I n t e r m e d i a t e R e p r e s e n t a t i o n

The first foundation of our approach is that McCAT provides a compositional struc-
tured intermediate representation called SIMPLE that can represent all the complex-
ities of C in a simple, standard and structured fashion. The simplify phase includes:
breaking down complex statements into a series of basic statements, simplifying
complex expressions and control structures into simple ones, simplifying function
arguments to constants or variables, and moving initializations in the declarations
into statements in the body. Even though simplified, SIMPLE retains the array
and structure references for various analyses that need high-level variable references
and type information. Therefore, this representation has been designed to be most
suitable for compositional (structured) analysis framework [8].

In Figure 3, we present a simplification of an example program that we use
throughout this paper. On the left is the original program, and on the right is the
SIMPLE version.

2.2 P o i n t s - t o a n d R e a c h i n g Def in i t i on Ana lys i s

The compositional nature of SIMPLE allows regular and explicit control flow in the
program representation that is suitable for compositional analyses. One of the most
important analyses is points-to analysis which is an interprocedural analysis that
computes all possible points-to relationships for each program point. We say that
p definitely points-to x if p definitely contains the address of x. Similarly, we say
that p possibly points-to x if p possibly contains the address of x. Unlike traditional
alias analysis which computes alias pairs of the form (p ,*x) and (*p ,**y) , our
points-to analysis gives every important stack location a name, and encodes only
the relationships between these names. In most cases the stack location names are
just the variable names. The only special case is that we generate special names
for stack locations corresponding to function parameters with pointer types. For
example, a parameter a with type **• would have three stack locations a, a (1) ,
and a(2) where the names a(1) and a(2) are abstract names corresponding to
locations accessible via *a and **a. This naming scheme and associated points-

313

main ()
{ int w[l l] ;

in t i , k , p , q , a ;
int *r, *y ;
r = &q;
if(1) y = ~p;
else y = &i;

p=4;
for (i = I; i <= I0; ++i)

{q=p+2;
k = q + 2 ;
a = w[p-(*r+*y)] ;
p=*r- 5;
w[k] = p;

}

main ()
(int w [l l] , i , k ' , p , q , a ;

int *r ,*y;
in t temp_3, t emp_2, t emp_l, temp_0, temp_4 ;
r = &q;
if (1) y = l-p; e l s e y = &i;
p = 4 ;
for (i = l ; i<= lO; i= i+ l)
{ q = p + 2 ;

k = q + 2 ;
temp_2 = *r;
t e m p _ 3 = * y ;

t e m p _ l = t e m p _ 2 + t e m p _ 3 ;

temp_O = p - temp_l;
a = w[temp_0] ;

temp_4 = *r;
p = temp_4 - 5;

,Ck] = p;
}

Fig. 3. Example of SIMPLE

to abstraction provides a compact representation that can be used directly in our
support analyses.

Based on the points-to analysis, the reaching-definition analysis provides a list
of all definitions for uses at each program point. For the case of a use of the form z,
the reaching definitions for x include all direct definitions of the form x = a op b as
well as any definite or possible indirect definitions of the form *p = a op b where
p points-to x. In the case of a use of the form *p, we include all reaching definitions
(both direct and indirect) for all variables pointed to by p.

3 Overview of the Support Analysis Framework

The goal of the support analysis is to provide a suitable environment for the appli-
cation of dependence testing methods. Such a support analysis framework consists
of three phases as given below and each of these phases are described more fully in
subsequent sections.

A d m i s s i b l e l o o p n e s t d e t e c t i o n : The first phase is a mechanism to filter only
certain types of loopnests that are amenable for analysis with dependence testers.
This filter should find as many admissible loopnests as possible.

S u b s c r i p t N o r m a l i z a t i o n : Once the admissible loopnests have been detected,
each array subscript must be expressed in a normalized form (most often in
terms of the enclosing loop variables and loop bounds). In general this requires
a variety of subscript normalizations such as: scalar backward analysis, gener-
alized induction variable detection, canonical analysis, demand-driven constant
propagation, and symbolic manipulation.

A r r a y - p a i r co l l ec t ion : Given that each array subscript is expressed in a canonical
form, the next phase must determine which array reference pairs must be tested.
In general, two array references a [e x p l] and b[exp2] must be tested if a might
refer to the same array as b.

314

4 Admissible Loopnest Detection
Loopnest detection selects certain loopnests that are amenable to be analyzed. The
idea behind this selection is to guarantee that the loopnest behaviour can be ex-
pressed by the regular behaviour of the loop indices. In dealing with loops, one must
address the following potential problems with loopnests that make them inadmissi-
ble. Note that some of the problems are made more complex by the general form of
loops in C, and the presence of pointers.

P r o b l e m 1: Each loop should be defined with the initialization, increment and test
on exactly one loop variable. If a pointer variable of the form *p is used as the
loop variable, then p should point-to exactly one variable.

P r o b l e m 2: Many dependence testers assume that the increment to the loop vari-
able is 1. If the loop provided by the programmer has a different increment, then
loop normalization must be applied [3, 5, 13, 19].

P r o b l e m 3: The body of the loop should be free from irregular control flow such
as break and cont inue. The loop body should not call functions that update
the loop variables.

P r o b l e m 4: The loopnest body should not modify the loop variables (either di-
rectly, or indirectly through a pointer).

P r o b l e m 5: The loopnest body should not modify the value of the increment or
loop bound. There may exist some programs where there is an assignment to
the increment or loop bound, but this assignment does not change the value.

Problems 1, 2 and 3 are very obvious. We choose to illustrate problems 4 and 5
using the two examples in Figure 4. In example 1, at program point $1, the points-to
information says that s definitely points- to i. Since *s, which is exactly i, is modified
in $1, we can not express any array subscripts in term of linear function of loop
variable i anymore, because i is not regularly incremented by 1. Thus, the loopnest
in example 1 is not admissible. Suppose if in $1 we have information saying that
s definitely points- to some variable other than i, then the loopnest is admissible.
Therefore, in an environment with pointers, without any points-to information, in
order to be safe, the analysis may result in the worst assumption. In example 2, at
program point S1, loop-bound variable temO is being modified in the loopnest scope.
Yet, the redefinition does not really change the value of temO as recognized in the
loop header since the modifiers are both defined outside the loopnest scope. Thus,
this loopnest can be categorized as admissible.

Example 1 : Bad-loop
m a i n ()
{ int w[lOO],i,p,*s;

s -- &i;

for (i ffi I; i <ffi 99; ++i)
{

S1 : *s-- 2 * p;

w[i] = w[i+l];
}

}

Example 2 :
m=5;n=9;
for(i--O; i<m; i--i+l)
{ teml = n + m;

temO = teml + n,
for (jffiO ; j<temO; j=j+1)
{ c[i][j]fc[i][j];

teml = n + m;

SI: temO =teml + n;
}

}

Fig. 4. Example Loopnests

315

5 Subscript Normalization

Having filtered all admissible loopnests in the program, the next step is subscript
normalization for every array reference appearing in the admissible loopnests. When
designing and implementing the subscript analysis for C, the following three major
problems may arise:

P r o b l e m 1: The first problem is that programmers often reduce the number of
redundant computations using a scalar variable as temporary variable to store
the value of a common subexpression [19]. Then this temporary scalar variable
is used as the array subscripts such that the array indices are not in the form
of linear function of loop variables. In the case of our SIMPLE intermediate
representation, each complex array reference is broken down into a series of
three address statements. This causes a similar problem.

P r o b l e m 2: The second problem is that there may exist some induction variables
whose values are systematically incremented or decremented by a certain value
in a loop. The use of such induction variables may hide the linearity and ad-
missibility conditions of array subscripts. However, often the induction variables
may be rewritten relative to the loop variables, thus making more subscripts
admissible.

P r o b l e m 3.'. The final major problem is that it is unlikely that all array subscript
expressions are written in the standard canonical form a0 + al * il + . . . + an * in,
where a0, al, �9 �9 an are integer coefficients and il, i2,.. -, in are loop variables,
such that the dependence testing methods can not be applied directly. Thus,
each index expression must be rewritten to conform to the standard canonical
form.

The goal of the subscript normalization is essentially to capture the canonical
forms of array subscripts in order to apply dependence testing. This normalization
is achieved through a three-step process: (1) build a general expression tree which
captures all possible index expressions and induction variables (uses points-to and
reaching definition analysis), (2) given the general expression tree, build a list of pos-
sible subscript expression trees, and (3) express each subscript expression in canonical
form.

5.1 P h a s e 1 : Bu i ld ing a G e n e r a l E x p r e s s i o n T ree

In our SIMPLE intermediate form, each complex array subscript expression has
been simplified to either a constant or a variable name. In order to collect all pos-
sible expressions corresponding to a variable name index, we perform a backward
demand-driven analysis at the loopnest level using reaching definition and points-to
information to build a general expression tree.

To illustrate our approach, consider the previous example in Figure 5(a). Con-
sider that we want to build a general expression tree for index tern0 of array w in
statement S1 as shown in Figure 5(b). The basic idea is that we trace back through
all reaching definitions of tera0 building a general expression tree. In this case the
index temO has definition temO = p-feral that reaches S1, so we build the expres-
sion p - t eml under the index temO. Similarly, we continue this process for p and teml
recursively. When an indirect reference is reached, we use the points-to information
to expand the indirection with all variables that the indirect reference points-to. For
example, *r is expanded to q and *y is expanded to p and i. Moreover, there is a
possibility that an induction pattern is detected during the backward process. This
is when the same variables with the same reaching-definitions are repeated in the

316

backward process, such as variable p inside the dashed box that shows induction
pattern in the example in Figure 5(b). If this is the case, after the induction pattern
tree is completely built, an induction processing function is called to calculate the
induction formula for all the induction variables existing in the pattern. From our
example, the induction calculation is done for variables p, tern4 and q. If later there
is a use of an induction variable that already has a calculated formula, such as vari-
ables p and q under *r and *y in Figure 5(b), the backward analysis stops for that
particular path, and keeps the pointer to the calculated formula for later use.

main()
{ int w[l l] , i , k , p ,q , a ;

int *r, *y ;
int tem4, tem3 ,tem2 ,teml ,temO
r = ~q;
i f (...) y = &p;

else y = &i;
p=4;
for (i=l ;i<=lO;i=i+l)
{ q=p+2;

k=q+2;
tem2 = *r;
tem3 = *y;
teml = tem2+tem3;

temO = p - teml;

a = ,[temO];
tem4 = * r ;

p =tem4 - 5;

w[k] = p;
}

(a) Example Simplified Program

temO I.egencJ-

J(~1', tern2 tern3
tern4 ~ ~

*r *y

, q
i

k ' -
iNtttem

(b) General Expression Tree for gem0

Fig. 5. Building Genera/Expression Tree

To summarize, a general expression tree is represented with the original variable
at the root, and leaves of the following form: (a) a constant, (b) a loop variable, (c)
an induction variable, or (d) a loop invariant variable (i.e. a variable with a definition
outside of the loopnest). Interior nodes in the expression tree are of the following
form: (a) a variable (has children representing all binary or unary expressions that
could define the variable), or (b) an indirect reference (has children representing all
variables pointed to by the reference).

In some respects, this general expression tree form is similar to SSA-form [4, 18]
in the sense that it captures an induction pattern. The major difference is that
our technique builds a structure specific for particular indices. Furthermore, our
structure captures all possible expressions due to both control flow (multiple possible
reaching expressions) and indirect pointer references (multiple possible pointed-to
variables).

317

5.2 P h a s e 2 : B u i l d i n g a List o f E x p r e s s i o n Trees

The next step of subscript normalization is the process of building a list of allernative
czpression trees for an array index from the general expression tree built in the
previous phase.

We use the previous example to illustrate this phase. If we look at the root
and the leaves of the general expression tree in figure 5, we can derive tha t there
are two possible canonical forms for array index temO that comes from expression
temO = p - (q + p) or the expression temO = p - (q + i). Furthermore, p and q
are induction variables where p is equivalent to - 3 * i + 7, and q is equivalent to
- 3 , i + 9. Therefore, the array index temO has two possible canonical values, which
are 3 * i - 9 and - 1 �9 i - 2. The list of subscript expression trees for temO built in this
phase is shown in Figure 6 (left). The list of expression trees is built by traversing
the general expression tree bo t tom up, building a list of possible expression trees for
each sub-tree. In addition, all induction variables are expanded to their appropriate
expressions.

In~xNode

Ix

-3 . 3 ~ i
(a) A List of expression Trees

Index Node

(b) Canonical Forms

Fig. 6. Canonical Analysis

5.3 Phase 3 : Canonical Analysis

After creating the list of expression trees of indices, the next step is canonical analy-
sis. This phase is a recursive traversal on the subscript expression tree of each index
which applies rewriting rules to get the canonical form a0 + a l */I +" "'+ a,~ */n where
/I,/2," "',/,~ are loop indices, and a0, al,.-., a,~ can be either integer coefficients or
unresolved symbolic coefficients. For example, expression trees for index ternO in
Figure 6(a) will generate arrays of integer coefficients (canonical form) as shown in
Figure 6(b). The following rules are incorporated to get the canonical form :

Rule I Constant Distribution: This is the case when we have an expression of the
form c*(a0+az*{1 +'" "+an*/n) where a0, az,..., an are integer coefficients and c
is integer constant, then we transform it into (c*a0)+(c*al)*/1 +'" .+(c*an)*in.

Rule 2 Negative Propagation: This is the case when there are some additive terms
scoped by a negative sign, we distribute the negative sign down to the coefficient
level. For example expression ao-(al */z+a2*i2)+' �9 .+a,~*/n will be transformed
into a0 -{- (- a l) * il + (- a 2) * i2 + ' . . + a,~, i,~.

318

R u l e 3 Coefficient Grouping: This is the case when there is more than one coeffi-
cient of the same index expressed in some additive ~erms, such as a0 + al * il +
- ' - + an * in + p * il - q* in. We transform it into a0 + (al +P)* il + ' " + (an - q)* in.

R u l e 4 Symbolic Coefficient Resuming: This is the case where some coefficients
are not integer. The above three rules are applied, but the remaining symbolic
coefficients are expressed in symbolic expression sub~rees.

When the above rules do not resolve the canonical forms totally (all integer
coefficients are formed) or partially (some symbolic coefficients left), we then apply
partial symbolic elimination/execution on the expression trees, which can result in
canonical forms.

6 C o l l e c t i n g A r r a y - P a i r s

The final phase of the support analysis is to determine which array reference pairs
must be tested. When dealing with C this can be relatively complicated since the
arrays are often referenced via pointers. Thus, we must use the points-to information
to determine when two array references may refer to the same actual array.

6.1 P o i n t s - t o A n a l y s i s fo r A r r a y s

When calculating points-to information, the most straight-forward approach is to
approximate an entire array with one stack location. Thus, the information that a
definitely points to b means that a points to the first location of array b.

Example 1 in Figure 7 gives an example of points-to information collected for a
simple program. After the s tatement c = a we have the information the c definitely
points-to a. This means that direct references to array a and indirect references to
array c might interfere, and they must be tested. 2 After the conditional we have the
information that d possibly points-to a or d possibly points to b.

