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Abst rac t .  The Hough Transform is a class of medium-level vision techniques 
generally recognised as a robust way to detect geometric features from a 2D 
image. This paper presents two related techniques. First, a new Hough 
function is proposed based on a Mahalanobis distance measure that 
incorporates a formal stochastic model for measurement and model noise. 
Thus, the effects of image and parameter space quantisation can be 
incorporated directly. Given a resolution of the parameter space, the method 
provides better results than the Standard Hough Transform (SHT), including 
under high geometric feature densities. Secondly, Extended Kalman Filtering 
is used as a further refinement process which achieves not only higher 
accuracy but also better performance than the SHT. The algorithms a r e  

compared with the SHT theoretically and experimentally. 

1 Introduction 

The Hough transform is a many-to-one co-ordinate transformation from the image 
space Z to the parameter space a. The Standard Hough Transform (SHT) [1] is used 
to extract geometric features expressed by a single parametric equation such as: 

f ( Z k , a i ) = 0  (1) 

where the Z k (k = 1,---,M i), are the co-ordinate vectors of the image feature points 

(e.g. edge pixels) that make up a geometric feature 4; (i --- 1,...,N) and al are the 
corresponding parameter vectors for ~ .  

Generally, the aim is to find a subset of significant a; from the superset of all 
possible a~, represented by a discrete "accumulator" array, through an 
incrementation or voting stage followed by an exhaustive search for maximum 
counts. The voting stage takes place through the computation of the Hough function 

M M 

tl(a,)=~l[t(Zk,al)]=~l[f~] (i = 1,...,N) (2) 
k=l k=l 

where M is the total number of image feature points. The indication function I[f~] is 
defined by 

l[f"] = f~. r 0 (3) 
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For example, straight line segments can be represented by the equation 

f(Z k ,a;) = x k cos0~ +Yk sin0; -Pl  

where f~R1,  Z~=[xk yk]T~R2andai=[Oi p l ] r ~ R  2. 

(4) 

2 Advantages and Disadvantages of the SHT 

The SHT has been shown particularly applicable in the presence of occlusion and 
missing or extraneous data (e.g. salt-and-pepper noise). Statistical tests [2] have 
shown the SHT to be more effective than alternative HT formulations. Although the 
evaluation of the indication function (Eqn. 3) has low computational cost, a large 
accumulator array (with a corresponding increase in computation time) is normally 
needed to achieve usable precision. Hence, a significant amount of research work has 
taken place in recent years [3, 4] to develop variants of the HT to address the conflict 
between high resolution and computational efficiency. Multiple resolution techniques 
or coarse-to-fine strategies [3, 5, 6] have been proposed, where high accumulator 
resolution is only used in places where a high density of votes accumulate. The main 
problem of such approaches is the potential undersampling of the Hough space. One 
important problem of the SHT is its degradation when there are errors in the co- 
ordinates of the image feature points [7]. This situation can arise due to digitisation 
noise, optical distortions or modelling inaccuracies, for which a number of stochastic 
approaches have been proposed [ 7, 8]. This paper presents two related techniques 
based on a Mahalanobis distance measure and Extended Kalman Filtering that 
incorporate a formal stochastic model for measurement and model noise. 

3 The Mahalanobis Distance Hough Transform (MDHT) 

3.1 Basic Principle 

The geometric features of interest can be represented by the parametric equation 

f(Z k , a ; ) :  0 (5) 

where f ~ ~R p, Z k ~ ~R m and al E 9~ n. It is assumed that Z k and a; are independent 

zero-mean stochastic processes for which only estimate values of Zk and ~ are 
available i.e. 

E [Zk-Zk]  = 0, E[(Zk-Zk)(Zk--zk)TI=Rk (6) 

E[ai-~li]=O, E[(ai-~i)(ai-~li)T]=pi (7) 

where R k is the measurement covariance matrix (related to image space resolution) 
and Pi is the model covariance matrix (related to parameter space resolution). 

The voting stage of the Mahalanobis Distance Hough Transform (MDHT) takes 
place through the computation of the MD accumulating function 
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M M 
E I[ dik ] (8) 

k=l k=l 

/ [ d a ] = ~ l  d,,__e (9) 
to dl, ~ > E 

where e is a suitably chosen threshold to reject outliers (e.g. from a X 2 distribution 
table), and the Mahalanobis Distance (MD) is given by 

The MD measure is thus an hypothesis test which measures the distance from the 
feature point to the contour mean (normalised by the target covariance matrix) and 
applies a threshold (e) to determine if the point belongs to the contour. The authors 
have proposed a number of variants of the MDHT, fully described in [9, 10, 11]. 

3.2 Look-up Table Implementation of the MDHT 

If the accumulator array represents constant parameter values, the MDHT can be 
executed off-line once over all possible image points, storing the results in a look-up 
table that can be regarded as containing a sequence of templates. The on-line MDHT 
thus becomes a search process of the corresponding parameter values for the feature 
points in an image. Matrix operations are replaced by template matching, saving 
considerable on-line computation time. 

