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Abstract. In the literature one can distinguish two main approaches to the definition of 
observational semantics of algebraic specifications. On one hand, observational semantics is 
defined using a notion of observational satisfaction for the axioms of a specification and on the 
other hand one can define observational semantics of a specification by abstraction with respect 
to an observational equivalence relation between algebras. In this paper we present an analysis 
and a comparative study of the different approaches in a more general framework which 
subsumes not only the observational case but also other examples like the bisimulation 
congruence of concurrent processes. Thereby the distinction between the different concepts of 
observational semantics is reflected by our notions of behavioural semantics and abstractor 
semantics. Our main results show that behavioural semantics can be characterized by an 
abstractor construction and, vice versa, abstractor semantics can be characterized in terms of 
behaviourai semantics. Hence there exists a duality between both concepts which allows to 
express each one by each other. As a consequence we obtain a sufficient and necessary 
condition under which behavioural and abstractor semantics coincide. Moreover, the semantical 
characterizations lead to proof-theoretic results which show that behavioural theories of 
specifications can be reduced to standard theories (of some classes of algebras). 

1 Introduction 

Observability plays an important role in program development. For instance, formal 
implementation notions can be based on this concept. Other applications are the 
notion of equivalence between concurrent processes and the abstraction from single 
step transitions to input-output operational semantics. 
Since the beginning of the eighties observational frameworks have found continuous 
interest in the area of algebraic specifications. In the literature one can distinguish 
two main possibilities for the definition of observational semantics. One is based on 
the so-called observational satisfaction relation where equations are not interpreted as 
identities but as observational equivalences of objects (cf. e.g. [Nivela, Orejas 88], 
[Bernot, Bidoit 91], [Hennicker 91]). In this case the observational semantics of a 
specification is given by the class of  all algebras that observationally satisfy the 
axioms of the specification. Other approaches define observational semantics by 
constructing the closure of the (standard) model class of a specification with respect 
to an observational equivalence relation on algebras (cf. e.g. [Reichel 81], [Sannella, 
Tarlecki 85, 88], [Wirsing 86], [Schoett 87]). In [Reichel 85] both semantical views 
are considered and it is shown that they are equivalent if the axioms of a specification 
are conditional equations with observable premises. However, this is in general not 
true for specifications with arbitrary first-order formulas as axioms. 
In this paper we study the relationships (and differences) between the two semantical 
concepts in a more general framework which allows to apply our results not only to 
the observational case but also to other examples like e.g. the bisimulation congruence 
of concurrent processes. Technically, we generalize the two views of observational 
semantics in the following way: Instead of the observational equivalence of elements 
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we use an arbitrary congruence relation for the interpretation of equations. This leads 
to our notion of behavioural specification which admits as models all algebras which 
satisfy the axioms of a specification with respect to a given congruence relation. On 
the other hand, following the notion of an "abstractor" in [Sannella, Tarlecki 88], we 
define abstractor specifications which describe all algebras that are equivalent to a 
(standard) model of a specification w.r.t, a given equivalence relation on algebras. In 
order to establish the connection between behavioural and abstractor semantics we 
consider only those equivalences on algebras which are "factorizable" (by a 
congruence relation between the elements of the algebras). An example of a 
factorizable equivalence is the observational equivalence of algebras w.r.t, a fixed set 
of observable sorts where the observable "experiments" can take arbitrary inputs. 
Equivalences which allow only observable inputs (cf. e.g. [Nivela, Orejas 88]) can be 
captured by generalizing our approach to partial congruences which, however, are not 
considered in this paper. 
As a first central result of our approach we obtain that behavioural semantics can be 
characterized by the class of all algebras which are equivalent to a fully abstract 
(standard) model of the specification. This result implies, for instance, that 
behavioural semantics is more restrictive than abstractor semantics and that a 
behavioural specification is consistent if and only if there exists a fully abstract 
(standard) model of the specification. Conversely, we show that abstractor semantics 
can be characterized in terms of behavioural semantics as well. Hence there exists a 
nice duality between both kinds of semantics. Each one can be expressed by each 
other. As a consequence we obtain a necessary and sufficient condition for the 
equivalence of behavioural and abstractor specifications which says that behavioural 
semantics coincides with abstractor semantics if and only if the (standard) model class 
of a specification is closed under the "behavioural quotient" construction. 
For the analysis of behavioural properties of specifications we consider their 
behavioural theories. According to the generalized satisfaction relation with respect 
to a congruence, the behavioural theory of a specification is defined as the set of all 
formulas which are satisfied w.r.t, the given congruence by all models of the 
specification. (In the observational framework this is exactly the set of all formulas 
which are observationally satisfied by all observational models of a specification.) 
Since it is usually difficult to prove behavioural theorems we need techniques which 
allow to reduce behavioural proofs to standard ones. Using our characterization of 
behaviourai semantics we can show that the behavioural theory of a behavioural 
specification is the same as the standard theory of the class of the fully abstract 
(standard) models of the specification. Similarly we can use the characterization of 
abstractor semantics for showing that the behavioural theory of an abstractor 
specification can be reduced to the standard theory of the class of "behavioural 
quotients" of the (standard) models of the specification. These results provide the 
basis for the investigation of concepts which allow to prove behavioural properties of 
specifications by standard proof techniques (cf. [Bidoit, Hennicker 94]). 
In this paper we consider flat specifications with first-order axioms. A generalization 
to structured specifications is possible but requires some more technical assumptions. 

