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Abs t r ac t .  In this paper we propose a new method for solving the hand- 
eye calibration problem and we show how this method can be used in 
conjunction with a reconstruction technique in order to estimate on-line 
the relationship between the frame in which the scene has been recon- 
structed (or calibration frame) and the frame attached to the robot hand. 
The method is particularly well suited for calibrating stereo heads with 
respect to the robot on which they are mounted. We discuss the advan- 
tage of on-line (self) versus off-line hand-eye and camera calibrations. We 
develop two solutions for solving for the hand-eye calibration problem, a 
closed-form solution and a non-linear least-squares solution. Finally we 
report on some experiments performed with a stereo head mounted onto 
a 6 degrees of freedom robot arm. 

1 I n t r o d u c t i o n  a n d  m o t i v a t i o n  

Whenever a sensor is mounted onto a robot hand (or a gripper) it is impor tan t  
to know the relationship between the sensor frame and the hand frame. The 
problem of determining this relationship is refered to as the hand-eye calibration 
problem. In the particular case of the sensor being a single camera,  the hand- 
eye calibration problem is equivalent to the problem of solving a homogeneous 
mat r ix  equation of the form: 

A X  -- X B  (1) 

In this equation, X is the unknown hand-eye relationship, A is the camera 
motion,  and B is the hand motion. Matrix B is generally provided by the di- 
rect kinematic model of the robot arm. The classical way of est imating A is to 
determine the pose of the camera (position and orientation) with respect to a 
fixed calibration object expressed in its own frame - the calibration frame. Let, 
for example,  A1 and A2 be two matrices associated with two different camera 
positions. Then A is simply given by: 

A = A ~ A Z  1 (2) 

In the past, some solutions were proposed for solving eq. (1), among others, 
b y  Tsai  & Lenz [6] and Horaud & Dornaika [4]. While in most  of the previous ap- 
proaches s tandard linear algebra techniques are used, in [4] we noticed tha t  there 
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are in fact two solution classes: (i) closed-form solutions if rotat ion is es t imated 
first, independently of the translation and (ii) non-linear least-squares solutions 
if rotat ion and translation are est imated simultaneously. The  lat ter  class of solu- 
tions is numerically more robust than the former. Moreover, uniqueness analysis 
of the hand-eye geometry allows one to conclude that  any Newton-like non-linear 
minimizat ion method is likely to converge to the good solution. 

In this paper  we propose a new formulation for the hand-eye calibration 
problem. We show that  this new formulation is somehow more general than  
the classical one since it can be used either off-line (as in the classical case) 
or on-line. On-line hand-eye calibration may  well be viewed as a self calibration 
method since neither prior camera calibration nor a specific calibration object are 
needed. The self calibration method that  we propose here has strong links with 
recently developped tools in camera self calibration and Euclidian reconstruction 
with uncalibrated cameras [2], [1], [3]. More specifically, we will make use of the 
fact that  turning a projective reconstruction into an Euclidian one provides 
camera calibration as a side effect. Such an on-line camera calibration method  
will provide, together with on-line knowledge about  the kinematic position of 
the robot arm, the bases for performing hand-eye self calibration. 

In particular, with our new formulation, the problem of calibrating a stereo 
head mounted onto a robot yields an elegant solution. Moreover, self calibration 
is well suited for stereo head with variable geometry. Indeed, for such heads, 
the relationship between the head frame and the hand frame may  vary and 
hence, off-line cal ibrat ion is not very useful. Although there are many  stereo 
head prototypes around, only a few of them are actually mounted onto a 6 
degrees of freedom robot arm. The  advantage of a robot-mounted stereo head is 
that  the head has much more mobili ty and flexibility than  if it lied onto a fixed 
platform. Therefore it seems reasonable to investigate ways to determine on-line 
the relationship between the head frame and the robot frame. 

2 P r o b l e m  f o r m u l a t i o n  

We consider a classical pin-hole camera model. We recall that  calibrating such 
a camera is equivalent to est imating the projective t ransformation between a 
3-D frame and the 2-D image frame. Let M be a 3x4  mat r ix  describing such a 
projective transformation.  We have: 

p -- M P (3) 

where p = (su sv s) T is an image point with coordinates u and v, s is a scale 
factor, and P = (x y z 1) T is a 3-D point expressed in the frame in which the 
camera is to be calibrated. 

We farther assume that  the camera is rigidly mounted onto a robot  gripper 
and that  there is a cartesian frame associated with this gripper. Although it is 
impractical,  it is theoretically possible to choose a calibration frame identical 
with the gripper frame: This means that  the 3-D calibrating points are in fact 
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expressed in the gripper frame. Since the gripper is rigidly attached to the cam- 
era, the calibration thus obtained, i.e., matr ix M, remains invariant with respect 
to robot motion. 

In particular, we consider two different positions of the robot with respect to 
a fixed true calibration frame. Let Y~ (i = 1, 2) be the transformation from the 
gripper frame to the true calibration frame , e.g., Figure 1. Obviously we have 
from eq. (3): 

p = MY~ -1 Y~P = MY2 -1 YeP = M P (4) 

In these equations Y1P and Y2P represent the same calibration point expressed 
in the (true) calibration frame. Moreover: M1 = M Y 1 1  and M2 = MY~ -1 are 
the 3• projection matrices between the calibration frame and the camera in 
positions 1 and 2. With these notations we obtain immediately from eq. (4): 

M1Y1 = M2Y2 (5) 

Recall that  B is the gripper motion between two arm positions. We have (see 
Figure 1): ]/2 = Y1B -1 and by substituting in eq. (5) and with the notation 
Y = ]I1 we finally obtain: 

M2Y = M~YB (6) 

This equation is the new formulation for the hand-eye calibration problem 
that  does not make explicit the intrinsic and extrinsic camera parameters. The 
unknown Y is the transformation from the gripper frame to the calibration frame 
(or to any world frame in the case of on-line calibration) when the camera is 
in its first position, e.g., Figure 1. The projection matrices M1 and M2 may be 
obtained either off-line using a calibrating object or on-line using a method that  
will be briefly outlined in section 4. 

M2 ~2 

B 

Fig. 1. This figure shows the relationship between a calibration (or scene) frame and 
two positions of the hand-eye device. The camera may well be calibrated with respect 
to either a gripper frame (M) or a scene frame (M1 and M2). 
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2.1 Re la t ionsh ip  w i th  the  classical f ormula t ion  

There is a very simple relationship between eq. (6) and eq. (1) that  will be 
outlined in this section. It is well known that  a projection matr ix  Mi decomposes 
into intrinsic and extrinsic camera parameters: 

(: 0  00) 
Mi = CAi = a ,  vo 0 (7) 

0 1 0  

Matrix C characterizes the camera and the projection, and matr ix  Ai  charac- 
terizes the position and orientation of the camera with respect to the calibration 
frame. Here we assume that  the intrinsic camera paramters do not change dur- 
ing the calibration process [3]. By substituting Mi = C A i  in eq. (6) we obtain 
C A 2 Y  = C A 1 Y B  and it is straightforward to figure out that  this equation 
reduces to: A 2 Y  = A 1 Y B  

The relationship between X (in eq. (1)) and Y (in eq. (6)) is: 

Z = A 1 Y  (8) 

By substituting in the equation above and using eq. (2) we finally obtain eq. (1). 
The advantage of the new formulation over the latter equation is that  one need 
not make explicit the intrinsic and extrinsic camera parameters. Many authors 
have noticed that,  even in the case of a very precise camera calibration, the 
decomposition of the projective transformation into intrinsic and extrinsic pa- 
rameters is numerically unstable [5]. 

2.2 T h e  case o f  a stereo head 

As alredy mentioned, another advantage of our formulation with respect to the 
classical one is that  it allows an elegant extension to the case of a stereo head 
mounted onto the robot arm: 

- With the classical formulation two independent equations need to be solved, 
that  is, A X  = X B  for the left camera, and A I X  ~ = X ~ B  for the right camera. 

- With the new formulation both cameras contribute to the same unknown. 
Indeed we have M 2 Y  = M 1 Y B  for the left camera and M ~ Y  = M ~ Y B  

for the right camera. Hence the left camera and right camera calibrations 
are fused into a unique calibration problem. Notice that  this may be easily 
generalised to any number of cameras rigidly mounted onto the robot arm. 

3 P r o b l e m  s o l u t i o n  

In this section we show that  the new formulation has a mathematical  structure 
that  allows one to solve the problem either in closed form or by using Newton-like 
non-linear least-squares minimization methods. 

Notice that  a projection matr ix  Mi can be written as: 

= n , )  
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where N~ is a 3 • 3 matr ix  and n~ is a 3-vector. It is well known that  Ni has rank 3. 
This can be easily observed from the decomposition of such a matr ix  into intrinsic 
and extrinsic parameters. With this notation eq. (6) may be decomposed into a 
matr ix  equation2: 

N 2 R y  = N I R y R B  (9) 

and a vector equation: 

N 2 t y  + n2 = N 1 R y t B  + N l t y  + rtl (10) 

Introducing the notation: N = N ~ I N 2 ,  eq. (9) becomes: 

N R y  = R y R B  (11) 

Two properties of N may be easily derived: N is the product of three rotation 
matrices, it is therefore a rotation itself and since Ry is an orthogonal matrix,  
the above equation defines a similarity transformation. It follows that  N has the 
same eigenvalues as RB. In particular R B  has an eigenvalue equal to 1 and let 
nB be the eigenvector associated with this eigenvalue. 