3.3 Extended Kalman Filter (EKF) Refinement 

The accumulating cells represent candidate parameter values that can be further 
refined for higher accuracy and/or to reduce noise. The authors have investigated 
combinations of the MDHT and EKF [12] refinement in some detail [9-11], 
proposing two main methods: post-HT refinement (the EKF is applied on the peaks 
detected by the MDHT) and "integral" refinement (the EKF is applied as each image 
point is processed). These lead to reductions in the size of the accumulator array 
(modelled as parameter space quantisation noise) and sharper peaks that simplify the 
search stage. Due to space limitations, only post-HT refinement is discussed here. 

4 E x p e r i m e n t a l  Resu l t s  

4.1 Typical Results 

As an example, a typical real image (128x128), after conventional edge detection, is 
shown in Fig. 1. The centre of the image is chosen as the origin of the co-ordinate 
system. Fig. 2 shows the lines detected by the MDHT at fine parameter space 
resolution (A0 = 2 ~ Ap = 2) and superimposed on the original image. Table 1 shows 
a comparison of the results obtained for the MDHT with EKF refinement, and the 
MDHT for a coarse parameter space resolution of (A0 = 10~ = 5), a reduction of 
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the size of the accumulator array by a factor of 12.5. These results illustrate that the 
MDHT/EKF combination does improve accuracy even for coarse resolutions. As the 
EKF is applied after peak detection, its accuracy improvement is limited by the 
accuracy of the MDHT (or any other HT). 
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Fig. 1: Original edge image (128x128) 

i.-" ---i 
Fig. 2: Reconstructed image after the MDHT 

Table 1. Corn 

Real Values (0,p) 

(39.9, 37.0) 
(119.1, 39.8) 
(173.9, 28.0) 
(223.2, 32.2) 
(296.8, 38.3) 
(353.0, 30.7) 

Average Error 

(39.92, 36.91) 
(112.67, 39.10) 
(177.45, 26.19) 
(220.15, 31.04) 
(293.31, 38.06) 
(350.83, 30.26) 

(3.12, 0.74) 

mrison of accuracy, between MDHT/EKF and MDHT 

(40, 35) 
(110, 40) 
(180, 25) 
(220, 30) 
(290, 40) 
(350, 30) 
(4.7, 1.6) 

4.2 Statistical Performance Tests 

The performance of the MDHT and MDHT/EKF algorithms presented here has been 
studied using the HT Test Framework developed by Hare and Sandier [2] which 
generates a large number of images with randomly distributed geometric features 
(e.g. position and length of slxaight lines). The same random sequence can be used to 
compare two or more different algorithms. The HT Test Framework measures 
parameter accuracy, detection (Det) and false alarm (FA) rates. The resolution used 
here is A0=I .4~  Fig. 3 shows Det and FA rates for the MDHT, the 
MDHT/EKF and the SHT (the SHT is the algorithm with best performance reported 
in [2]) using 12000 and 1200 images containing 1 to 20 lines. Extra one pixel error 
has been assigned to the co-ordinate system used by the MDHT and MDHT/EKF to 
test their sensitivity to errors in the variables. 

Table 2 shows the effect of EKF refinement when applied after the MDHT using 
200 images. Here, the co-ordinates in the SHT is also assigned the extra one pixel 
error. The improvement on the accuracy (represented by average errors) of parameter 
0 by the MDHT and the EKF is particularly noticeable. 
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Fig. 3: Percentage detection rate and false alarm rate as a ftmction of line density 

Table 2: Parameter estimation errors b)r MDHT, MDHT/EKF and SHT 

Lines MDHT MDHT/EKF SHT 
1 (0.402 ~ 0.703) (0.069 ~ , 0.673) (0.414 ~ , 0.678). 

2 (0.406 ~ 0.722) (0.074 ~ 0.685) (0.430 ~ 0.706) 

4 (0.400% 0.706) (0.098 ~ 0.696) (0.431 ~ 0.704) 

10 (0.413 ~ 0.707) (0.139% 0.701) (0.453 ~ 0.701) 

5 Conclusions 

The combination of the MDHT and EKF refinement allows a coarser resolution of 
the parameter space than that of the SHT, hence storage savings can be significant. 
In principle, a coarser SHT can also be combined with EKF refinement. However, 
experimental results indicate that the MDHT has a higher line detection rate than the 
SHT, even when the density of lines in the image increases. 

From the template matching point of view, the MDHT accumulating strategy can 
improve the shape of the stripe, as its hypothesis distance considers parameter and 
the measurement errors. The SHT accumulating function represents a true line only 
when the resolution of the parameters becomes extremely fine, but this might lead to 
voting spread due to oversampling. 

Strictly speaking, the SHT can only be used in ideal cases when there are no 
parameter estimate and measurement errors. The MDHT algorithm presented here is 
more flexible than the SHT because both observation and estimation errors are 
accounted for. Thus, it can detect feature points in a predefined range around the 
contour, instead of just detecting feature points exactly on the contour as in the SHT. 
As shown through the use of the HT Test Framework, the MDHT combined with the 
EKF has better performance than the SHT even when working on dense images. 
This combination also allows reductions in the resolution of the accumulator array to 
obtain refined estimate results by a minimum mean square criterion with a 
corresponding reduction in processing time (e.g. compared to the usual least square 
methods). 
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Finally, the methods presented here are amenable to parallel processing 
(transputer implementations are currently under investigation) and therefore 
particularly attractive for dealing with real-world images in situations such as 
industrial inspection or vision-guided control. 
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