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Abstract: We present an extension of k-calculus by logical features and con- 
straints, which yields a minimal core language for constraint functional logic 
programming. We define a denotational semantics based on continuation passing 
style. The operational semantics of our language is given as a set of reduction 
rules. We prove soundness of the operational semantics w.r.t, the continuation 
semantics. Finally, we show how pure functional logic programs can be trans- 
lated to this core language in a sound way. 

1 Introduction 
In recent years, many research activities focused on the combination of functional and 
logic programming (FLP) [3, 12, 17, 19, 22, 23, 24, 28] as well as on the combination 
of constraint and logic programming (CLP) [5, 6, 11, 14, 15, 16]. Similar to FLP, 
where the motivation is to enrich logic programming languages with functions, the 
motivation of our work is to combine the essential features of the constraint, functional 
and logic programming paradigm. For that reason, we extend X-calculus [2] by logical 
features and constraints to a constraint functional logic core language (CFLP-L). We 
will give a continuation semantics for this language and show soundness of the oper~i- 
tional semantics w.r.t, the continuation semantics. 

The notion of constraint functional logic programming (CFLP) has been intro- 
duced by Darlington et al. [8] and further has been investigated by Lopez-Fraguas [20]. 
Since [8] does not even allow to use constraints in function definitions, it could not be 
considered as full CFLP. The work of Lopez-Fraguas starts with a lazy functional logic 
programming language and extends it by a constraint structure and so called "con- 
straint conditional rewrite rules". On denotationai level, a model theoretic semantics is 
given. Additionally, an operational semantics is presented, which is based on narrow- 
ing. A soundness result for the operational semantics w.r.t, the declarative semantics'is 
proved. 

Our approach differs from [8] and [20]. Instead of extending a functional logic 
language by constraints to a full blown language, we capture the essential features of 
each single paradigm (constraint, functional and logic concepts) by minimal exten- 
sions of X-calculus. These extensions are: logical variables, non-deterministic choice, 
and constraints. 
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Existentially quantified variables (logical variables) are an essential concept in 
logic programming. In combination with ~.-calculus it is necessary to introduce an 
existential quantifier to declare the scope of a logical variable. Similar to logic pro- 
gramming a logical variable denotes the set of all its ground instances. 

Non-deterministic choice between clauses is another basic concept of logic pro- 
gramming. We extend 2~-calculus by a choice operator in order to make non-determin- 
ism explicit. Choice operators also have been studied before in connection with 
concurrent ~,-calculi ([1, 4, 13]). However, the results of that work are less relevant for 
our studies, because concurrency deals with "don't care" non-determinism, whereas in 
a logical setting we are interested in all the choices, i.e. we are concerned with "don't  
know" non-determinism (compare [24]). 

Unification, an operational concept in logic programming, is not present explic- 
itly in our core language. We follow the idea of CLP(X) [15], which is replacing unifi- 
cation by constraint solving. 

Similar to CLP(X), CFLP-L is parameterized by a constraint theory. In our 
approach, the constraint theory is considered as the initial model of an algebraic speci- 
fication. Solving equations within this model is, on an abstract level, constraint solv- 
ing. Furthermore, using algebraic specifications to describe a constraint theory has the 
nice side effect that, from an implementation point of view, the specification directly 
serves as a requirement specification for the design of the constraint solver. 

As in a functional logic setting computations mostly do not terminate with a sin- 
gle value, but with a (possibly infinite) set of values, the denotational semantics of log- 
ical extensions of k-calculus is usually based on powerdomains. Paterson [24] has 
defined a logical extension of ~.-calculus with a semantics based on powerdomains. 
Although we have defined a powerdomain semantics for our language, too, we propose 
a continuation semantics of our language. First, continuations give us a useful insight 
to the operational behaviour. Second, continuation semantics enables later extensions 
by control operators [10]. The operational semantics of our language is given as set of 
reduction rules, where ~-reduction plays the key role. Soundness of the operational 
semantics w.r.t, the continuation semantics is proved. 

Similar to Lopez-Fraguas, we show that pure functional logic programming can 
be modelled within our framework. Therefore, we translate the rewrite rules of a func- 
tional logic program to CFLP-L expressions. The free constructor term algebra 
extracted from the functional logic program serves as the required constraint theory. 
Unification, then, is constraint solving in this term algebra. 

Summarizing, we combine the essential features (k'calculus, logical variables, 
choice operator, and constraints) of three programming paradigms (functional, logic 
and constraint programming) in a tiny core language. Similar to ~-calculus, which 
serves as the central core of functional languages, CFLP-L is proposed as a core of 
constraint functional logic languages. 

The paper is organized as follows. In the next section we give the basic defini- 
tions of algebraic specifications. In section 3 we define syntax of CFLP-L. In section 4 
we give a continuation semantics for CFLP-L. The operational semantics together with 
a soundness theorem are presented in section 5. In section 6 we show how pure func- 
tional logic programs can be translated to CFLP-L. Finally, we discuss related work. 
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2 A l g e b r a i c  S p e c i f i c a t i o n  o f  a C o n s t r a i n t  T h e o r y  

As noted in the introduction, our language should be independent from a certain con- 
straint theory. In order to instantiate CFLP-L with a constraint theory, we need a 
method to describe such theories. Since constraint theories can be considered as E- 
algebras, they can syntactically be represented by algebraic specifications. 

In this section, we only give the basic definitions concerned with algebraic speci- 
fications. The reader interested in more details is referred to [27]. 

Definition 2.1 (Y_~-Formulas) 

Let X be a set of variables, E={S,F} be a signature with a set of sorts S and a set of 
function symbols F together with their arity. Let Tz(X) be the set of well-formed terms 
over E and X. The set of welloformedformulas WFFS(X) over E and X is inductively 
defined as follows: 

i) if t,sETE(X) then (t=s)EWFF~:(X) 
ii) if~EWFFE(X) then -~EWFFz(X ) 

iii) i f~1,~2EWFFz(X ) then ~IA~2EWFFz(X ) 
iv) if ~EWFFz(X ) then Vx.OEWFFE(X) 

A formula is called closed if it does not contain free variables. 

Definition 2.2 (Algebraic Specification) 

An algebraic specification SP=(Z,AX) consists of a signature E and a set of closed for- 
mulas AX over Z. The formulas AX are called axioms of the specification. 

Definition 2.3 (Model of an Algebraic Specification) 

Let SP=(E,AX). A partial E-algebra A is called model of SP, if A is term generated and 
if A satisfies the axioms of SP, i.e. V ~ E A X . A ~ .  

Mod(SP) denotes the set of all models of a specification SP. 
Let tET2:(X ) and AEMOd(SP) then t A,e denotes the interpretation of t in A under a val- 
uation (environment) e. 

Let f:s I • .. • 1EF. Thenf  4 denotes the interpretation of f in AEMod(SP), i.e. fA 
is a partial and strict function in A 1 •215 where A1,..,An+ 1 are the carrier 
sets of the sorts S1,..,S n. 

We restrict attention to term generated models, because computing in non term 
generated models is not possible since their elements cannot be represented. In fact, 
the term "CLP(IR)" is misleading because a constraint solver will calculate with repre- 
sentable approximations of real numbers but never will calculate with "real" real num- 
bers. 

Definition 2.4 (Set of Constructor Symbols) 

Let SP=(E,AX), E=(S,F) be an algebraic specification. A subset D CF is called a set of 
constructor symbols, if  each element in each model of SP can be represented by a 
unique term consisting of constructors only, i.e. VAEMod(SP) VaE,A 3 !tETD(O ) such 
that tA=a. Note that TD(O ) denotes the set of all ground terms built with elements from 
D only (ground constructor terms). 
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Definition 2.5 (Initial Model of an Algebraic Specification) 

Let SP=(E,AX) be a specification. An algebra AEMOd(SP) is called initial model of 
SE if 

VBEMod(SP) there exists a unique Y_,-homomorphism h:A--*B. 

We say that a specification SP is a constraint specification if SP has an initial model. 
The initial model itself is called constraint theory. 

3 S y n t a x  o f  C F L P - L  

To define syntax of CFLP-L, we extend the usual formation rules of ~.-calculus in order 
to incorporate logical variables, a choice operator and constraints. 

Definition 3.1 (Syntax of CFLP-L) 

Let SP=(E,AX) be a constraint specification with E=(S,F). Let D_CF be a set of con- 
structors. The syntax of CFLP-L is given as follows. 

VEValue Expressions - x I ~,x.E I ~tg,x.E I c(V,...,V) 
EEExpressions --- V lEE I E0E I f(E ..... E) 1 3x.E I {C}E 
CEConstraints - T=T I C,C 
TETerms -- V I f(T,...,T) 

where cED 
where fEF 

where fEF 

Due to semantic reasons we distinguish between value-expressions and expres- 
sions. Value expressions denote expressions which are in weak head normal form 
(WHNF). Note that the restriction to term generated models of the constraint specifica- 
tion is necessary in order to represent each element of the constraint theory as a weak 
head normal form. We restrict constraints to be equations on terms. Note that predi- 
cates, if needed, may be defined as boolean valued functions within the constraint 
specification. 

Rather than simulating recursion by the Y-combinator, we explicitly use the ~t- 
operator to define recursive functions. Roughly speaking, ~tg,x.M corresponds to an 
SML-like function definition fun g x -- M. 

The operator D is used to express a "don't know" non-deterministic choice 
between two expressions. In an expression 3x.M the abstraction operator 3 is used to 
declare a logical variable x with scope M. The intuitive meaning of 3x.M is the set of 
all M[a/x] such that aE,A, where ,4 is the carder set of initial model A of SP. Accord- 
ingly, the meaning of MDN is the union of the meanings of M and N. Both operators set 
up the logic programming concepts of CFLP-L. 

In order to restrict an expression M by a certain constraint C we use the notation 
{C}M. The meaning of {C}M under a valuation e is equal to the meaning of M under 
e, if C holds under e. Otherwise the meaning of { C } M is the empty set of results. 

Note that the usual definitions of free variables and closed expression easily can 
be extended for our language. In the following we feel free to use these notations with- 
out explicitly defining them. 
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Example 3.1 

Let SP be a specification of natural numbers with multiplication. The expression 
2Lx.(3y.{x=2*y}x) denotes a function that returns {x} if x is even or returns the empty 
set (0)  of results if x is odd. 
Applying the function to a choice between 1,2,3,4 or 5 

0.x.(3y.{x=2*y}x)) (1 U 2 0 3 0 4 fl 5) 

returns { 2,4 }. 
Of course, applying the function to a higher order expression 

(2Lx.(3y.{x=2*y }x)) (Xz.z) 

returns O, because 2Lz.z is not element of the constraint theory (here: IN). 

(Note that within IN as constraint theory, the intuitive meaning of the expression 
3x.M is {M[a/x] I aEIN}.) 

4 A Continuation Semantics for CFLP-L 

Lafont, Reus and Streicher [18] have shown that for functional languages continuation 
semantics [10] is useful to deal with operational aspects on a denotational level. Using 
continuation semantics has also the advantage that later control operators can be 
included easily. 

Let SP=(Z,AX) be a constraint specification, Z=(S,F). For simplicity, we suppose 
that S={ s } consists of a single sort. Let .A be the carrier set of the initial model A of SP. 

As example 3.1 shows, results of a computation in a functional logic setting are 
sets over ,4. Therefore, the semantic domain T~ of results (objects of interest) is given 
by 

R = ` 4 ~ O  

where (.9 is the Sierpinski-space (i.e. the two-element lattice consisting of T and _1_). 
Since ..4 is discrete, ,4 ~ O is isomorphic to (7~(,4),C), where 7:'(,4) is the powerset of 
..4. Therefore, we feel free to use set notation in the context of ~ .  Let in the following 
O denote the result ka._l_. 

Values in our computation are either elements of ,4 or mappings from values and 
continuations to results, where cont inuat ions are mappings from values to results. 
Thus, the semantic domain V of values and the domain C of continuations are given by 
the following equations. 

V = ,4 + ( f;  ~ C ~ TZ ) 

C = V - ~  

Environments  are mappings from variables to values. 

Env = Var ~ 

In the following, let 

"fA(v l,..,vn)~,'' 

abbreviate 

"Vl,..,vnEA and there exists aEA such that a =A fA(vl,..,Vn),, 
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The semantics of  value-expressions is given by a function mapping value-expressions 
and environments to V.I _. 

l_ l lv  : v  --, Env V• 

[[x]] v e = e(x) 

[~.x.M]v e = ~,v.l[M]] E e[v/x] 

I[gg,x.M]] v e = fix v ~ c --. 7Z(~,h-~,v-[M]]E e[h/g,v/x]), 

where fix v __, c --. R (F) is the least fixpoint of  F. 