2 Algebraic Preliminaries 

We assume the reader to be familiar with the basic notions of algebraic specifications 
(cf. e.g. [Ehrig, Mahr 85]) like signature 7. = (S, F) (where S is a set of sorts and F is a 
set of function symbols), total ,E-algebra A = ((As)se S , (fA)fe F) (consisting of a 
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family of  carrier sets (As)se S and a family of  (total) functions (fA)fe F), term algebra 
T('Z, X) over an S-sorted family X of variables of son s. 
If  A is a total E-algebra then a valuation o~: X ---> A is a family of mappings 
( ~ :  X s ---> As)s~ s . The interpretation w.r.t, tx of  a term t E T(E, X) is denoted by 
I~(t). A E-congruence on A is a family of equivalence relations --A = 
(=A s ~ As x As)s~ S such that for all f e F, fA is compatible with --A- The class of  
all ~_~-algebras is denoted by Alg(E). 

3 Behavioural  Specifications and Abstractor Specifications 

In this section we will define the syntax and semantics of behavioural and abstractor 
specifications which both are built on top of standard specifications. 

3.1 Standard Specifications 

A standard specification is a fiat, first-order specification where a distinguished set of 
function symbols is declared as constructors. The constructor declaration restricts the 
class of admissible models to those algebras which are finitely generated by the 
constructor symbols, i.e. all elements can be denoted by a constructor term (which is 
built only by constructor symbols and by variables of those sorts for which no 
constructor is defined). 

Definition 3.1 Let Z = (S, F) be a signature, Cons c_ F be a distinguished set of 
constructors and X = (Xs)s~S a family of countably infinite sets X s of variables of 
sort s e S. Then a term t is called constructor term if t e T(Z" X')  where E' = (S, 
Cons), X '  = (Xs)s~ S\range(Cons) and range(Cons) = { s e S I there exists f ~ Cons with 
functionality Sl x ... x Sn --~ s}. The set of  constructor terms is denoted by TCons. 
A E-algebra A is called finitely generated by Cons if for any a E A there exists a 
constructor term t ~ TCons and a valuation o~ such that Is(t) = a. 
(Note that the definition of the generation principle is independent from the choice of 
X as long as X is countably infinite which is generally assumed here. ) ,  

The axioms of a specification are Z-formulas which are arbitrary first-order formulas 
over a multi-sorted signature E where the only predicate symbol is equality "=". 

Definition 3.2 Let E be a signature. The set of (well-formed) E-formulas is 
inductively defined by: 
(0) I f  t, r e T(E, X) s are terms of sort s, then t = r is a E-formula (called equation). 
(1) I f ~ ,  v a r e  E-formulas then --~, ~ A V and Vx:s.t~ are Y-formulas. 
All other logical operators (like v, ~ ,  3) are defined as usual. * 

A Z-algebra A satisfies a Z-formula r (denoted by A I= #) if A satisfies ~ for all 
valuations ~: X -~ A (denoted by A, t~ I= r in the usual sense of  first-order logic. 

Definition 3.3 
(1) A standard specification SP = (E, Cons, E) consists of a signature E = (S, F), a 

distinguished subset Cons c F of  constructors and a set E of Z-formulas, called 
axioms of SP. 

(2) The model class Mod(SP) of SP is defined by Mod(SP) =def {A e Alg(Y.) I A I= t~ 
for all t~ ~ E and A is finitely generated by C o n s } . .  
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R e m a r k  Note that if  Cons = O then any algebra A ~ Alg(X) is finitely generated 
by Cons. This means that in this case Mod(SP) is simply the class of  all Z-algebras 
satisfying the axioms of  SP. Hence our assumption that any specification has a set of  
constructors is not a restriction but, on the contrary, it allows to apply our results also 
to specifications with teachability constraints. r 

Example 3.4 
1. The following specification SET is a usual specification of  finite sets over  arbitrary 
elements with constructors " true",  "false" for the boolean values and "empty",  "add" 
for sets. The operation "iselem" defines the membership test on sets. 

spee SET = 
sorts {bool, elem, set} 
cons { true: ---> bool, false: ---> bool, empty: ---> set, add: elem, set --> set} 
opns {iselem: elem, set ~ bool} 
axioms {V x, y:elem, s:set. 

iselem(x, empty) = false ^ iselem(x, add(x, s)) = true ^ 
[x ~ y ~ iselem(x, add(y, s)) = iselem(x, s)] ^ 
add(x, add(y, s)) = add(y, add(x, s)) ^ add(x, add(x, s)) = add(x, s) } 

endspec 

For instance the algebra Pfin(N) of  finite subsets o f  the set N of  natural numbers is a 
model  o f  SET. 

2, The following specification CSO describes the operational semantics of  a trivial 
nondeterministic sublanguage of  CCS. It defines a sort "process" of  processes 
containing a constant "nil", a semantical composition "." of  actions and processes and 
a nondeterministic choice operator "+". The operational semantics is given by a one- 
step transition function where (p a__.> p,) = true indicates that there is a transition from 
process p to process p '  when executing the action a. All known equivalences on 
processes induce models of  CSO. 

spee CSO = 
sorts {bool, action, process} 
cons {true: --> bool, false: ---> bool, 

nil : ---> process . . . .  : action, process ---> process, 
�9 +.  : process, process ---> process} 

opns {---> : process, action, process ~ bool} 
axioms {V a: action, p, p', q: process. 