We may also get points-to relationships via parameters that point to arrays. In
Example 2, Figure 7, we see that in the function g, we have the information that
parameter x definitely points-to an invisible location z (1), while y definitely points-
to a different invisible location y(1) .3 This means that indirect references to array
x and array y are guaranteed to be distinct, and there is no need to do dependence
tests on such pairs. However, in function f we have the situation where x definitely
points-to x(1) and y definitely points-to x(1) as well. Thus, the indirect references
to x and y in function f may interfere, and the dependence tester must be applied
to such pairs.

If we also consider the possibility of pointer arithmetic and the ability to capture
the address of interior elements of arrays, a better approach for points-to analysis
is to abstract the entire array as two stack locations: one stack location stands for
the location of the first element of the array, and the other stack location stands for
the rest of the array. Thus, for each array a, we have information about a_head and
a _ t a i l . In Example 3, Figure 7, after the statement b = a we have the information
that b definitely points-to a_head, while after the statement c = ~a[exp] we have

2 Note that in C one must look at the type of the array to determine if it is a direct
reference or an indirect reference. In Example 1 there will be direct references to a and
b, and indirect references to c and d.

3 These invisible location names are generated by the points-to analysis, and are used as
anonymous names for variables that are not visible in the scope of the procedure under
analysis.

319

the information that c possibly points-to a_head or c possibly points-to a_~ail (as-
suming that exp could be any valid index into a, including 0.). The final statement,
d = b++ illustrates that after incrementing b, d definitely points-to a _ t a i l .

:xample I
main ()
{ i n t a l l 0 0] , b [1 0 0] , *c, *d;

c = a; /* c = &a[0] * /
/* (c -> a) */

i f (exp)
d = a ;

e l s e
d = b ;

/* (d -> a) ? (d -> b) ? * /

Example 2
ma in ()
i { i n t a l l 0 0] , b [1 0 0] ;

g (a , b) ;
f (a , a) ;

}
g(int *x, int *y)
{ / , (x -> x(1))

(y -> y(1)) . 1
. ~ 1 4 9

x[i] = y[i+l];

f(int *x, int *y)
{ /* (x -> x(1))

" '" (y -> x(1)) */

x[i] = y[i+l];

}

Fig . 7. Examples of Points- to analysis for arrays

Example 3
main ()
{ i n t a [1 0 0] , *b, *c, *d;

b = a; /* &a[0] * /
/* (b -> a_head) * /

c = &a[exp] ;
/ * (c -> a_head)?

(c -> a _ t a i l) ? * /

d -- b++;
/* (d -> a_tail) * /

6.2 U s i n g P o i n t s - t o A n a l y s i s

Given the points-to information as outlined in the previous section, the problem of
collecting array pairs for dependence testing is vastly simplified. If one array reference
is a write, and the other array reference is a read or write, then dependence testing
must be performed if it is possible that the array references refer to the same actual
array. Given points-to analysis, there are three ways in which two array references
refer to the same array:

1. if both are direct references, and they refer to the same array name; or
2. if one is a direct reference to some array a, and the other is an indirect reference

to some array b, and b points-to a; or
3. if both are indited references via some names a and b, and there exists a third

abstract stack name c such that a points-to c and b points-to c.

Thus, to collect all array pairs to be tested, one just considers all read/write and
write/write pairs, and determines if one of these three cases applies. If so, the pair
must be tested.

7 A d v a n c e d F e a t u r e s

7.1 S y m b o l i c M a n i p u l a t i o n

The symbolic manipulation and execution of expressions is extremely useful for solv-
ing symbolic dependence analysis. As a result of our support analysis, the canonical
forms for index expressions are expressed as an array of either integer coefficients
or symbolic expression subtrees. This representation allows us to perform several
symbolic manipulations in a straightforward manner.

320

First, when a pair of subscript expressions contain the same symbolic term, we
have to make sure that the same definitions reach the pair of variables involved
in both expressions. This is to guarantee that there is no update to the variables
involved in the symbolic comparison along the control flow paths between the two
references. If the above condition is satisfied, then we can apply symbolic inequality
and symbolic elimination when forming the dependence equation for the dependence
testers.