[[c(v 1,..vn)]] v e = ff cA(I[Vl]]V e'"'[Vn]V e), if cA([Vl]V e,..,[Vn]] v e),l, 

L 2 ,  otherwise 

The semantics of  expressions is a function [ _ lie : E ~ Env ~ r --, R .  

[ - lIE : E ~ Env ~ C ---*,7"4 

[[v]] E e k = ff k([[V]v e), if [[vii v e E ~; 

L 0 ,  otherwise (note: [V]lv e might be 2 )  

[[MN] E e k = I[M]E e ~.m.( [N]E e ~.n.(m n k) ) 

[f(M1,..,Mn)]] E e k = 

~MI~ E e ~.v 1. ( [M2] E e ~,v 2 .... ( [Mn] E e 
~,v n. ka. if fA(vl,..,Vn),l, then k(fA(vl,..,Vn)) a ) ... ) 

[3x.M]] E e k = U a ~  A [ M ]  E e[a/x] k 

[MBN]] E e k = [M]E e k U ~N~ e k 

[[{CIM~ E e k a = ~C]] c e A [M]]E e k a ( a in Sierpinski-space) 

The semantics of  values and applicationsis defined analogously to a continuation 
semantics of  functional languages. 

In f(M l,..,Mn) the evaluation order is from left to right. The continuation of  the 
last argument first checks, whether fA(vl,..,Vn) is defined in A and then continues with 
fA(v 1,..,vn). If fA(v 1,..,v n) is not defined in A then we abort computation. In such a case 
ka._l_ (O resp.) is the result. This strategy corresponds to a call-by-value evaluation 
strategy. 

In the context of  a logical variable x, the semantics of  an expression M is defined 
as the union of  all aE.A of the semantics of  M under the environment extension [a/x]. 
The semantics of  the non-deterministic choice simply is the union of  the results of  the 
single expressions. 

A constraint expression {C}M either returns O if  the constraints C are not satis- 
fied, or it returns the results of  M. Note that the above semantic equation for {C}M is 
equivalent to the following one: 

[{C}M~E e k = ~ [[MILE e k, i f [ C ~  e = T 

L 0 ,  otherwise 
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The semantic equations for 9x.M and {C}M both reflect the essence of CLP, i.e. 
the computation of valuations of logical variables that satisfy the constraints, and the 
evaluation only of those expressions which satisfy their constraints. 
The semantics of constraints is given by a function mapping constraints to (9. 

l [ -  ]c : C ~ Env ~ (.9 

[Cl,..,Cn] C e = [Cl]EQ e A...A [Cn]EQ e 

A sequence of constraints must be interpreted as the conjunction of all the single 
constraints. An equation s=t holds under an environment e, if the interpretations of s 
and t under e are defined and equal elements in A. For equality we restrict attention to 
elements in .4, because equality on non-flat predomains is not even monotonic. There- 
fore, an equation t=s returns _1_ if either t or s is a higher order term (compare example 
3.1). 

- ]]EQ : (T• --* Env --~ O 

T, if [tiT e ,  [SIT e c,A and ~t] T e =A [S~T e 
[t=S~EQ e 

L _1_, otherwise 

[ -  IT : T ~ Env --~ ,4_L 

J~[v] v e, if [V]v e E,A 
[V]T e / 

.1_, otherwise 
; fA([tl~ r e,..,[tn~ e), if fA([tl] T e,..,[tn]T e)$ 

~f(tl ~-- ~tn)~T e / 
t,. _1_, otherwise 

Note that each computation starts with the empty environment e o and the contin- 
uation stop--~,v.~La.(a=v) mapping a value v either to the singleton set { v } if vE.A or to 
O otherwise. 

Example 4.1 

An example often presented in non-deterministic ~.-calculi (compare [24]) is the fol- 
lowing one: 

(Xx.x+x) (2 n 3) 

The question is whether this expression is equal to {4,5,6} or only to {4,6}. Here, the 
essential operational issue is whether or not the choice transported by argument x is 
shared in the expression x+x. From a denotional point of view, it is a question whether 
k-abstractions denote mappings from single values to a set of results or whether L- 
abstractions denote mappings from a set of values to a set of results. Since in our 
approach k-abstractions denote mappings from single values to a set of results we 
obtain 

~(~,x.x+x) (2 n 3)]] E e 0 stop = [[(~,x.x+x)]E e 0 ~.m.( [(2 D 3)~  e 0 kn.(m n stop) ) = 
~(2 U 3)lIE e 0 kn.(([(~.x.x+x)] v e0) n stop) = [2]E e 0 t.n.([x+x]E e0[n/x ] stop) U 
t~3~E e0 ~,n.([x+x] E e0[rdx] stop) = 
([[x+x~ E e0[2/x] stop) LJ ([x+x]E e0[3/x ] stop) = {4,6}. 



446 

5 Operational Semantics for CFLP-L 

In the following, we give reduction rules which define the operational semantics of o u r  
language. These rules can be split into 4 groups: reduction rules, constraint rules, 
structural rules and distribution rules. 

Let SP=(E,AX) be a constraint specification, E=(S,F). Let fEE Let DC_F be a set 
of constructor symbols. Let A be the initial model of SP with carrier set ,4. Let 
V, Vl,..,v n denote value-expressions (expressions in WI-INE see section 3), M,M1,M 2 
and N denote expressions and let C,C' denote constraints. The usual conventions of ~- 
calculus to avoid unintended bindings of free variables are assumed to be granted 
within the following rules. 

Reduction Rules 

(~.x.M) v ~ M[x:=v] (note: v is a WHNF) 
I.tg,x.M ~ ~,x.M[(ktg,x.M)/g] 

f(v 1,..,vn) ---* t, if f(vl,..,Vn)=t holds in A for some tETD(X ) 

Since the continuation semantics is based on a call-by-value strategy, 13-reduction 
applies only if the argument is evaluated to WHNF (13value-reduction). The reduction 
rule for defined function symbols hides a call of the constraint solver, because only the 
constraint theory tells us how to reduce such a function application. Unfolding the la- 
operator is straight forward to its treatment in a pure functional approach. 

Since on an operational level neither we have the possibility to express the 
semantics of 3x.M by a union over all elements of A (as in the continuation semantics) 
nor is such a (possibly infinite) union desirable, we describe the operational behaviour 
of q in connection with a constraint expression. 

Constraint Rules 

Constraint Modification: 

3 ~.{C}M --+ 3 ~.{C' }M, if AI=C r Ak:C' and FV({C' }M)C_FV({C}M)={Xl,..,xn} 
where 3 ~ abbreviates 3 x 1. ..3 x n. 

Constraint Propagation: 

3 x.{ C,x=t,C' ]M --~ ({C,C' }M)[ffx], if tETI;(X) and x~VAR(t) 

Analogous to the continuation semantics, the operational semantics of our lan- 
guage should be independent from the constraint theory. Therefore, the constraint 
modification rule only describes the essential requirement for any constraint solver, i.e. 
modification of constraints in a sound and complete way. For an instantiation of our 
language with a certain constraint theory, this rule may be replaced by the reduction 
rules of a certain constraint solver (see section 6 for an example). 

A constraint solver can solve constraints over its specific constraint domain only 
(compare example 3.1). In our approach this constraint domain is given by the con- 
straint specification. For that reason, constraint propagation only applies if tETx(X) 
(see above). Similar constraint rules can be found in [7]. A similar propagation rule has 
been proposed in [19]. 

However, our operational semantics would even work without any propagation 
rule. In such a case, the reduction rules in connection with the structural and distribu- 
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tion rules (see below) will compute elementary problems of the form 

3 x 1 .... 3 Xn.{C}t, where tETD(X). 

which finally can be handled by the constraint solver. 
The reader might be surprised that there are no failure-rules which prune compu- 

tation paths with inconsistent constraints. Failure-rules would require an additional 
failure-constant in CFLP-L syntax. Instead of blowing up syntax and operational 
semantics of CFLP-L with such rules, we consider failure-rules as part of an imple- 
mentation rather than as a necessary evil on semantic level. 

In order to prepare expressions either for ~reduction or for constraint propaga- 
tion, we need the following structural rules and distribution rules. 

Structural Rules 

{C}({D}M) --+ {C,D}M 

({C}M)N --~ {C}(MN) 

v({C}N)--~ {C}(vN) 

f(...,{C}M,...) ---+ {C}f(...,M,...) 

(3x.M)N --- 3x.(MN), if xq~FV(N) 

{C}(3x.M)---, 3x.({C}M), 
if xCVAR(C) 

v(3x.M) ~ 3x.(vM), if xCFV(v) 

3x.3y.M ---+ 3y.3x.M 

f(M 1..,3x.Mi,..,Mn) --~ 3x.(f(M 1,..,Mi,..,Mn)), if x~FV(M 1 ,..,Mn) 

Distribution Rules 

{C}(MIIN) --~ {C}M 0 {C}N V(NlflN2) --~ (vN1) 0 (vN2) 

f(...,MlgM2,...) ~ 3x.(M~N) --* (3x.M) 0 (3x.N) 

f(...,Mb...) 0 f(...,M2,...) (M10M2)N--~ (MlN) 0 (M2N) 

The distribution rules serve to distribute constraints, functions, abstractions and 3 
among choices. Within a single choice the structural rules move constraints and 3 out- 
wards. Both sets of rules interact to prepare expressions for [3-reduction and constraint 
propagation. 

Logic as well as functional logic languages usually are implemented upon several 
abstract machines ([ 12,17,19,23,26]). These abstract machines either use sophisticated 
graph-based [17, 19] or heap-based [12, 23, 26] term representations which have the 
advantage that state transitions corresponding to our structural rules can be omitted. 
But, the price which must be paid for saving structural rules is a complicated data 
structure to represent terms. Therefore, in our operational semantics we use structural 
rules in order to abstract from such implementation details. 

Our distribution rules are closely related to choice point concepts know from 
implementation of logic and functional logic languages. For example, in a functional 
logic language, application of a function f to a choice M 10(M20M3) stores f(M20M3) in 
a choice point and executes f(Ml). In our operational semantics, f(MI~(M20M3) ) 
reduces to f(Ml)0f(M20M3). Roughly speaking, the first term of a choice expression 
can therefore be considered as actual computation, where the second term is a choice 
point. 
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Example 5.1 

From an operational point of view, the question of the example 4.1 is whether or not 
choice expressions may be bound to a shared formal parameter. 

Since in our operational semantics we have 13valuc-reduction (i.e. B-reduction 
applies to value expressions only) it is not possible that choice expressions are bound 
to formal parameters. The distribution rule 

v(NIlIN2) ~ (vN1) Q (vN 2) 

serves to distribute an application among choices. Therefore, we obtain 

(~,x.x+x) (2 fl 3) -+distr. (~,X,X+X) 2 fl (~.x.x+x) 3 ~13 4 ~ 6. 

The following theorem states soundness of the operational semantics w.r.t, the continu- 
ation semantics of CFLP-L. I.e. if an expression M reduces via the operational seman- 
tics to an expression N, then in the continuation semantics M and N return the same set 
of results for an arbitrary environment e and for an arbitrary continuation k. 

Theorem 5,1 (Soundness of the Operational Semantics) 

The operational semantics is sound w.r.t, the continuation semantics. 

I.e. if M---+*N then [M~E e k = [[N~ e k, for any environment e and any continua- 
tion k, where ---,* is the reflexive and transitive closure of reduction relation ---~. 

Proof." It is sufficient to show that all rules of the operational seman- 
tics preserve the continuation semantics. We show the proof only for 
~-reduction and constraint propagation. A complete proof can be 
found in [211. 
~-Reduction: 
[(Xx.M) V]E e k = [Xx.M~ E e ~,m.([[V] E e Xn.(m n k)) = 

[[V]] E e kn.(([kx.M]] v e) n k) = 
[VII E e Xn.(I[M]E e[n/x] k) = [M]]E e[([V]] v e)/x] k = [M[V/xl]E e k. 

Constraint Propagation Rule: 
63 x.{ C,c=t,C' }M]]E e k = Ua~ A [{C,x=t,C' }M]]E e[a/x] k = 
Ua~ A ~,b.([[C,x=t,C']c e[a/x] A [M]]E e[a/x] k b) = 
Ua~ A ~.b.( ~C]c e[a/x] A [x=t~c e[a/x] A [C']]C e[a/x] A 

[M]] E e[a/x] k b) = 
(because [x=t]]c e[a/x] only holds if xff_VAR(t) and ira is equal to t a) 
;~,b.([C]c e[tA/x] A [[C']c e[th/x] A [Mk e[tA/x] k b) = 

;~,b.([C[t/x]llc e A [C'[t/xl]c e A [M[t/x]]h e k b) = 
[({C,C' }M)[t/x]]h e k. 
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6 Pure Functional Logic Programming 

In this section we will show how a certain instance of CFLP-L serves as a target lan- 
guage to translate pure functional logic programs. 

Roughly speaking, a functional logic program consists of a signature E including 
a set D of free constructor symbols (i.e. constructor symbols not affected by the rewrite 
rules) and a set E of rewrite rules of the form 

f(tl,..,t n) -~ r 

where f is a non-constructor function symbol, t i (1 ~<i~<n) are constructor terms and r is 
an arbitrary term over E. 

Narrowing [9, 25] has been established as operational model for functional logic 
programs. In particular, narrowing tries to solve an equation eq by finding a rule l ~ r ,  a 
non-variable subterm t of eq and a most general unifier c such that fft=ffl. Then, r is 
substituted for t in eq and ff(eq[r/t]) returns a new equation. 

Unification is constraint solving of equations in a free term algebra. Hence, an 
instantiation of CFLP-L with the free constructor term algebra of a functional logic 
program P can serve as a target language to compile P. 

As noted in section 5, in an instantiation of CFLP-L with a certain constraint the- 
ory, the constraint modification rule presented above may be replaced by the reduction 
rules of  a certain constraint solver. For the purpose of unification, we replace this rule 
by the following unification rules which serves to reduce unification constraints. 

{ C,C(tl,..,tn)=c(sl,..,Sn),C' }M ~ {C,tl=Sl,..,tn=sn,C ' }M, c is a constructor symbol 

3 x. { C,x=x,C' } M ~ 3 x.({ C,C' }M)[t/x] (note: x may occur in C, C' and M) 

Together with the constraint propagation rule (see section 5) the unification rules 
solve equations in the free constructor term algebra of a functional logic program P. 
I.e. these rules build a specialized constraint solver for unification. 

Since detailed definition of a compiler is out of scope of this paper, let us demon- 
strate the compilation of a functional logic program P by means of a short example. 

Example  6.1 

The following functional logic program for natural numbers with addition 

program NAT 
sort Nat 
cons 0 : Nat, 

succ : (Nat) Nat 
add : (Nat,Nat) Nat func 

axioms 
add(0,y)-+y, 
add(succ(x),y)---~succ(add(x,y)) 

end. 
translates to the CFLP-L expression 

~t add,(x,y). {x=0} y 0 3z.{x=succ(z)} succ(add z y) 

where the free term algebra over 0 and succ is considered as underlying constraint the- 
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ory specified by the constructor signature without any axioms. (Note that we extended 
the Ix-operator for n-ary tuples of arguments.) 

The rules for addition are translated to a choice between two expressions. Apply- 
ing the first axiom to a term add(m,n) requires unification of m with 0. Therefore, the 
translation the left hand side of this rule handles the constraint { x=0} to the constraint 
solver. Analogously, application of the second rule requires unification of m with 
succ(z), where z is a new logical variable. For that reason, we translate the left hand 
side to the constraint {x=succ(z)}, where z is existentially quantified in order to 
express that z is a new logical variable. The translation of the right hand sides is 
straight forward. 

As noted above, narrowing tries to solve an equation h=t2 over some functional 
logic program P. In order to solve such an equation, CFLP-L will first evaluate t and s 
to WHNFs (value expressions), and then pass the equation between the corresponding 
WHNFs to the constraint solver. For that reason, an equation tl=t 2 is translated to the 
following CFLP-L expression which, in connection with the translation of a program, 
essentially implements narrowing. 

3 x 1 .... 3 Xn.(~,t.~.s.({t=s}t) t 1 t2) , where {x I .... Xn} = VAR(tl=t2). 