(a.p a_._> p) = true ^ 
[(p a_> p ) = true ~ ((p+q a__> p,) = true ^ (q+p a.._> p,) = true)] } 

endspec r 

3.2 Behavioural Specifications 

Behavioural  specifications are a generalization of  standard specifications which allow 
to describe the behaviour of  data structures (or programs) with respect to a given 
congruence relation. For this purpose we first generalize the standard satisfaction 
relation�9 The only difference between this general izat ionand the standard satisfaction 
relation of  the first-order predicate calculus is that the predicate symbol  = is not 
interpreted by the set-theoretic equality over the carder sets of  an algebra but by a 
given congruence relation (a connection between both satisfaction relations will be 
established in Proposition 3.10.1). 
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Definition 3.5 Let A be a Y-algebra and =A be a E-congruence on A. Moreover, let 
t, r �9 T(E, X) s be terms of sort s. The satisfaction relation w.r.t. ~A (denoted by 
I=_A) is defined as follows: 
(0) For any valuation cz: X ---> A: A, cz I==At = r if  Iot(0 --'A lot(r). 
(1) The satisfaction relation w.r.t. --A for arbitrary Z-formulas (cf. Definition 3.2) is 

defined (as usual) by induction over the structure of  the formulas. 
(2) For any Z-formula t~: A I=_- A t~ if A, tz I== A r for all valuations o~: X --> A. �9 

In a similar way we also generalize the generation principle of algebras (by a set of 
constructors) with respect to a congruence: 

Definition 3.6 Let X = (S, F) be a signature, Cons c_ F a distinguished set 
of  constructors, A a Z-algebra and =A a E-congruence on A. A is called =A-finitely 
generated by Cons if for any a �9 A there exists a constructor term t E TCons and a 
valuation tz such that Iot(0 =A a. In particular, if  Cons = O then any algebra A 
Alg(E) is =A-finitely generated by Cons. (Proposition 3.10.2 provides a connection 
between the standard generation principle and the generation principle w.r.t. =.) �9 

Example 3.7 
1. Observational equivalence: An important example of a congruence is the 
observational equivalence of objects which is used for the interpretation of equations 
in several observational approaches in the literature (cf. above). Formally, we assume 
given a signature E = (S, F) and a distinguished set Obs _ S of observable sorts 
(which denote the carrier sets of observable values). Then two objects of a E-algebra 
A are considered to be observationally equivalent, if they cannot be distinguished by 
"experiments" with observable result. This can be formally expressed using the notion 
of observable context, which is any term c E T(E, X u Z) of observable sort which 
contains (besides variables in X) exactly one variable z s E Z. (Thereby Z = {z s I s 
S} is an S-sorted set of  variables such that z s ~ X s for all s E S.) The observational 
equivalence of objects can now be defined in the following way: 
For any s ~ S, two elements a, b E A s are called observationally equivalent (denoted 
by a =Obs,A b) if for all observable E-contexts c containing z s and for all valuations 
cz: X ~ A, I otl(C) = I ot2(c) holds where od(Zs) = a, tz2(Zs) = b and czl(x) = ot2(x) = 
(x(x) for all x E X. 
It is easy to show that =Obs A defines a congruence relation on A. The satisfaction 
relation w.r.t. =Obs A is o~en called observational (or behavioural) satisfaction 
relation. (Note that ~or observable equations t = r where t and r are of  observable sort 
the observational satisfaction relation coincides with the standard one, i.e. 
A I==Obs, A t = r if and only if A I= t = r.) 
2. Strong bisimulation: The notion of strong bisimulation is an example of  a 
congruence on CSO. For any algebra A over the signature of CSO we define the 
fin~176 of, simulation equivalence as. follows: Let p, q ~ Aproces s . Then P =sim,A q if 
or all p ~ A process,S E (Aaction) , . . 

[(p s___~,A p ) = true ~ <=>3 q E Aprocess, P',--sim A q' and (q s__~,aq,) = true,~] and 
vice versa for all q '  E Anrocess, s �9 (Aaction) , ' 
[(q s__._~,Aq,)__ true A < ~ 3 p '  ~ Aprocess, q' =sire A P' and (p s_~,Ap,)  = true A] . 
Thereby ._~,A denotes the reflexive and transitive'closure of ___~A. 
According to [Astesiano, Wirsing 89] we have the following fact: Let A be a 
(standard) model of CSO. Then any simulation equivalence is a con~uence (w.r.t. the 
signature of CSO) and the simulation congruences on A form a complete lattice. For 
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any algebra A, the coarsest simulation congruence on A is called strong bisimulation 
on A and is denoted by =bisim A- If for A we choose the Herbrand model H(CSO) of 
CSO with the set TCons of'constructor terms as carrier sets and the following 
interpretation of "--->" by provable transitions 

H(CSO) I= (p a___> q) = true iff CSO I= (p a__> q) = true, 
then ~oisim,H(CSO) is Milner's strong bisimulation congruence. 
As an example for I=_bi_ i_ H"'SO" consider the processes 

�9 . ~ t ~  ) . . 

pl  =def a.(c.nd + d.nd), p~ =def a.c.nd + a.d.nd, and p3 =def a.d.ml + a.c.nil (with 
pairwise different a, c, d). Then H(CSO) I=__.bisim.HfCSO~ -,(pl = p2) ^ p2 = p3, but 
for the standard satisfaction we have obviouslyH(CSO) 1"-- -~(pl = p2) ^ -~(p2 = p3). �9 

Behavioural specifications can be built on top of standard specifications for any given 
family = = (=A)AeAlg(s of E-congruences on the algebras A e Alg(E) (cf. also the 
notion of observations g-algebra in [Knapik 91])�9 The essential difference to 
standard specifications is that instead of the standard satisfaction relation the 
satisfaction relation w.r.t. = is used for the interpretation of the axioms. 

Definition 3.8 Let SP 
(=A)Ae Alg(Z) be a family 

(1) 
(2) 

= (E, Cons, E) be a standard specification and let = = 
of Z-congruences. Then: 

behaviour SP wrt  - is a behavioural specification. 
The model class of a behavioural specification consists of all E-algebras A which 
satisfy the axioms of SP w.r.t. =A and which are =A-finitely generated by the 
constructors Cons, i.e. 

Mod(behaviour SP wrt  =) =clef {A e Alg(E) I A I==A(~ for all ~) e E and A 
is =A-finitely generated by Cons}. �9 

Example 3.9 
1. Let E = (S, F) be a signature and Obs c S be a set of observable sorts. The set Obs 
induces a family =Obs = (=Obs,A)Ae AI~(~) of E-congruences where for any A e 
Alg(E), =Obs A is the observational equi~alence defined in Example 3.7.1. Then a 
specification 'behaviour SP wrt =Obs specifies the observable behaviour of a data 
structure (or a program) by means of the observational satisfaction relation. 
As a concrete example we can construct the behavioural specification 

behaviour SET wrt =lhn~' ~ 1 ~  

on top of the standard specification SET of sets (cf. Example 3.4.1). Here Obs = 
{bool, elem}, i.e. the sorts "boor' and "elem" are considered as observable. Since the 
sort "set" is not observable, sets can only be observed via the membership test 
"iselem". For instance, the algebra N* of finite sequences of natural numbers is a 
model of the behavioural specification of sets. In particular N* satisfies 
observationally the last two axioms of SET, because one cannot distinguish the order 
of the elements and the number of occurrences of elements in a sequence by the 
allowed observations. But note that N* does not satisfy the last two SET axioms w.r.t. 
the standard satisfaction relation and hence is not a model of  the standard 
specification SET. 
2. The behavioural specification behaviour CSO wrt =bisim describes all algebras 
(over ~ the signature of CSO) that satisfy the axioms of CSO w.r.t, the strong 
bisimulation congruence. But since CSO does not require any equations between 
processes we have Mod(CSO) = Mod(behaviour CSO wrt  =bisim)- �9 
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The following proposition establishes an important connection between the 
generalized satisfaction w.r.t. = and the standard satisfaction of formulas and 
analogously between both kinds of generation principles: 

Proposition 3.10 Let Y. = (S, F) be a signature,~ = = (=A)~e AlgQ~) be a 
family of E-congruences and Cons c F be a set ot  constructors, llaen tor all E- 
algebras A the following holds: 
(1) For all E-formulas ~, A I== A ~b if and only if A/= A l= ~b, 

(A/= A denotes the quotient algebra of A w.r.t. =A) 
(2) A is =A-finitely generated by Cons if and only if A J -  A is finitely generated by 

Cons. 

Sketch of the proof." (1) The proof follows from the following lemma which can be 
proved by induction on the form of d~: For any valuation ix: X ---> A: A, tx I=_ A d~ if 
and only if A/= A, n o o~ I= ~b where n: A ---> A/= A is the canonical epimorphism. 
(2) The proof is straightforward. , 

As a first consequence of Proposition 3.10 we obtain: 

Corollary 3.11 For any E-algebra A the following holds: 
A e Mod(behaviour SP wrt  =) if and only if A/= A e Mod(SP). 

3.3 Abstractor Specifications 

The notion of "abstractor" was introduced in [Sannella, Tarlecki 88] for describing a 
specification building operation which allows to abstract from the model class of a 
specification with respect to a given equivalence relation on the class of all Y_,- 
algebras. 

Definition 3.12 Let = c_ AIg(E) x AIg(E) be an equivalence relation on AIg(E). For 
any class C c_ Alg(E) of E-algebras, Abs_=(C) denotes the closure of C under - ,  i.e. 

Abs-(C) =def {B e Alg(E) I B -- A for,some A e C}. , 

The syntax and semantics of abstractor specifications is defined by: 

Definition 3.13 Let SP = (E, Cons, E) be a standard specification and let 
= c_ Alg(E) x Alg(E) be an equivalence relation. Then: 
(1) abstract  SP wrt  -- is an abstractor specification. 
(2) The model class of an abstractor specification is the closure of Mod(SP) under ---: 

Mod(abstract SP wrt =) =def Abs_=(Mod(SP)). # 

3.4 Relating Congruences of Elements and Equivalences of Algebras 

In this paper we are interested in a relationship between behavioural specifications 
and abstractor specifications. For this purpose we have to find a connection between 
congruences between elements of algebras (which are used to define behavioural 
specifications) and equivalences between algebras themselves (which are used to 
define abstractor specifications). If we start from a family of E-congruences then it is 
an easy task to construct an associated equivalence relation between algebras in the 
following way: 
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Definition 3.14 Let = = (-A)A~AIj~(Z) be a family of E-congruences. Then ~-~ c_ 
Alg(Z) x Alg(E) is the following equ~,alence relation on Alg(E): 

For any A, B e Alg(Z), A - -  B if A/= A and B/= B are isomorphic. �9 

I f  we start from an equivalence relation on Alg(E) we find an associated family of  Z- 
congruences only if the equivalence is "factodzable": 

Definition 3.15 An equivalence relation -= c Alg(E) x AIg(E) is calledfactorizable 
if  there exists a family --- = (=A)AeAIg(X) of E-congruences such that for all A, B 
Alg(E) the following holds: 

A - B if and only if A / -  A and B/-  B are isomorphic. 
In this case we say that - isfactorizable by =. �9 

I t  is usually not a simple task to prove that an equivalence is factorizable. The 
following example shows how this can be done for the W-equivalence of ASL (cf. 
[Wirsing 86]) if W is the set of all observable terms with arbitrary input variables. For 
dealing with observable ground terms or with observable terms that allow only 
observable inputs our approach can be generalized by considering "partial" 
congruences (cf. the remarks in Section 6). 

