Skip to main content

Parallel Arnoldi method for the construction of a Krylov subspace basis: An application in magnetohydrodynamics

  • Numerical Algorithms for Engineering
  • Conference paper
  • First Online:
High-Performance Computing and Networking (HPCN-Europe 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 797))

Included in the following conference series:

  • 219 Accesses

Abstract

In a recent article [6] a new method was proposed for computing internal eigenvalues of symmetric matrices. In the present paper we extend these ideas to non-hermitian eigenvalue problems and apply them to a practical example from the field of magnetohydrodynamics (MHD). The method is very suitable for an efficient parallel implementation. We give some results for the time-consuming kernels of the underlying orthogonalization process, the Arnoldi method, obtained for an MHD problem on a distributed memory multiprocessor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. Cullum, W. Kerner, R. Willoughby: A generalized nonsymmetric Lanczos procedure. Computer Physics Communications 53, 19–48 (1989)

    Google Scholar 

  2. J.W. Demmel, M.T. Heath, H.A. van der Vorst: Parallel numerical linear algebra. Acta Numerica 2, 111–197 (1993)

    Google Scholar 

  3. G.H. Golub, C.F. van Loan: Matrix Computations, 2nd ed. Baltimore: The Johns Hopkins University Press 1989

    Google Scholar 

  4. S.K. Kim, A.T. Chronopoulos: An efficient parallel algorithm for extreme eigenvalues of sparse nonsymmetric matrices. The International Journal of Supercomputer Applications 6, 98–111 (1992)

    Google Scholar 

  5. M.N. Kooper, H.A. van der Vorst, S. Poedts, J.P. Goedbloed: Application of the implicitly updated Arnoldi method with a complex shift and invert strategy in MHD. FOM Preprint PP 93/061 (1993)

    Google Scholar 

  6. C.C. Paige, B.N. Parlett, H.A. van der Vorst: Approximate solutions and eigen-value bounds from Krylov subspaces. To appear. Linear Algebra and its Applications (1994)

    Google Scholar 

  7. S. Poedts, P.M. Meijer, J.P. Goedbloed, H.A. van der Vorst, A. Jacoby: Parallel magnetohydrodynamics on the CM-5. This conference.

    Google Scholar 

  8. Y. Saad, M.H. Schultz: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing 7, 856–869 (1986)

    Google Scholar 

  9. Y. Saad: Numerical methods for large eigenvalue problems. Manchester: Manchester University Press 1992

    Google Scholar 

  10. D.C. Sorensen: Implicit application of polynomial filters in a k-step Arnoldi method. SIAM Journal on Matrix Analysis and Applications 13, 357–385 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wolfgang Gentzsch Uwe Harms

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Booten, J.G.L., Meijer, P.M., te Riele, H.J.J., van der Vorst, H.A. (1994). Parallel Arnoldi method for the construction of a Krylov subspace basis: An application in magnetohydrodynamics. In: Gentzsch, W., Harms, U. (eds) High-Performance Computing and Networking. HPCN-Europe 1994. Lecture Notes in Computer Science, vol 797. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57981-8_116

Download citation

  • DOI: https://doi.org/10.1007/3-540-57981-8_116

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57981-6

  • Online ISBN: 978-3-540-48408-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics