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Abs t r ac t .  Implementation results for projective invariant descriptions 
of planar curves are presented. The paper outlines methods for the gen- 
eration of projectively invariant representations of curve segments be- 
tween bitangent points as well as - and this for the first time - segments 
between inflections. Their usefulness for recognition is illustrated. The 
semi-local nature of the invariant descriptions allows recognition of ob- 
jects irrespective of overlap and other image degradations. 

1 Projective, semi-differential invariants 

For recognition of plane contours from arbi t rary perspective views, projectively 
invariant descriptions can be used. Trying to minimize the efforts of calculating 
robust estimates for derivatives (as with differential invariants [5]) and reduc- 
ing the dependence on finding points for a basis [6], semi-differential invariant 
descriptions were proposed [1, 3, 4]. These invariants need fewer points than 
required for a basis and lower order derivatives than needed for the differential 
invariants. The use of these semi-differential invariants for the recognition of 
planar, overlapping objects is demonstrated.  

In the sequel, contour point coordinates (~, y)T will be written x. Subscripts 
are used to denote fixed reference points, whereas superscripts will be used for 
the specification of the order of differentiation in the case of derivatives. Vertical 
bars indicate determinants.  

2 Semi-local, projectively invariant descriptions 

Two new semi-local schemes for the generation of projectively invariant curve 
descriptions are discussed, one for segments between bitangent point pairs, the 
other for segments between inflections, i.e. segments between points that  are 
projectively invariant. 

* The support of the Esprit project BRA EP 6448 "VIVA" and of the FKFO project 
2.0065.90 is gratefully acknowledged. 

** Theo Moons and Eric Pauwels gratefully acknowledge postdoctoral research grants 
of the Belgian National Fund for Scientific Research (N.F.W.O.). 

Lecture Notes in Computer Science, Vol. 800 
Jan-Olof Eklundh (Ed.) 
Computer Vision - ECCV ~)4 



528 

2.1 S e g m e n t s  b e t w e e n  b i t a n g e n t  p o i n t s  

Since inflections are rather unstable points to extract, and since bitangent points 
and tangent lines at inflections can be extracted with higher robustness, it is 
natural  to preferentially look for descriptions based on such points and lines. 
Consider fig. 1. First, the bitangent points bl  and bz and the intersection e of 

y B 

Fig. 1. Bitangent points and tangent lines at inflections can be extracted with sufficient 
robustness for them to be used as the basis ofa  projectively invariant, semi-local shape 
description. 

the two tangent lines in the inflections are used to find a new invariant point 
on the contour, which lies between the inflections 11 and i2. This is achieved by 
calculating an invariant parameterization of the segment between the inflections 
using the semi-differential, invariant parameter 

- b l  x - b~l 2) " 

(i) 

This parameter is not truly invariant, but will only differ up to some factor 
between views. Normalizing the "length" between the inflections to 1 this caveat 
can be lifted. At the point where the parameter reaches value 1 3, a new invariant 

contour point is found, which will be referred to as h. Now it might seem that  
the inflections have been reintroduced, and hence also the vulnerability to errors 
in their position. This is not the case though. The above integral changes very 
slowly in the neighbourhood of the inflections, since the area between the curve 
and the tangent line is very small there. Thus, even if the inflections are ill- 
placed, the resulting error in the invariant parameter will be limited. 

Having found the new invariant point h, an invariant signature is built for 
the contour segments on either side of it. At this stage, four invariant points are 
known, which could be used as a projective frame: b l ,  b2, c, and h. Together with 
any other point of the segment, they yield two independent 5-point cross-ratios. 
However~ an alternative strategy can be used, which yields an invariant as a 
function of an invariant parameter, thereby making explicit the correspondences 
between points in different views (these should have the same parameter value). 
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As a (relative) invariant parameter 

b, (2) 

is used for the first half (the part between b l  and h). The parameter for the 
second half between h and bz is exactly the same, but with b l  replacing bz. 
Again, both lengths have to be normalized to 1 in order to eliminate a factor. 
In summary then, the parameter will go from -1 to 1, with the parameter value 
at h being 0. 

In order to obtain an invariant signature, a second, independent invariant is 
required. For the points with parameter values in the range [-1,  0] 

I x - e  x -b1[  
I x - c  x -b2[  (3) 

is used, whereas for the points with parameter values in the range [0, 1] a similar 
expression is used, but with b l  and b2 swapped. 

This construction results in a representation as the one shown in fig. 2. On the 
abscissa the parameter is used, whereas the last mentioned invariant is used for 
the ordinate values. Rather than matching such a complete invariant signature, 
a few invariant numbers are used. These are the ordinate values read out at the 
parameter values -0 .9 ,  -0 .25,  0.25 and 0.9. 

h (o,1) 
invariant 2 ! ] ~  3 invariant 

-0.9 -0.25 0.25 0.9 

Fig. 2. Canonical frame and invariants for segments between bitangent points. 

In addition to the forementioned invariants, a cross-ratio can be calculated 
which does not require any information beyond that  available after the very first 
stage: the bitangent line and the tangent lines at the inflections. These tangent 
lines will intersect the bitangent line in two points, which taken together with 
the bitangent points yield 4 collinear points. Their cross-ratio and the four other 
invariants were combined in a 5-component feature vector. 

2.2 S e g m e n t s  b e t w e e n  in f l ec t ions  

Although more difficult to extract precisely, segments between inflections may 
be used when no bitangent segments are available, e.g. due to occlusion. In a 
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similar vein as with the previous method, the generation of an invariant repre- 
sentation for such segments is initiated by the extraction of the line connecting 
the inflections and the tangent lines at the inflections. In a sense, the bitangent 
line is replaced by the line joining the inflections. However, the further construc- 
tions described earlier would fail. Instead, the projective invariance of a bundle 
of conics is used. The construction yields an additional invariant point on the 
curve. The two inflections, the intersection of the lines tangent at the inflec- 
tions and that  additional point together fix a projective frame. Although the 
method propounded here succinctly has a constructive flavour, there are purely 
semi-differential strategies to find an additional point. 

The bundle of conic sections is defined by three lines: the line connecting the 
inflections and the two lines tangent at the inflections. The first line taken twice 
and the latter pair of lines each constitute a degenerate conic. The bundle is 
then defined as 

(ml  + + + + + 02) + + = 0 ,  (4) 

where A is an arbitary real number and the linear expressions in z and y are 
the equations for the lines. From this bundle of conic sections, the one with the 
most negative A that  touches the contour is taken. The point where it touches 
the contour is the fourth point. Fixing the positions of the four points creates the 
projective frame. In the sequel, the frame will be defined with the coordinates 
of the two inflections at ( - 1 ,  0) and (1, 0), those of the tangents intersection at 
(0, 3) and those of the newly found point at (0, 1). This yields a representation 
as shown in fig. 3. 

o ( o , 3 )  

i 1 ( - 1 , O )  _ - -  i 2 ( 1 - O )  

Fig. 3. Projectlvely invaxiant representation for segments between inflections. 

As before, rather than matching complete signatures, recognition as reported 
here is based on the extraction of invariant numbers. In fact only the ratio of 
curvatures at the point where the selected ellipse touches the curve, was used. 
This ratio o f  the curve's curvature over the ellipse's curvature is a projective 
invariant [2]. 
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3 Object recognition 

The use of the invariant representation methods for segments between bitangent 
points and inflections are now illustrated. As a test case, consider the scene 
of fig. 4. Model descriptions and the corresponding invariant numbers for the 
different segments were extracted from separate views of the three objects. The 
invariants were used to generate a feature vector. Each segment in fig. 4 was 
considered to match the segment from the models with the nearest feature vector. 
The distance between test segment a and model segment b was obtained as 

N 

Da,b = ~ i r a , -  ]b,[ , (5) 

~=I ~r~ 

where crl is the s tandard deviation for feature fl calculated over all segments in 
the models and N is the number of  features. All segments in the image tha t  cor- 
responded to a true model segment, were used in the experiment. The numbers 

1 _ 8  

1 _ T ~ 1 _ 1  Hi 

~ 1_3 ' . 3 1 _ 1 4  

4 _ 2  k" I 

3 _ 1  

2 _ 3  

Fig. 4. Numbered edge segments extracted from test scene. 

in fig. 4 are assigned to segments between two neighbouring inflections. For the 
bitangent construction, these segments have to be thought  as being extended on 
either side up to the next pair of  bitangent points. In fact, this extension is not 



532 

always possible, but we will introduce next a slightly modified type of bitangent 
segment, making this extension more general. 