Example  3.16 Let Z = (S, F) be a signature and Obs c_ S be a set of  observable 
sorts. According to the W-equivalence relation of ASL we say that two E-algebras A 
and B are W-equivalent, denoted by A -=W B, if there exists a family Y = (Ys)s~S of 
sets Ys of variables of sort s and two surjecfive valuations czl: Y -4 A and 131: Y ---> B 
such that for all terms t, r E T(E, Y)s of observable sort s ~ Obs the following holds: 

Itzl(t) = Ictl(r) if and only i f  Ii31(0 = II31(r). 
We will now show that ~ ,  is factorizable by the family =Obs of congruences defined 
in Example 3.9.1. For this purpose we have to prove that A -=W B holds if  and only if 
A/=Obs A and B/=Obs, B are isomorphic. 
Let us ~rst assume A -=W B. Then using the definition of ~-w one can prove that for 
all terms t, r ~ T(E, Y) the following holds: Iczl(t) =Obs,A Itzl(r) if and only if 
II31(t) =Obs B II31(r)" Using this fact one can show that h: A/=ob s A ---> B/=obs B, 
h([a]) =def ~I131(t)] if  t e T(E, Y) with [a] = [Ictl(t)] defines a E-isomorphism between 
the quotient algebras. 
Conversely let h: A/=Obs, A ~ B/=ob s B be a E-isomorphism. W.l.o.g we assume that 
the carrier sets of  A and B are disjoint. Then let Y =def A u B, let tzl: Y --> A be 
defined by od(y) =def Y if y ~ A, czl(y) =def a if y ~ B and h([a]) = [y] and let 
131: Y ~ B be defined by 131(y) =def Y if y e B, 131(y) =def b if y e A and h([y]) = [b]. 
Using the definition of Y, tzl and 131 we can prove by structural induction that for all 
terms t ~ T(T., Y), h([Ictl(t)]) = [Ii31(t) ] holds. Now assume I~tl(t) = Itxl(r) for two 
observable terms t, r ~ T(E, Y)s with s E Obs. Then [Ictl(t)] = [Itxl(r)]. Since 
h([Iczl(t)]) = [II31(t)] and h([Ied(r)]) = [I~il(r)] we obtain [II31(t)] = [I~l(r)], i.e. 
II31(t) =Obs,B Ifll( r)" Then Ii~l(t) = II31(r) holds since t and r are of  observable sort. 
Symmetrically one shows that for any observable terms t and r, II31(t) = II31(r) implies 
Ictl(0 = Icd(r). Hence A and B are W-equivalent. 

As a consequence we obtain that if Obs is a set of  observable sorts then any abstractor 
specification abs t rac t  SP wr t  ~ r  defines an observational abstraction which has the 
same models as the specification abs t rac t  SP wrt  =--'-Obs where =-=Obs is the 
equivalence generated by the congruence =Obs" r 
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Behavioural specifications (as introduced in Section 3.2) and abstractor specifications 
are based on the same intention, namely to allow a more general view of the 
semantics of specifications. In particular this is useful for formal implementation 
definitions where implementations may relax (some of) the properties of  a given 
requirement specification (cf. e.g. abstractor implementations in [Sannella, Tarlecki 
88] or behavioural implementations in [Hennicker 91], for a survey on 
implementation concepts and observability see [Orejas et al. 91]). However, the 
semantical definitions of  behavioural specifications and abstractor specifications are 
quite different. Therefore it is an important issue to compare both approaches 
carefully and to figure out precisely the relationships and the differences between the 
two concepts. This is the topic of  the next sections. 

4 Character izat ion  of  Behav ioura l  and  Abstractor  Semant ic s  

If  we consider the particular case of observable behaviour specifications (cf. Example 
3.9.1) and observational abstractions (cf. Example 3.16) then we can conclude from a 
result in [Reichel 85] that both specifications have the same semantics if the axioms 
of  the specification are conditional equations with observable premises. However, in 
the observational framework this is in general not true if the axioms are arbitrary first- 
order formulas. For instance, the following specification DEMO has a standard model 
which, by definition, is also a model of the abstractor specification "abstract  DEMO 
wrt  =-=Obs" but which is not a model of the behavioural specification "behaviour 
DEMO wrt  =Obs if Obs = { s}, i.e. if s is the only observable sort. 

spec DEMO --- 
sorts { s, s' } 
opns {a,b: -->s, c,d:--4s',f:s '--->s } 
axioms { f(c) = f(d) ^ [c = d ~ a = b] } 

endspec 

Any Z-algebra A where the constants a, b, c, d are interpreted as pairwise different 
objects and where f takes the same value for c and d is a standard model of  the 
specification and hence also a model of "abstract DEMO wrt  --Obs"" But such an 
algebra A is not a model of "behaviour DEMO wrt  =Obs" because it does not 
observationaily satisfy (cf. Example 3.7.1) the second axiom: Since the only 
observable context for c and d is f(zs,), the equation c = d is observationally satisfied 
by A but a = b is not observationally satisfied by A since a and b are different objects 
of  observable sort. 

Let us now come back to the more general situation. According to the relationship 
between a family = = (=A)A~Alg(51) of Z-congruences and a factorizable 
equivalence relation established in Section 3.4, we can disregard whether we start 
from one point of view or from the other one. Hence, in the sequel we assume given a 
signature E, a set Cons of constructors and a couple (=, =) consisting of a family --- = 
(=A) A ~ Alg (Y.) of E-congruences and an equivalence relation - between E-algebras 
such that - is tactorizable by =. 
In order to obtain our central theorems we need some compatibility properties: 
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4.1 Compatibility Properties 

The following proposition shows that an equivalence - which is factorizable by a 
congruence = is compatible with the satisfaction relation w.r.t. = and with the 
generation principle w.r.t. =. 

Proposition 4.1 If A = B are equivalent Z-algebras, then the following holds: 

(1) ForallY.-formulas~b, A I==A~b if and only if B I=~_B~b, 
(2) A is =A-finitely generated by Cons if and only if B is =B-finitely generated by 

Cons. 

Proof." (1) Since A = B are equivalent and since = is factorizable by =, A/= A and 
BI= B are isomporphic. By Proposition 3.10.1 we know that A I== A ~b iff A/= A I= ~b. 
Since isomorphic algebras satisfy the same Z-formulas we have A/= A I= ~b iff B/= B I= 
@ and again by Proposition 3.10.1 we obtain B/= A I= d~ iffB I== A @. 
(2) The proof i s done analogously to (1) u sing Proposition 3.10.2. * 

4.2 Fully Abstract Algebras 

An important role for the characterization of behavioural and abstractor semantics is 
played by fully abstract algebras. Following Milner's notion (cf. [Milner 77]) we 
define full abstractness with respect to a given family = of Z-congruences in the 
following way: 

Definition 4.2 
(1) A Z-algebra A is called fully abstract with respect to = (or briefly =-fully abstract) 

if =A is the equality on A, i.e. =A = =A" 
(2) For any class C c Alg(Z) of E-algebras, FA=(C) denotes the subclass of =-fully 

abstract algebras of C, i.e. FA_(C) =def {A ~ C I A is =-fully abstract}. ,  

Example 4,3 If we consider the observational framework then elements of fully 
abstract algebras w.r.t. =Obs are equal if and only if they are observationally 
equivalent, For instance, in the SET example the algebra Pfin(N) is fully abstract 
while N* is not. * 

Lemma 4.4 I fA e Alg(E) is =-fully abstract, then the following holds: 

(1) For all Z-formulas ~b, A I=__.A@ if and only if A I= @, 
(2) A is =A-finitely generated by Cons if and only if A is finitely generated by Cons. 

Proof." Since A is =-fully abstract, the congruence =A is the equality =A on A and 
therefore (1) and (2) are trivially satisfied. * 

Definition 4.5 A family -- = (=A)Ae AI~(Z) of Z-congruences is called regular if 
for any A e Alg(Z) the quotient algebra-A/= A is =-fully abstract (i.e. =(A/=A) 

=(A/-A)). * 

Example 4.6 Any family =Obs which is generated by a set Obs of observable 
sorts (cf. Example 3.9.1) is regular. (In fact it seems that all reasonable examples of 
families of E-congruences are regular.) * 
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L e m m a  4.7 I f  = is regular, then for any A ~ AIg(E), A - A  J= A. 

Proof." Since = is regular, =M=A is the equal i ty  =A/=A. Hence the algebras A/= A and 
(AJ=A)I=AI= A are isomorphic. Since - is factorizable by = this means that A - AI= A 
holds. �9 

4.3 Characterization Theorems 

We are now prepared to prove our first central theorem which says that for any 
regular congruence = the model class of a behaviourai specification "behaviour  SP 
wrt = " coincides with the closure of  the class of fully abstract models of  the standard 
specification SP under any equivalence relation which is factorizable by =. In the 
sequel of this paper we assume that = is regular. 

Theorem 4.8 Let SP = (E, Cons, E) be a standard specification. Then: 

Mod(behaviour SP wrt  = ) = Abs-(FA=(Mod(SP))). 

Proof." c_ : Let A ~ Mod(behaviour SP wrt  = ). Then, by Corollary 3.11, A/= A 
Mod(SP). Since = is regular, A/= A is =-fully abstract and, by I_emma 4.7, A - AI= A 
are equivalent. Hence A ~ Abs-(FA=(Mod(SP))). 
D : Let A e Abs___(FA=(Mod(SP))). Then A - B for some B e FA=(Mod(SP)). For 
proving that A e Mod(behaviour SP wrt  = ) we have to show that A I== A ~ for any 
axiom ~ e E and that A is =A-finitely generated by Cons. Now let ~ e E be an 
arbitrary axiom. Since B is a model of  SP, B I= ~ and since B is =-fully abstract, B 
I== B t~ (by Lemma 4.4.1). Then, since A - B, Proposition 4.1.1 shows that A I=_ A ~. 
Analogously one can prove that A is =A-finitely generated by Cons, using Lemma 
4.4.2 and Proposition 4.1.2. �9 

The characterization of Theorem 4.8 gives rise to the definition of a semantical 
operator, called Beh=, which can be applied to any class C of E-algebras and which 
corresponds on the semantical level to the syntactic behaviour operator (in the same 
way as the semantic Abs-  operator corresponds to the syntactic abstract operator): 

Definition 4.9 For any class C c_ AIg(E) of  E-algebras, 
Beh=(C) =def Abs-(FA=(C)). �9 

Using this definition we obtain: Mod(behaviour SP wr t  = ) = Beh=(Mod(SP)) for any 
standard specification SP. 
In Theorem 4.8 the semantics of behavioural specifications is characterized in terms 
of the semantical abstractor operator Abs_--=. In the following we will show that vice 
versa the semantics of abstractor specifications can be characterized using the 
semantical behaviour operator Beh=. Hence there exists a duality between both kinds 
of  semantics. Each one can be expressed by each other. 
For the characterization of abstractor semantics given in Theorem 4.11 we use the 
following quotient construction: 

Definition 4.10 For any class C c Alg(E) of Z-algebras, C/= denotes the class of  all 
=-quotients of algebras of C, i.e. C/==def {A/= A I A e C}. �9 
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Theorem 4.11 Let SP = (X, Cons, E) be a standard specification. Then: 
Mod(abstract  SP wrt  - ) = Beh=(Mod(SP)/=). 

Proof." By definition, Mod(abstract  SP wrt  = ) = Abs-(Mod(SP)). Since = is regular, 
Lemma 4.7 shows that for any A E Mod(SP), A = A/ -  A. Hence Abs_-(Mod(SP)) = 
Abs-(Mod(SP)/=). Moreover, A / -  A is =-fully abstract and therefore Mod(SP)/= = 
FA=(Mod(SP)/=). In summary we have Mod(abstract  SP wi t  = ) = Abs=(Mod(SP)) = 
Abs-(Mod(SP)/=) = Abs-(FA=(MOd(SP)/=)) = Beh=(Mod(SP)/=). ,  

R e m a r k  4.12 Since Beh_ is defined for any class C of E-algebras one can extend 
the construction of behavioural specifications to arbitrary structured specifications SP 
of some ASL-like specification language by defining Mod(behaviour SP wrt  = ) =def 
Beh_-(Mod(SP)). (Obviously, "abstract" can be extended as well.) Then, if  we assume 
that the specification language contains the ASL-operator .+. for the combination of 
specifications and a quotient operator ./= with Mod(SP/=) =def Mod(SP)/= (and if we 
assume that any algebra A is identified with its trivial quotient A/=A) we can prove 
using the above theorems the following equations which show that behavioural 
specifications can be expressed by abstractor specifications and vice versa: 

Mod(behaviour SP wrt  = ) = Mod(abstract  (SP/= + SP) wrt  = ) and 
Mod(abstract  SP wrt  = ) = Mod(behaviour (SP/=) wrt  - ): , 

4.4 Consequences of  the Characterizat ion Theorems 

Theorem 4.8 has various consequences. It shows that behavioural semantics is a 
subclass of  abstractor semantics, that fully abstract models of  a standard specification 
are behavioural models and that a behavioural specification is consistent if  and only if 
there exists a fully abstract model of the underlying standard specification. The 
following corollary states also corresponding properties of  abstractor specifications 
which immediately follow from the definition of abstractor semantics. 

Corollary 4.13 Let SP = (S, Cons, E) be a standard specification. Then: 

(1) Mod(behaviour SP wit  = ) c Mod(abstraet  SP wrt  - ), 
(2) FA=(MOd(SP)) c_ Mod(behaviour SP wrt  = ), 
(3) Mod(behaviour SP wrt  = ) * O if and only if FA=(Mod(SP)) ,  0 ,  
(4) Mod(SP) c Mod(abstract  SP wrt  - ), 
(5) Mod(abstract  SP wrt  - ) ~ O if and only if Mod(SP) ~ 0 .  

As a further important consequence of the characterization theorems we obtain the 
following necessary and sufficient conditions under which behavioural semantics and 
abstractor semantics coincide. Note that a particular application of condition (3) leads 
to the theorem of [Reichel 85] since in the case of conditional equational axioms with 
observable premises the model class of  a standard specification is closed under the 
observational quotient construction. 

Corollary 4.14 Let SP = (E, Cons, E) be a standard specification. The following 
conditions are equivalent: 
(1) Mod(behaviour SP wrt  -- ) = Mod(abstract  SP wrt  = ), 
(2) Mod(SP) c_ Mod(behaviour SP wrt  = ), 
(3) Mod(SP)/- _c Mod(SP). 
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Proof." (1) ~ (2): Since Mod(SP) c_ Mod(abstraet SP wi t  -= ) (2) follows 
immediately from (1). 
(2) =~ (3): We have to show that for any A ~ Mod(SP), A/-  A ~ Mod(SP) holds. Let 
A ~ Mod(SP) be an arbitrary model. (2) implies that A e Mod(behaviour SP wrt  - ). 
Then, by Corollary 3.11, we obtain A/-  A e Mod(SP). 
(3) ~ (1): ___ : By Corollary 4.14.1. 
_D : By Theorem 4.11, Mod(abstraet SP wrt  - ) = Beh=(Mod(SP)/-). Now (3) 
implies Beh=(Mod(SP)/-) c Beh=(MOd(SP)) and, by Theorem 4.8 together with the 
definition of Beh=, we obtain Beh=(Mod(SP)) = Mod(behaviour SP wrt  = ). , 

5 Theories of Behavioural and Abstractor Specifications 

According to the generalization of the standard satisfaction relation to the satisfaction 
relation with respect to a congruence = we will consider here for any behavioural or 
abstractor specification the theory with respect to - ,  i.e. the set of all Z-formulas 
which are satisfied w.r.t. = by all models of a behavioural or abstractor specification. 
We recall that we assume given also in this section a pair (-,  =) consisting of a regular 
family = of E-congruences and an equivalence relation - on Alg(Z) which is 
factorizable by =. 

Definition 5.1 For any class C c Alg(E) of E-algebras, Th~_(C) denotes the set of 
all E-formulas ~ which are satisfied w.r.t. = by all algebras of C, i.e. 

Th=(C) =def {0 1A I== A d~ for all A e C}. 

Th=(C) is called =-theory or behavioural theory of C. In particular Th=(C) denotes the 
standard theory of C. * 

Lemma 5.2 For any class C _c Alg(~) the following holds: 
(1) Th=(C) = Th=(C/---), 
(2) Th_(Abs-(C)) = Th=(C), 
(3) T~(FA=(C)) = Th=(FA=(C)). 

Proof." (1) tbllows from Proposition 3.10.1, (2) follows from Proposition 4.1.1 and (3) 
is a consequence of Lemma 4.4. I . ,  

The next proposition shows that for classes of algebras which are constructed by the 
behaviour operator Beh= or by the abstractor operator Abs-, =theories can be 
reduced to standard theories. 

Proposition 5.3 For any class C c AIg(E) the following holds: 
(1) Th_(Beh=(C)) = Th=(FA=(C)), 
(2) Th=(Abs__-(C)) = Th=(C/=). 

Proof." (1): Th=(Beh=(C)) = (by definition of Beh_) Th=(Abs_=(FA=(C))) = (by 
Lemma 5.2.2) Th=(FA=(C)) = (by Lemma 5.2.3) Th=(FA=(C)). 
(2): Th=(Abs-(C)) = (by Lemma 5.2.2) Th=(C) = (by Lemma 5.2.1) Th=(C/=) , 

Proposition 5.3 leads immediately to the following theorem which shows that the =- 
theories of behavioural and abstractor specifications can be characterized by standard 
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theories. In particular, the first part of Theorem 5.4 shows that the theory of a 
behavioural specification which is built on top of a standard specification SP is the 
same as the standard theory of the class of the fully abstract models of SP. Hence we 
can apply standard proof calculi for proving =-theorems over a behavioural 
specification as soon as we have a (standard) finite axiomatization of the class of the 
fully abstract models of SP. How such finite axiomatizations can be derived in the 
case of observable behaviour specifications is studied in [Bidoit, Hennicker 94]. 

Theorem 5.4 Let SP = (E, Cons, E) be a standard specification. Then for (=, - )  the 
following holds: 
(1) Tl~-(Mod(behaviour SP wrt  ---)) = Th=(FA~(MOd(SP))), 
(2) Th__.(Mod(abstraet SP wrt  -=)) = Th=(Mod(SP)/=). 

Proof." Follows from Theorem 4.8 and Proposition 5 . 3 . ,  

Example 5.5 Le t  behaviour SP wrt  =Obs be an observational behaviour 
specification. Then Th_(Mod(behaviour SP wrt  =Obs)) is called observational theory 
of SP because it consists of all formulas which are observationally satisfied by the 
observational models of the specification. Since in this case the fully abstract models 
satisfy an equation t = r if and only if they satisfy all equations c[t] = c[r] for all 
observable contexts c (cf. Example 3.7.1), one can prove observational theorems by 
using the standard theory of SP together with the context induction proof technique 
(cf. [Hennicker 91]). In [Bidoit, Hennicker 94] it is shown how an explicit use of 
context induction can be avoided. 
As a concrete example consider the last two axioms add(x, add(y, s)) = add(y, add(x, 
s)) and add(x, add(x, s)) = add(x, s) of the SET specification. Even if these equations 
were omitted from the specification they would still be observational theorems w.r.t. 
the observable sorts "bool" and "elem" because for all observable contexts c the 
equations c[add(x, add(y, s))] = c[add(y, add(x, s))] and c[add(x, add(x, s))] = 
c[add(x, s)] can be derived already from the remaining SET axioms. * 

6 Conclusion 

We have presented a framework which clarifies the relationships between the two 
main approaches to observational semantics. In order to be applicable not only to the 
observational case but also to other specification formalisms we have introduced a 
general notion of behavioural specification and abstractor specification and we have 
seen that there exists a duality between both concepts which allows to characterize 
behavioural semantics in terms of an abstractor construction and vice versa provided 
that the underlying equivalence on algebras is factorizable. As an example of a 
factorizable equivalence we have considered the observational equivalence of 
algebras w.r.t, a fixed set of observable sorts where arbitrary inputs are allowed for 
the observable experiments. If we want to deal with a larger class of equivalences 
including the one of [Nivela, Orejas 88] where only observable inputs are considered 
all results of this paper can be generalized if we use instead of a family of 
congruences a family of partial congruences. Thereby a partial congruence over an 
algebra A e Alg(E) is given by a pair (A 0, =A0) consisting of a subalgebra A 0 of A 
and a congruence --A0 on A0. The generalized satisfaction relation is then defined 
w.r.t, valuations that map variables to elements of A 0 and an algebra A is said to be 
fully abstract if A0 =A and --A0 = =A- 
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Our semantical characterization theorems lead to proof-theoretic considerations which 
show that behavioural theories of specifications can be reduced to standard theories of 
some classes of algebras. In particular, the behavioural theory of a behavioural 
specification is the same as the standard theory of the class of the fully abstract 
(standard) models of a specification. Hence we can prove behavioural properties of 
specifications using standard proof calculi if a finite axiomatization of the class of the 
fully abstract (standard) models of a specification is provided (see [Bidoit, Hennicker 
94]). 
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