Abstract
In a recent article [6] a new method was proposed for computing internal eigenvalues of symmetric matrices. In the present paper we extend these ideas to non-hermitian eigenvalue problems and apply them to a practical example from the field of magnetohydrodynamics (MHD). The method is very suitable for an efficient parallel implementation. We give some results for the time-consuming kernels of the underlying orthogonalization process, the Arnoldi method, obtained for an MHD problem on a distributed memory multiprocessor.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
J. Cullum, W. Kerner, R. Willoughby: A generalized nonsymmetric Lanczos procedure. Computer Physics Communications 53, 19–48 (1989)
J.W. Demmel, M.T. Heath, H.A. van der Vorst: Parallel numerical linear algebra. Acta Numerica 2, 111–197 (1993)
G.H. Golub, C.F. van Loan: Matrix Computations, 2nd ed. Baltimore: The Johns Hopkins University Press 1989
S.K. Kim, A.T. Chronopoulos: An efficient parallel algorithm for extreme eigenvalues of sparse nonsymmetric matrices. The International Journal of Supercomputer Applications 6, 98–111 (1992)
M.N. Kooper, H.A. van der Vorst, S. Poedts, J.P. Goedbloed: Application of the implicitly updated Arnoldi method with a complex shift and invert strategy in MHD. FOM Preprint PP 93/061 (1993)
C.C. Paige, B.N. Parlett, H.A. van der Vorst: Approximate solutions and eigen-value bounds from Krylov subspaces. To appear. Linear Algebra and its Applications (1994)
S. Poedts, P.M. Meijer, J.P. Goedbloed, H.A. van der Vorst, A. Jacoby: Parallel magnetohydrodynamics on the CM-5. This conference.
Y. Saad, M.H. Schultz: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing 7, 856–869 (1986)
Y. Saad: Numerical methods for large eigenvalue problems. Manchester: Manchester University Press 1992
D.C. Sorensen: Implicit application of polynomial filters in a k-step Arnoldi method. SIAM Journal on Matrix Analysis and Applications 13, 357–385 (1992)
Author information
Authors and Affiliations
Editor information
Copyright information
© 1994 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Booten, J.G.L., Meijer, P.M., te Riele, H.J.J., van der Vorst, H.A. (1994). Parallel Arnoldi method for the construction of a Krylov subspace basis: An application in magnetohydrodynamics. In: Gentzsch, W., Harms, U. (eds) High-Performance Computing and Networking. HPCN-Europe 1994. Lecture Notes in Computer Science, vol 797. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57981-8_116
Download citation
DOI: https://doi.org/10.1007/3-540-57981-8_116
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-57981-6
Online ISBN: 978-3-540-48408-0
eBook Packages: Springer Book Archive