To illustrate this, consider the examples in Figure 8. In example 1, after applying
the subscript normalization phase, we get the canonical form (1)i+ (2)j + (x - y) as
the index of array w in statement S1 and (1) i + (1) j + (2 + z - y) as'the canonical index
of statement $2. Since there are no updates to variables z and y along the control
flow paths between statements S1 and $2, symbolic el imination can be applied in
order to get the subscript dependence equation il + 2jl - i 2 - j 2 - 2 = 0. Similarly, in
example 2, the symbolic elimination on the indirect addressing can be applied, since
there are no updates of variable x or array b along the control flow path between S1
and $2.

Example 1 :

main()

{ i n t w[100] ;
i n t i , j , x , y ;
x = . . . ;
y - - . . . ;

o , .

f o r (i = l ; i < = 9 ; + + i)
f o r (j = l ; j < = 9 ; + + j)
{

S1 : w l ' i+2 j+x -y] = . . . ;
S2 : ... = w[i+j+2+x-y];

}
}

Example 2 :

main ()
i n t w[100] ;
i n t b [10] ;
int i , j ,k,x;
X = . . . ;
. , .

for (i = l ; i <=9 ;++ i)
for (j = l ; j<=9;++ j)
{

$I : w[i+2j+x-b[k]] = ...;

$2 : ... =w[i+j+2+x-b[k]-2]
}

Fig. 8. Symbolic Elimination

7.2 Extended Backward Analysis
Currently, the backward analysis for subscript normalization is done in the scope
of loopnests, since it is used to reveal the subscript expressions in terms of loop
variables. The method used in this backward analysis is a solid foundation for more
general uses of backward demand-driven analysis. For example, we can extend the
backward analysis to handle complete function bodies, or even to handle interpro-
cedural reaching definitions. The extension of the backward analysis to the function
level would be useful for loop invariant variables and it can improve the power of
symbolic manipulation and constant propagation.

Figure 9 shows us some examples of how the extended backward analysis gives
some advantages in symbolic manipulation and constant propagation. In example
1, if we apply backward analysis at the loopnest level, we get the canonical pair
(1)i + (2)j + (y - 6) and (1)i + (1)j + (z + 2). Whereas, the extended backward
analysis can capture the definition for y in terms of z so that the canonical pair will
be (1)i + (2)j + (x - 11) and (1)i + (1)j + (z + 2). Applying symbolic elimination
to this pair will result in il + 2 j l - i2 - J2 - 13 = 0 for the dependence equation. In

321

example 2, the extended backward analysis captures the intraprocedural constant
propagation. The backward analysis at the loopnest level produces the canonical
pair (1)i + (2)j + (y - 6) and (1)i + (1)j + (z + 2). Whereas, the extended backward
analysis can capture definitions for y = x - 4 and z = 8 such that the canonical pair
will be (1)i + (2)j + (-2) and (1)i + (1)j + (10).

Example 1 :
main()
{ int w[lO0];

int i,j,x,y;
x-- ...;
y = x-5;
. . .

for (i=I; i<=9 ;++i)
for (j = l ; j < = 9 ; + + j)
{

s l : w [i + 2 j + y - 6] = . . . ;
$2 : . . . = w [i + j + 2 + x] ;

}
}

E x a m p l e 2 :
m a i n ()
{ i n t w [1 0 0] ;

int i , j , x , y ;
x = 8 ;
y = x - 4 ;

f o r (i = l ; i <=9 ; + + i)
for (j=l ; j<=9;++j)
{

Sl : w[i+2j+y-6] = . . . ;
S2 : ... = w[i+j+2+x];

}
}

Fig. 9. Extended Backward Analysis

8 Related Work

The traditional treatment of support analyses usually consists of several phases such
as scalar forward substitution, induction variable substitution, canonical transforma-
tion and constant propagation, where each phase is a transformation of program code
segments [19]. Since subscript normalization is the inverse of redundant expression
elimination, applying the sequences of subscript transformations will result in some
new code segments which require dead code elimination and redundant expression
elimination to be reapplied, which is inefficient.