(Please note that expression t behind the constraint { t=s } occurs for syntactical reasons 
only. It is also possible to replace this expression by a new constant SUCCESS to be 
defined in the constraint specification.) 

Example 6.2 

Finally, we show the CFLP-L computation for solving the equation add(m,n)=2 until 
the first result (0/m,2/n) is computed. With 

ADD ---- tx add,x,y. {x=0} y 0 3z.{x=succ(z)} succ(add z y). 

we obtain 

3 m.3 n.Lt.Ls.({ t=s}t) (ADD m n) 2 ~ (unfolding ADD) 

3 m.3 n.kt.ks.({t=s}t) ({m=0} n D 

9z.{m=succ(z) } succ(ADD z n)) 2 "-'*(struct. rules) 

9 m.q n.kt.Ls.({t=s}t) ({m=0} n) 2 D 

3 m.3 n.~,t.~,s.({t=s}t) (3z.{m=succ(z)} succ(ADD z n)) 2 ---~(struct. rules) 

3 m.3 n.{m=0}(~,t.ks.{t=s}t) n 2 D 

3 m.3 n.3z.{m=succ(z)} kt.ks.({t=s}t) (succ(ADD z n)) 2 ~1~ 

3 m.3 n.{m--0}({n=2}n) B 

3 m.3 n.3z.{m=succ(z)} kt.Ls.({t=s}t) (suet(ADD z n)) 2 ~(struct. rule) 

3 m.3 n.{m=0,n=2}n) D 
3 m.3 n.3z.{m=succ(z)} kt.ks.({t=s}t) (succ(ADD z n)) 2 ~ ... 

7 Related Work and Conclusions 

We strongly have been influenced by the work of Crossley, Mandel and Wirsing on 
constraint k-calculus [7]. Constraint k-calculus is an extension of untyped k-calculus 
by constraints in order to provide a scheme for constraint functional programming sim- 
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ilar to CLP(X). Therefore, the constraint solver is considered as a black box, contain- 
ing a decidable and representable domain of constraints. Our original motivation was 
to implement functional logic languages by translating them to constraint k-calculus 
where a first order unification theory should fill the black box. But we soon realized 
that for our special needs, constraint k-calculus lacks important logic programming 
concepts, namely logical variables and non-deterministic choice. Therefore, we 
extended constraint k-calculus by those concepts. It turned out that this extension not 
only is suitable to implement functional logic programming languages, but also serves 
as a new approach to constraint functional logic programming. However, extending 
constraint k-calculus by logical variables changes its semantics essentially. 

The work of Ross Paterson [24] was the motivation for a first semantic approach 
to our language. Paterson extended k-calculus with logical features and gave a denota- 
tional semantics for his language, which is based on lower powerdomains. Rather than 
introducing logical variables, Paterson uses a syntactic constant ~ denoting his 
semantic domain 7)~D---~T'D. In a similar semantic treatment of our language it 
turned out that Paterson's ~J can in our language be expressed by 3x.x. Therefore, the 
existential quantifier is a more "fine grain" logical feature than ~ .  

The continuation semantics of CFLP-L has been derived from a powerdomain 
semantics by restricting attention to observable objects, i.e. elements in the powerset of 
.A (where ,4 is the carrier set of the initial model of the constraint specification). Con- 
tinuations have been helpful when defining the operational semantics of our language, 
because they allow to reason about operational questions on a denotational level [ 18]. 
On the other hand, a continuation semantics keeps our language open for later exten- 
sions by control operators. 

The syntax of the functional logic core language presented in [ 19] is very similar, 
but richer because it has been designed for specifying compilation schemes for func- 
tional logic languages with different semantics. Furthermore, unification has not been 
treated as a separate constraint system. 

As noted in the introduction, our approach differs from that of Lopez-Fraguas 
[20] because he extends a lazy functional logic language by constraints to a full blown 
language. 

In this paper, we combined the essential features of functional, logic and con- 
straint programming in a tiny core language. CFLP-L is intended to serve as a core of 
constraint functional logic programming languages. The continuation semantics pre- 
sented is, as far as we know, a new approach to denotational semantics of constraint 
functional logic languages. We have demonstrated that narrowing canbe expressed by 
13-reduction and constraint solving in a free term algebra. 
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