Skip to main content

A decidable intersection type system based on relevance

  • Conference paper
  • First Online:
Theoretical Aspects of Computer Software (TACS 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 789))

Included in the following conference series:

Abstract

In this paper we introduce a notion of “relevance” for type assignment systems including intersection types. We define a relevant system which is an extension of a particular rank 2 intersection system and of the polymorphic type discipline limited to rank 2. We study some of its properties and finally state the decidability of type inference providing an algorithm which is sound and complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. P. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and the completeness of type assignment. Notre Dame Journal of Formal Logic, 48:931–940, 1983.

    Google Scholar 

  2. L. Cardelli and P. Wegner. On Understanding Types, Data Abstraction and Polymorphism. Computing Survey, 17(4):470–522, 1985.

    Google Scholar 

  3. M. Coppo and M. Dezani-Ciancaglini. An extension of basic functional theory for lambda-calculus. Notre Dame Journal of Formal Logic, 21(4):685–693, 1980.

    Google Scholar 

  4. M. Coppo and A. Ferrari. Type inference, abstract interpretation and strictness analysis. To appear in Theoretical Computer Science, 1993.

    Google Scholar 

  5. M. Coppo and P. Giannini. A complete type inference algoritm for simple intersection types. In CAAP, LNCS581, pages 102–123. Springer, 1992.

    Google Scholar 

  6. H. B. Curry and R. Feys. Combinatory Logic, volume I. North-Holland, Amsterdam, 1958.

    Google Scholar 

  7. L. M. M. Damas and R. Milner. Principal type schemas for functional programs. In 9th ACM Symposium on Principles of Programming Languages, pages 207–212. ACM, 1982.

    Google Scholar 

  8. F. Damiani. Sistemi Decidibili di Inferenza per Tipi con Intersezione Debole. Master's thesis, Università di Torino, 1993.

    Google Scholar 

  9. D. M. Gabbay and R. J.G. B. De Queiroz. Extending the Curry-Howard Interpretation to Linear, Relevant and Other Resource Logics. Journal of Simbolic Logic, 57:1319–1365, 1992.

    Google Scholar 

  10. J. Y. Girard. Interpretation fonctionelle et elimination des coupures dans l'aritmetique d'ordre superieur. PhD thesis, Université Paris VII, 1971.

    Google Scholar 

  11. M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Edimburg LCF. LNCS78. Springer, 1979.

    Google Scholar 

  12. R. Hindley. The principal types schemes for an object in combinatory logic. Trans. American Math. Soc., 146:29–60, 1969.

    Google Scholar 

  13. W. A. Howard. Formulae as types. In R. Hindley and J. Seldin, editors, To H. B. Curry. Essays on Combinatory Logic, Lambda-calculus and Formalism. Accademic Press, London, 1980.

    Google Scholar 

  14. A. J. Kfoury and J. Tyurin. Type reconstruction in finite-rank fragments of the polymorfic λ-calculus. In Logic in Computer Science, pages 2–11, 1990.

    Google Scholar 

  15. D. Leivant. Polymorphic Type Inference. In Principles of Programming Languages. ACM, 1983.

    Google Scholar 

  16. D. Leivant. Typings and Computational Properties of λ-expressions. Theoretical Computer Science, 44:51–68, 1986.

    Google Scholar 

  17. R. Milner. A Theory of Type Polimorphism in Programming. Journal of Computer and System Science, 17:348–375, 1978.

    Google Scholar 

  18. J. C. Reynolds. Towards a Theory of Type Structure. In Colloque sur la Programmation, LNCS19. Springer, 1974.

    Google Scholar 

  19. S. Ronchi della Rocca and B. Venneri. Principal Types Schemes for an extended type theory. Theoretical Computer Science, 28:151–169, 1984.

    Google Scholar 

  20. D. A. Turner. Miranda: a non-strict functional language with polymorfic types. In Proceedings of the IFIP International Conference on Functional Programming Languages and Computer Architecture, LNCS201, pages 1–16. Springer, 1985.

    Google Scholar 

  21. S. van Bakel. Intersection Type Disciplines in Lambda Calculus and Applicative Term Rewriting Systems. PhD thesis, Katholieke Universiteit Nijmegen, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Masami Hagiya John C. Mitchell

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Damiani, F., Giannini, P. (1994). A decidable intersection type system based on relevance. In: Hagiya, M., Mitchell, J.C. (eds) Theoretical Aspects of Computer Software. TACS 1994. Lecture Notes in Computer Science, vol 789. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57887-0_122

Download citation

  • DOI: https://doi.org/10.1007/3-540-57887-0_122

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57887-1

  • Online ISBN: 978-3-540-48383-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics