Abstract
We prove that lexicographic breadth-first search is P-complete and that a variant of the parallel perfect elimination procedure of P. Klein [11] is powerful enough to compute a semi-perfect elimination ordering in sense of [10] if certain induced subgraphs are forbidden. We present an efficient parallel breadth first search algorithm for all graphs which have no cycle of length greater four and no house as an induced subgraph. A side result is that a maximal clique can be computed in polylogarithmic time using a linear number of processors.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
V. Chvatal, Perfectly Ordered Graphs, Topics on Perfect Graphs, C. Berge, V. Chvatal eds., North Holland, Amsterdam(1984), pp. 63–65.
V. Chvatal, C. Hoang, N. Mahadev, D. de Werra, Four Classes of Perfectly orderable Graphs, Journal of Graphs Theory 11 (1987), pp. 481–495.
R. Cole, Parallel Merge Sort, 27. IEEE-FOCS (1986), pp. 511–516.
S. Cook, A Taxonomy of Problems with Fast Parallel Algorithms, Information and Control 64 (1985), pp. 2–22.
E. Dahlhaus, Chordale Graphen im besonderen Hinblick auf parallele Algorithmen, Habilitation thesis, 1991, University of Bonn.
M. Farber, Characterizations of Strongly Chordal Graphs, Discrete Mathematics 43 (1983), pp. 173–189.
D. Fulkerson, O. Gross, Incidence Matrices and Interval Graphs, Pacific Journal of Mathematics 15 (1965), pp.835–855.
A. Gibbons, W. Rytter, Efficient Parallel Algorithms, Cambridge University Press, Cambridge, 1989.
M. Goldberg, T. Spencer, Constructing a Maximal Independent Set in Parallel, SIAM Journal on Discrete Mathematics 2 (1989), pp. 322–328.
B. Jamison, S. Olariu, On tie Semi-Perfect Elimination, Advances in Applied Mathematics 9 (1988), pp. 364–376.
P. Klein, Efficient Parallel Algorithms for Chordal Graphs, 29. IEEE-FOCS (1988), pp. 150–161.
A. Lubiw, Doubly Lexical Orderings of Matrices, SIAM Journal on Computing 16 (1987), pp. 854–879
M. Middendorf, F. Pfeiffer, On the Complexity of Recognizing Perfectly Orderable Graphs, Discrete Mathematics 80 (1990), pp. 327–333.
S. Miyano, The Lexicographically First Maximal Subgraph Problems: P-Completeness and NC-Algorithms, Mathematical Systems Theory 22 (1989), pp. 47–73.
R. Paige, R. Tarjan, Three Partition Refinement Algorithms, SIAM Journal on Computing 16 (1987), pp. 973–989.
D. Rose, Triangulated Graphs and the Elimination Process, Journal of Mathematical Analysis and Applications 32 (1970), pp. 597–609.
D. Rose, R. Tarjan, G. Lueker, Algorithmic Aspects on Vertex Elimination on Graphs, SIAM Journal on Computing 5 (1976), pp. 266–283.
Y. Shiloach, U. Vishkin, An O(log n) Parallel Connectivity Algorithm, Journal of Algorithms 3 (1982), pp. 57–67.
J. Spinrad, Doubly Lexical Ordering for Dense 0–1 Matrices, to appear.
R. Tarjan, U. Vishkin, Finding Biconnected Components in Logarithmic Parallel Time, SIAM-Journal on Computing 14 (1984), pp. 862–874.
R. Tarjan, M. Yannakakis, Simple Linear Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs, SIAM Journal on Computing 13 (1984), pp. 566–579. Addendum: SIAM Journal on Computing 14 (1985), pp. 254–255.
D. Welsh, M. Powell, An Upper Bound on the Chromatic Number of a Graph and its Application to Timetabling Problems, Computer Journal 10 (1967), pp. 85–87.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1994 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dahlhaus, E. (1994). The parallel complexity of elimination ordering procedures. In: van Leeuwen, J. (eds) Graph-Theoretic Concepts in Computer Science. WG 1993. Lecture Notes in Computer Science, vol 790. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57899-4_55
Download citation
DOI: https://doi.org/10.1007/3-540-57899-4_55
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-57899-4
Online ISBN: 978-3-540-48385-4
eBook Packages: Springer Book Archive