If we denote by n N  the eigenvector of N associated with the unit eigenvalue, 
then we obtain: 

N R y n B  = R r R B n B  = R y n B  (12) 

and hence we have: 
n N  ---- R y n B  (13) 

By premultiplying eq. (10) with N11 we obtain: 

( N  - I ) t y  = R y t B  -- t N  (14) 

w i th :  t N  = N i l ( n 2  --  hi) .  
To summarize, the new formulation decomposes into eqs. (13) and (14) which 

are of the form: 
v'  = R v  (15) 

( g  - I ) t  = R p  - p'  (16) 
where R and t are the parameters to be estimated (rotation and translation), 

v', v, p', p are 3-vectors, K is a 3• rotation matr ix  and I is the 3x3  identity 
matrix.  

Eqs. (15) and (16) are associated with one motion of the hand-eye device. In 
order to estimate R and t at least two such motions are necessary. In the general 
case of n motions one may cast the problem of solving 2n such equations into 
the problem of minimizing two positive error functions: 

/I(R) = ~ llv~ - Rvfil' (17) 
i=1  

and 
n 

f 2 ( R ,  t)  = ~ IIRpi - ( K i  - I ) t  - p~ll 2 (18) 
i=1  

Therefore, two approaches are possible: 

2 RB and tB are the rotation matrix and translation vector associated with the rigid 
displacement B. 
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1. R then t .  Rotation is estimated first by minimizing f l .  This minimization 
problem has a simple closed-form solution [4]. Once the optimal rotation is 
determined, the minimization of f2 over the translational parameters is a 
linear least-squared problem. 

2. Td and t .  Rotation and translation are estimated simultaneously by minimiz- 
ing f l  + f2. This minimization problem is non-linear but it provides the most 
stable solution [4]. 

4 C a m e r a  sel f  ca l ibrat ion 

In this section we describe a method for estimating a set of n projection matrices 
with a camera mounted onto a robot arm. Camera self calibration is the task of 
computing these projection matrices by observing an unknown scene and not a 
calibration pattern. We consider k points of the scene P1, . . .  Pj ,  . . .  P~ and let 
Pij denote the projection of Pj onto the i th image, that  is, when the camera and 
the gripper are in position i. With the same notations as in section 2 one may 
write: 

p~j = M~ Pj ( i =  l . . . n ,  j =  l . . . k )  (19) 

Therefore each scene point Pj is observed through its projections Pl j ,  . . . P n j  

which in practice have to be tracked in the image sequence. 
For each measurement, i.e., for each image point, eq. (19) can be written as 

a set of two constraints: 

m(Ox _a~(O,, • z .Lrn(O U~j : 11 $ v ' " ~  " ~ z ~  13 z /  14 
~ ( i )  z ..a..~(i), ..a_m(i) z ,_am (i) 
"~31 sr,,~32 u  33 ~ !  34 

m (1) x'-a-m (i) ." z-m (0 z'-t-ra (i) 
21 ~"  22 u  23 ~ 24 

V i j  ~ ( i ) ~  . ~ ( 0 , ,  .a_rn(O z . . a . ~ ( i )  
"~31 ~z1"'32 Y~ 33 11"~ 

(20) 

Since we have k points and n images we obtain 2 • n • k such constraints. 

Each projection matr ix is defined up to a scale factor, so by setting ~,(i),,o34 = 1, 
we are left with 11 • n unknowns ~sociated with the projection matrices and 
3 • k unknowns associated with the coordinates of the scene points. For example 
for 10 images and 50 scene points we have 2 x 10 • 50 = 1000 constraints and 
11 • 10+3  x 50 = 260 unknowns. So i f n  and k are large enough we obtain more 
constraints than unknowns and hence, the problem may be solved by seeking a 
minimum of the following error function: 

f ( M l , . . .  M i , . . .  M , ,  P1 , . . .  P j , . . .  Pk) = 

( 
E u~J -- ~(1)~.. + re(i) 'i • m(Ozl + - ~ ]  + 

�9 ' k k  " ~  ~ 3 2  ~ ~ 3 3  ' ~  / t 3  

E Vi j  - -  ~ ( i ) o .  ~ ( i ) . .  __(i) ~. A- ~ ( i )  

~3 

Several authors implemented solutions for solving this non-linear least-squares 
minimization problem [1], [3]. Whenever such a solution is found, it is defined 
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up to a collineation W (a 4x4  invertible matrix).  Indeed, for any such matr ix  W 
we have (see also eq. (4)): Pij = M i W  -1 W P j .  One way to fix this collineation is 
to select 5 algebraically free points which can be used to form a projective basis 
associated with the scene. The coordinates of these 5 points may be assigned the 
canonical ones [2]: (0 0 0 1) T (1 0 0 1) T (0 1 0 1) T (0 0 1 1) T (1 1 1 1) T. 

Thus, one obtains by a non-linear least-squares minimization technique a 
projective reconstruction of the scene, that is, the coordinates of the scene points 
are expressed with respect to the projective basis just mentioned. The projection 
matrices are also defined up to a collineation W -1 and therefore they are not 
very useful in general, and in particular for calibrating our stereo head with 
respect to the robot arm. Therefore, one has to turn the projective data (the 
scene points and the projective matrices) into Euclidian data. There are several 
methods to do it but this is beyond the scope of this article. Let us mention that  
the simplest way to think of this mapping is to assign cartesian coordinates to 
the 5 points forming the projective basis. Thus, this cartesian frame becomes in 
fact the scene (or the calibration) frame. The procedure described in this section 
may well be applied to both cameras composing the stereo head. 

5 E x p e r i m e n t s  a n d  d i s c u s s i o n  

In order to perform on-line (self) hand-eye calibration, we gathered 9 image 
pairs with a stereo head mounted onto a robot hand. Three of these images 
corresponding to the left camera are shown on Figure 2.28 corners were detected 
in the first left image and tracked along the sequence. 

The same process (corner detection and tracking) was performed with the 
right image sequence. Notice that only the reference points need be matched be- 
tween the first left and right images. This is to ensure that  the "left" and "right" 
points are reconstructed with respect to the same scene reference frame. Hence, 
the non-linear reconstruction algorithm described in section 4 is run twice, first 
with the left image sequence and second, with the right image sequence. There- 
fore, two series of projection matrices are provided, one for the left camera and 
the other for the right camera. 

In order to be able to evaluate on-line calibration on a quantitative basis 
we calibrated off-line, i.e., [4] and we compared the two calibration data  sets. 
We noticed a discrepancy in translation which may be explained by the rela- 
tively small camera (or robot) motions during tracking. In the case of off-line 
calibration the camera motions were quite large. It is wortwhile to notice that  
in all these experiments (off- and on-line) the robot itself was poorly calibrated. 
Errors of about 10ram in robot motion were often noticed. Another important  
feature that  may explain the difference between the two calibration processes is 
the number of points. Indeed, the calibration pattern used off-line has 460 points 
while the on-line process used only 28 points. 

Euclidian reconstruction from uncalibrated cameras is a very recent research 
topic in computer vision. The experiments that we described in this paper and 
that  we continue to perform allow the validation of such reconstruction tech- 
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Fig. 2. Three aznong the 9 images gathered with the left camera (the first, the fourth, 
and the seventh one). The tracked points are also shown. The 5 reference points are 
marked with a small square. 

niques. It is one thing to see a reconstruction displayed onto a screen and another 
thing to have it work in a real environment. Therefore we believe that  experi- 
ments such as those briefly described in this paper are an excellent testbed for 
any reconstruction method. Indeed, the result of on-line calibration can be easily 
compared with the result obtained off-line, within a more classical context. How- 
ever, the latter may well be viewed as the ground-truth and used to validate, 
through hand-eye calibration, the whole reconstruction process. Ground-truth 
data are very often missing in computer vision research. 

References  

1. B. Boufama, R. Mohr, and F. Veilton. Euclidian constraints for uncalibrated re- 
construction. In Proceedings Fourth International Conference on Computer Vision, 
pages 466-470, Berlin, Germany, May 1993,. IEEE Computer Society Press, Los 
Alamitos, Ca. 

2. O. D. Faugeras. What can be seen in three dimensions with an uncalibrated stereo 
rig. In G. Sandini, editor, Computer Vision - ECCV 92, Proceedings Second Euro- 
pean Conference on Computer Vision, Santa Margherita Ligure, May 1992, pages 
563-578. Springer Verlag, May 1992. 

3. R.I .  Hartley. Euclidian reconstruction from uncalibrated views. In ESPRIT- 
ARPA-NSF Workshop on Applications of Invariance in Computer Vision II, pages 
187-201, Ponta Delgada, Azores, October 1993. 

4. R. Horaud and F. Dornaika. Hand-eye calibration. In Proc. Workshop on Computer 
Vision for Space Applications, pages 369-379, Antibes, Prance , September 1993. 

5. T. Q. Phong, R. Horaud, A. Yassine, and D. T. Pham. Object pose from 2-D to 3-D 
point and line correspondences. Technical Report RT 95, LIFIA-IMAG, February 
1993. Submitted to the International Journal on Computer Vision. 

6. R.Y. Tsai and R.K. Lenz. A new technique for fully autonomous and efficient 3D 
robotics hasad/eye calibration. IEEE Journal of Robotics and Automation, 5(3):345- 
358, June 1989. 