Recently, an implementation based on SSA using use-def chains has been de-
scribed [15]. Instead of using def-use chains for each definition, as in [10, 16], which
supports forward-flow analysis due to consistency of direction between flow anal-
ysis and def-use chains, the SSA-based method offers a demand-driven data-flow
analysis which typically requests information at a program point from its data-flow
predecessors. In some respects, the SSA-based approach is similar to our approach
- our reaching definition information is basically use-def chains which enable the
demand-driven analysis. The key difference is that we base our analysis on tree-
based compositional intermediate representation and structured analysis, while the
SSA-based approach is built on graph-based analysis.

Detecting induction variables using the SSA form has also been discussed [4, 18].
The proposed technique is based on SSA graphs and a modified Tarjan's algo-
rithm for recognizing SCRs (Strongly Connected Regions) of CFG. This technique
is then expanded to recognize other types of IVs such as Wrap-Around Variables
(WAV), Flip-Flop and Periodic variables (FPV), Non-Linear Induction Variables
(NLIV) and Monotonic Variables (MV). In addition, the algorithm can also iden-
tify Nested Induction Variables (NI.V) in the presence of determinable trip counts
of the loop. Currently, our induction processing (based on the patterns collected
during the backwards demand-driven analysis) can handle basic, multiply-defined,

322

mutually-updated and nested induction variables properly, and can detect periodic
and monotonic induction variables, but does not calculate the formulas. Non-linear
and geometric induction variables are currently being incorporated without any se-
rious problems.

A framework to solve the dependence problem in the presence of unknown sym-
bolic expressions has also been introduced [6, 7]. This approach uses forward flow
analysis in order to do symbolic constant propagation, partial symbolic execution
and approximate semantic analysis in the program, before applying classical data
dependence testers. The symbolic constant flow analysis is applied on multi-level
linked list representing symbolic expressions. These symbolic manipulations are also
available in our support analysis using a different approach. Instead of going for-
ward, our approach is demand-driven backward analysis at the loopnest level, which
is currently extended to backward analysis the top of the functions for the loop
invariant variables. This extension exposes more opportunities for symbolic.manip-
ulation and will allow for demand-driven constant propagation in the presence of
points-to information.

A major difference in our approach is that we fully incorporate points-to infor-
mation in detecting loopnests, collecting array-pairs and replacing any occurrences
of indirect reference and indirect component reference along the backward path in
the demand-driven subscript analysis. This allows us to get more precise canonical
expressions and thus more precise dependence results.

9 C on c l u s i on s and Further Work

This paper has discussed the design and implementation of the support analyses re-
quired for precise array dependence testing in our optimizing/parallelizing McCAT
C compiler. We have presented this support analysis as three phases: (1) admissible
loopnest detection, (2) the collection of normalized index expressions (subscript nor-
malization), and (3) the determination of array-reference pairs that must be tested.

Our approach builds on the structured intermediate representation (SIMPLE),
and the results of points-to and reaching-definition analysis. The SIMPLE represen-
tation provides a good environment for detecting admissible loop nests, while the
points-to analysis and reaching-definition analysis enables our subscript normaliza-
tion. The points-to analysis is also a key factor in detecting admissible loops and
determining the array-pairs that must be tested. Without such analyses, overly con-
servative assumptions would have to be made, and spurious dependence tests would
be required.

We have implemented this support analysis and connected it to a practical depen-
dence testing framework based on a wide variety of dependence testers [5, 11, 12, 17].
We plan to continue this work by incorporating more advanced features in the sup-
port analysis, and by experimenting with the effect of precise points-to analysis on
the accuracy of the dependence testing.

R e f e r e n c e s

1. M. Emami, L. J. Hendren, and R Ghiya. Context-Sensitive Interprocedural Points-
to Analysis in the Presence of Function Pointers. Proceedings o] the SIGPLAN'9~
Con]erence on Programming Language Design and Implementation (to appear), June
20-24, 1994.

2. Maryam Emami. A Practical Interprocedural Alias Analysis for An Optimizing C
Compiler. Master's thesis, McGill University. July 1993.

323

3. Paul Feautrier. Dataflow Analysis of Array and Scalar References. In the se-
ries, Research Monographs in Laboratoire MASI, Universite Paris et Marie Curie,
Paris, France, September 1991.

4. Michael P. Gerlek. Detecting Induction Variables using SSA-form. OGI-CSE Technical
Report 93-01:~, Oregon Graduate Institute, June 7, 1993.

5. Gina Goff, Ken Kennedy, and Chau-Wen Tseng. Practical Dependence Testing. Pro-
ceedings of the SIGPLAN'91 Conference on Programming Language Design and Im-
plementation, pages 15-29, June 26-28, 1991.

6. M. Haghighat and C. Polychronopoulos. Symbolic Dependence Analysis for High-
Performance Parallelizing Compilers. Pitman, London and MIT Press, Cambridge,
MA, 1991.

7. M. Haghighat and C. Polychronopoulos. Symbolic Analysis: A Basis for Parallehza-
tion, Optimization and Scheduling of Programs. Sixth Annual Workshop on Languages
and Compilers for Parallel Computing, Portland, Oregon, pages dd1-dd23, August 12-
14, 1993.

8. L. J. ttendren, C. Donawa, M. Emami, G. Gao, Justiani., and B Sridharan. Designing
the McCAT Compiler based on a Family of Structured Intermediate Representations.
Fifth Workshop on Languages and Compilers for Parallel Computing. Also to appear
in LNCS, August 1992.

9. L.J. Hendren, M. Emami, C. Verbrugge, and R. Ghiya. A Practical Context-sensitive
Interprocedurai Analysis Framework for C Compilers. ACAPS Technical Memo 72,
School of Computer Science, McGill University, July 1993.

10. Richard Johnson and Keshav Pingali. Dependence-based Program Analysis. Proceed-
ings of the SIGPLAN'93 Conference on Programming Language Design and Implemen-
tation, pages 78-89, June 23-25, 1993.

11. Xiangyun Kong, David Klappholz, and Kleanthis Psarris. The I Test : An Improved
Dependence Test for Automatic Parallelization and Vectorization. 1EEE Transactions
on Parallel and Distributed systems, 2(3):342-349, July 1991.

12. Vadim Maslov. Dehnearization : An Efficient Way to Break Multiloop Dependence
Equations. Proceedings of the SIGPLAN'92 Conference on Programming Language
Design and Implementation, pages 152-161, June 17-19,.1992.

13. Dror E. Maydan, J.L.Hennessy, and Monica S. Lam. Efficient and Exact Data Depen-
dence Analysis. Proceedings of the SIGPLAN'91 Conference on Programming Language
Design and Implementation, pages 1-14, June 26-28, 1991.

14. Bhama Sridharan. An Analysis Framework for the McCat Compiler. Master's thesis,
McGill University, December 1992.

15. Eric Stoltz, Michael P. Gerlek, and Michael Wolfe. Extended SSA with Factored Use-
Def Chains to support Optimization and Parallehzation. OGI-CSE Technical Report
93-013, Oregon Graduate Institute, June 7, 1993.

16. Mark N. Wegman and F. Kenneth Zadeck. Constant Propagation with Conditional
Branches. ACM Transactions on Programming Languages and Systems, 13(2):181-
210, April 1991.

17. Michael Wolfe. Optimizing Supercompilers for Supercomputers. The MIT Press, Cam-
brigde, Massachusetts, 1989.

18. Michael Wolfe. Beyond Induction Variables. Proceedings of the SIGPLAN'9~ Con-
ference on Programming Language Design and Implementation, pages 162-174, June
17-19, 1992.

19. Hanz Zima and Barbara Chapman. Supercompilers for Parallel and Vector Computers.
ACM Press, Addison-Wesley Pub. Co., New York, 1990.