Overlap together with erroneous edge detection may drastically reduce the 
number of bitangent segments that  can correctly be extracted. Moreover, the 
largest and therefore best suited segments often are the most vulnerable. There- 
fore, some additional segments were included in the "bitangent" approach, ob- 
tained by extending a segment to the next inflection on one side and an opposite 
tangent point on the other side, obtained by rotating a line about that  inflection. 
Such segments are illustrated in fig. 5. They allow for the same constructions as 

Fig. 5. Examples of pseudo-bitangent segments: the llne labeled 1-8 connects an in- 
flection and the corresponding tangent point, delimiting the extended segment 1-8. 
Similarly, such segment was obtained between the points connected by the line 1-10. 

the bitangent segments and will be referred to as "pseudo-bitangent" segments. 
Bitangent segments are preferred due to higher robustness. 

Before discussing the matching results, the invariant representations for the 
segments 1-8 and 1-9 from fig. 4 are illustrated. Segment 1-9 can be extended to 
a bitangent segment, whereas segment 1-8 is extended to a pseudo-bitangent seg- 
ment, as shown in fig. 5. The invariant descriptions obtained using the between- 
bRangents and between-inflections methods are shown in fig. 6, both for the 
test scene and for the model. As can be seen from these figures, the distinction 
between the segments (1-8 continuous, 1-9 dotted line) is possible from such in- 
variant descriptions. Although in this case the construction between inflections 
performs well compared to the bitangent method, it is fair to say that  the bi- 
tangent method performs typically better, whereas the average performance of 
the inflection method is worse than that  shown here. 

Hence, the recognition procedure is planned to start  with the analysis of 
bitangent and pseudo-bitangent segments. Table i summarizes the results for 
the bitangent constructions. The table contains the distance based rank-order 
of the correct model segment. The first row gives the number of the segment in 
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Fig. 6. Left: illustration of the bitangent construction for test scene and model for 
segments 1-8 and 1-9. Right: their between-inflections representations. 

T a b l e  1. Rank order of the correct model segment in the list of sorted distances to 
the model segments. "1" means that the correct segment is the best guess, "2" that 
the correct segment is the second best guess, etc. 

segment nmb 1-6 1-7[1~8 1~9 110 1-11 1-12[1-1312-3 3-113-314-2 [ 
class, rank 1 1 2 1 12 2 1 1 4 

fig. 4. Only segments for which a bitangent or pseudo-bitangent extension was 
possible, are listed. It  are these eztended segments the table refers to. 

Both the definition of the distance and the classification method per se have 
been kept extremely simple in this test. The performance is expected to improve 
when more elaborate statistics are invoked. Results were found to be compara-  
ble to those obtained with a selection of invariants extracted from the 5-point 
construction [6]. For this case, the latter had the correct model segment 6 times 
at  first position. Lumping all features together in a single feature vector kept 
the hit rate at 7 (same as the proposed bitangent method).  Yet, in 9 out of 12 
cases either the proposed method or the 5-point method had the correct model 
segment at first position. 

The method tha t  works on segments between inflections is considered a fall- 
back solution, rather than a first-line approach. Looking at the test image (fig. 4), 
the risk of not being able to extract a bitangent or pseudo-bitangent segment for 
the leftmost spanner is real. Everything hinges on the extraction of the b r a n -  
gent segment around 4-2. Knowing the state-of-the-art  in edge detection, one can 
hardly expect to be always as fortunate as in this case. The unextended segment 
1-3 (i.e. the segment between the inflections) might be called upon then, using 
the construction between neighbouring inflections. The resulting ratio of curva- 
tures is shown in table 2, together with three more examples. The discriminant 
power of this invariant is rather low. 
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Table 2. Values of the curvature ratio for the different segments in the reference image. 

segment  n m b  eurv. ratio ref. curv.  ratio test 
1-3 0.0636 0.0560 
1-6 0.8632 0.8417 
1-7 0.8495 0.8588 
1-8 0.5592 0.5704 

4 Conc lus ions  

Novel methods for the generation of projectively invariant descriptions for plane 
curve segments were devised and illustrated. 

One of the approaches was Mmed at segments between bitangent points and 
can be considered to take on a role complementary to that  of the 5-point cross ra- 
tio based method. The idea is to build a recognition system that is opportunistic 
in that  it uses severM constructions simultaneously, and selects promising seg- 
ments through a kind of voting mechanism. 

The other approach was designed for segments between inflections. Although 
this method lacks the discriminant power of the bitangent methods, it can nev- 
ertheless be crucial as a last resort, when all bitangent segments are occluded or 
their edges noisy or incomplete. It should be added that the inclusion of addi- 
tional measurements from these invariant descriptions is expected to improve the 
performance of this method. In contrast to the bitangent methods, the current 
implementation works with the ratio of curvatures as the only invariant. 
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