
Cut Formulae and Logic Programming

Luis P in to *

luis@dcs.st-and, ac.uk
Computer Science Division
University of St Andrews

Scotland

Abs t r ac t . In this paper we present a mechanism to define names for
proof-witnesses of formulae and thus to use Gentzen's cut-rule in logic
programming. We consider a program to be a set of logical formulae
together with a list of such definitions. Occurrences of the defined names
guide the proof-search by indicating when an instance of the cut-rule
should be attempted. By using the cut-rule there are proofs that can be
made dramatically shorter. We explain how this idea of using the cut-rule
can be applied to the logic of hereditary Harrop formulae.

1 I n t r o d u c t i o n

T h e c o m p u t a t i o n m e c h a n i s m s b o t h for logic and for func t iona l p r o g r a m -
m i n g are searches for cu t - f ree proofs . F i r s t , in p u r e logic p r o g r a m m i n g
the ach i evemen t of a goal G w.r . t , a p r o g r a m P can be seen 1 as the

search for a p r o o f in G e n t z e n ' s in tu i t ionis t ic sequent calculus LJ [Gen69],
of the sequent P =~ G, t h a t by G e n t z e n ' s cu t - e l imina t ion t h e o r e m can be

cut - f ree [Bee89], [Mil90]; a A- te rm found as a wi tness to a p r o o f conta ins
a m o n g o the r th ings the answer subs t i t u t i on . Second, the conven t iona l

v iew of func t iona l p r o g r a m m i n g , as in [Tho91], is t h a t one c o n s t r u c t s

a sequence of defini t ions and an express ion to be eva lua ted ; the eval-

ua t i on of the express ion is done by rep lac ing the def inienda by the i r

def in ient ia and subsequen t no rma l i s a t i on . By the C u r r y - H o w a r d corres-
p o n d e n c e be tween t y p e s and p ropos i t ions , the eva lua t ion of express ions
in func t iona l p r o g r a m m i n g co r r e sponds to the n o r m a l i s a t i o n of proofs in

G e n t z e n ' s n a t u r a l deduc t ion s y s t e m NJ . So, b o t h processes yield cut-fl 'ee

proofs , us ing "cu t - f ree" first in the sequent calculus sense and second in

the n a t u r a l deduc t ion sense.

* Supported by JNICT (Portugal) grant BD/1423/91-IA and by ESPRIT grant BRA
7232 "GENTZEN".

1 This view is contrary to the one expressed in [GLT89], where a program is a set of
sequents and the achievement of a goal w.r.t, a program is the search for a proof
using instances of the sequents in the program as proper axioms and the cut-rule as
the only inference rule. The latter approach does not generalise when we allow for
non-Horn formulae in the program.

283

From a type-theoretic point of view [ML84], [Tho91], in logic program-
ming we give a specification (goal formula) and we want to find an object
meeting that specification, and in functional programming we give a spe-
cification (type) and an object (the expression to be evaluated) meeting
the specification and we want to t ransform the object into another object
in normal form meeting the specification.

If we were to allow the cut-rule in proof-search some formulae would
have much shorter proofs. For example, in [Boo84] it is shown tha t there
are formulae whose shortest cut-free proofs are exponentially longer than
their shortest proofs using instances of the cut-rule. The problem of using
the cut-rule is to decide when and how the cut-rule should be applied; in
other words, what are the adequate lemmas to use in proving a theorern.
The lemmas are usually established based on experience. In programming,
we do not expect to establish lemmas during the proof-search. Instead
we expect the programmer to know what lemmas may be useful and
define names for the proofs of these lemmas. Then, during the search for
a proof of a formula we can use these formulae previously established
without having to prove them severM times. As a result of proof-search
in this framework we can obtain proofs with instances of the cut-rule; if
required cut-elimination can be applied. Although we allow for instances
of the cut-rule during the search for a proof, proof-search can still he
efficient since the application of the cut-rule only needs to be a t t empted
in particular circumstances, to be described in full below. Brietty, the cut-
rule is a t tempted if there is an occurrence of a defined name in the goal
in which case the type of the defined name is used as cut formtlla.

In our system we have two layers of typed objects. Oil one layer the
objects are ,k-terms with constants and their types are the simple types
of Church's theory of types. On the other layer the objects are proof-
witnesses and their types are logical formulae. Terms may occur both in
proof-witnesses and logical formulae but occurrences of proof-witnesses
in the logical formulae are not allowed.

This paper is organized as follows. We start by introducing the un-
derlying language of typed A-calculus with constants and by presenting
the calculus L J ~ for intuitionistic logic with proof-witnesses annota t ing
the formulae. Next, we describe the idea of using definitions to control
the proof-search and we apply this idea to the logic of heredi tary Harrop
formulae. An example of how this technique may be used to find shorter
proofs follows. Finally we mention other related works and present some
concluding remarks.

284

2 L o g i c a l P r e l i m i n a r i e s

We will i n t roduce the under ly ing language of t yped A-calculus with con-
s t an t s based on [Milg0]. Let us consider a t y p e sys tem wi th a set S of
primitive types. We assume the symbol o, the type of propositions, to be
a m e m b e r of 3 . T h e set of types is the closure of $ under the fo rm a t io n of
func t ion types . T h e cons t ruc to r of func t ion types is deno ted by -+ and it

associates to the r ight . T h e symbols v, r0, ... are used to deno te a r b i t r a r y
types . Any type v can be wr i t t en as T1 -+ ... --+ "rn --+ TO, where To is a
pr imi t ive type . In the pa r t i cu la r case where n = 0 the t y p e r is jus t r0.

We assume the re is a set C of t y p e d constants of and a set A" of
d e n u m e r a b l y m a n y variables of each type . We also assume the re is a set ~4,
whose me m be r s we call parameters, with den u m erab ly m a n y p a r a m e t e r s
of each type . We use a, a l , a2, ... as p a r a m e t e r s . A signature Z is a set ,
whose e lements are e i ther cons tan ts or pa r am e te r s . We of ten display the
m e m b e r s of a s igna ture as pairs s : r , where s is e i ther a cons tan t
or a p a r a m e t e r and r is its type . Terms are built up f rom cons tan ts ,
p a r a m e t e r s and variables by appl ica t ion and abs t r ac t i on over variables as

usual , sub jec t to the t ype rules. For example , if x is a variable of t y p e r ,
a is a p a r a m e t e r of t ype ~- and c is a cons t an t of t y p e v --+ r --~ r t h en
)~x.cax is a t e r m of t y p e T --+ r . An atomic formula A is a t e r m of the
fo rm ptl. . . tn, where p is a cons tan t of t y p e rl --~ ... --+ Tn --~ o; A is a
first-order atomic formula if vl, ..., T, are pr imi t ive types different f rom o.
(Logical) formulae are buil t up f rom a tomic formulae by using the logical
constants A : o -+ o --+ o, V : o --+ o ~ o, D: o ~ o ~ o, and for every
t yp e v, 3~ : (r --+ o) --+ o and V~ : (v --~ o) --+ o. We use the infix n o t a t i o n

t l A t2, t l V t2, t l D t2 to display Atlt2,Vtlt2,D tit2 respect ively, and we
display fo rmulae of the fo rm 3~()~x.t),V~()~x.t) as 3,:~t,V~:~t respectively.

As usual , an occur rence of a symbol s wi thin a t e r m can be classified
as e i ther bound if s occurs in the scope of)~s or free otherwise . A t e r m
is closed if it conta ins no fl'ee variable occurrences . We use [tl/x]t to
ind ica te the t e r m ob ta ined f rom t by replacing the free occur rences of the
variable x by the t e r m t l changing bound variable names to avoid variable
cap ture . We define (a)fl~l-convertibility as usual and we ident i fy t e rms
t h a t are a -conver t ib le . Normal ly we abbrev ia t e (a) /~ / -conver t ib i l i ty by

A-convertibility. A t e r m is in normal form if it conta ins no occurrences
of/~- or ~/-redexes. For every t e rm t, t has a unique n o rm a l fo rm th a t we
wri te Anorm(t).

Let Z be a s ignature . A Z- term is a t e r m all of whose symbols occur-

ring freely are member s of Z ; in o the r words, a Z - t e r m is a closed t e r m
all of whose cons tan t s and pa r ame te r s are in Z . A Z-formula is a fo rmula
all of whose nonlogical cons tan t s occur r ing freely are m e m b e r s of Z .

285

Let L/ be a denumerab le set , whose m e m b e r s W, W1, W2, ... we call
dummies. Let Tr be a denumerab le set , whose m e m b e r s r, r l , r2, ... we call
abstract realisers.

T h e set w of proof-witnesses is induc t ive ly defined as follows:

w ::= 7hw [~r2w I (w , w) l i n l w l i n r w I r [w h e n w w w I ww I~\,'.w
I (t , I I I le t r = i n I le t a = I W ,

where r ranges over T~, a ranges over A, W ranges over U and t ranges
over closed te rms. We use w, Wl, w2, ... to wri te proof-wi tnesses .

An occur rence of a p a r a m e t e r a in a proof-wi tness is free if it is no t
in the scope of),a or let a; it is bound otherwise . Let ~U be a s igna ture ,
A proof-wi tness w is a Z-proof-witness i f all its cons tan t s are in Z and if
all the p a r a m e t e r s occurr ing freely in w are also in Z .

A sequent is a quadrup le Z ; F =v w : F , where

1. Z is a s ignature ;

2. _F is a finite set of pairs r l :F1 , ..., r,~ : F~, where r l , ..., r~ are dis t inct
abs t r ac t realisers and F1, ..., F,~ are Z - fo rmu lae ;

3. w is a Z-proof -wi tness ;
4. F is a Z - fo rmu la .

T h e set F is called the antecedent of the sequent and the fo rmula F is
called the succedent of the sequent . In fo rmal ly we read a sequent as: the
t e r m w witnesses the provabi l i ty of the goal F w.r . t , the set of a s sumpt ions
F over s igna ture Z .

F igure 1 presents the sequent calculus L J ~ for in tu i t ionis t ic logic over
t y p e d A-terms wi th proof-witnesses a n n o t a t i n g the formulae .

T h e o r e m I. Let ~; F ~ w : G be a provable sequent in L J ~. Then there
is a proof-witness wl s.t. the sequent ~; F =~ wl : G has a proof with no
instances of the cut-rule.

Proof. By induc t ion on the s t r u c t u r e of the p ro o f of the sequent
~ ; F ==~ w : G and the size of the cut f o rmu la as usual. []

A uniform proof, as defined in [MNPS91] , is a p roo f in which each
occur rence of a sequent whose succedent is n o n a t o m i c is the conclusior~
of the rule t h a t in t roduces its top-level connect ive .

3 P r o o f - S e a r c h U s i n g t h e C u t - R u l e

By T h e o r e m 1, if we avoid using the cut - ru le of L J ~ we can still p rove
all the sequents we could prove before. However , t he re are then p r o o ~

286

a x i o m
E ; F , r : A = ~ r : A

22;r l : A , r2 : B , F = : , w : C

Z ; r : A A B , F ~ let rl = rrlr in let r2 = r2r in w : C

S ; F = ~ w ~ : A 2 2 ; F ~ w 2 : B 2 2 ; F ~ w : A

2 2 ; F ~ (w ~ , w 2) : A A B =>A ~ ; F ~ i n l w : A V B

S , ; F ~ w : B 22;F, r 1 : A ~ w l : C S ; F , r 2 : B = ~ w 2 : C
==~ v2

~ ; F =~ i n r w : A V B 22; F, r : A V B =~ w h e n r(Ar~ . w l) (A r 2 . w 2) : C

2 2 ; F , r : A D B ~ w l : A 2 2 ; F , r : A D B , r a : B = ~ w 2 : C
D ~

S ; F, r : A D B :~ let rl = rwa in w2 : C

S ; r : A , F =~ w : B

L ' ; F =~ Ar .w : A D B
~ D

S ; V =:, w : [t / x] A

22; P , ~ (t, w) : 3=:~A
o 3

22 U {a : r} ; r l : [a / x] A , F ~ w : B

~U;r : 3~: rA, F ~ let a = rqr in let rl = 7r2r i n w : B
3 ~

S ; t l : [t / x] A , r : V = : , A , F =~ w : B

~ ; r : V=:rA, F ~ let rl = r t in w : B

S ; F = ~ w : B S ; r : B , F = ~ w x : A

Z ; F ~ let r = w in w l : A

V ~
U { a : r } ; F =~ w : [a / x] A

Z ; F =~ A a . w : V=:~A

' ' A ' S ; r l : A 1 , . . . , r , : A , =~ w :
c u t

S ; r l : A 1 , . . . , r , , : A , ~ w : A

V=r

=~V

Aconv

Prov isos :

1. in
2. in
3. in

4. in
5. in
6. in
7. in
8. ixt
9. in

t h e a x i o m , A is an a t o m i c fo rmula ;
A ::~ and V =~, r l a n d r2 are n e w a b s t r a c t reMisers ;
D=; ", r l is a n e w a b s t r a c t real iser ;
=~ 3, t is a S - t e r m of t y p e 7-;
=r V, a is a n e w p a r a m e t e r ;
3 =~, a is a n e w p a r a m e t e r a n d r l is a n e w a b s t r a c t real iser ;
V =~, t is a S - t e r m of t y p e r a n d r l is a n e w a b s t r a c t real iser ;
cut , r d o e s n o t occu r in F ,

Aa, ..., A , , A are)~-convert ible to A1, ..., An , A respec t ive ly . ~COnVj t I

F i g . 1. T h e ca lcu lus L J ~

287

t h a t will be exponentially longer than if they were built up by using the
cut-rule. The problem of using the cut-rule is tha t it does not preserve the
subformula property since the cut formula, the formula B in the cut-rule
of LJ ~, might not occur in the conclusion sequent and so, proof-search is
difficult.

Usually in logic programming a program is a set or a list of logical
formulae. In our approach we consider a program to be a set of logical
formulae together with a list of definitions. The names being defined in
the list of definitions will guide the search for a proof since they will be
responsible for triggering instances of the cut-rule. The cut-rule is applied
only in case there is an occurrence of a defined name in the goal formula.
In this case the cut-rule is applied and the cut formula is the type of the
defined name. Below, we explain how this idea of using the cut-rule can be
apphed to the logic of first-order hereditary Harrop formulae, for which
uniform proofs are complete as shown in [MNPS91], and thus efficient
proof-search strategies can be devised.

The 2 set H of first-order hereditary Harrop formulae 3 is inductively
defined by:

H::=AIHAHIG~A1V~:r
C: := A I G A G I G V G I 3~:r I H D G I V~:r

where the meta-variable A ranges over the set of first-order atomic for-
mulae and 7 ranges over the set of primitive types different frorn o. We
define the set I of I-formulae as:

I::= A I I A I I I D AIV~:,I,

whel"e the meta-variable A ranges over the set of first-order atomic for-
mulae and T ranges over the set of primitive types different from o. The
set o f / - fo rmulae is the intersection of the sets of H- and G-formulae. A
formula is called a C(ut)-formula if it has the form

3A :-rl...3f,:~,,I,

where T1, ..., r~ are arbi trary types and I is an I-formula.
Let Z be a signature. The set of ZH-formulae is the set of all ~-

formulae tha t are also H-formulae. Likewise we define the sets of ZG-
formulae and ZC-f ormulae.

2 The letter H is used to denote hereditary Harrop formulae ra.ther tha.n D beca.use
we use below the letter D to denote sets of defined names.

3 First-order hereditary Harrop formulae, as defined in [MNPS91], are formulae i~L
A-normal form; here we also consider formulae in non-)~-normal form.

288

Let 79 be a set, whose members d, dl , d2, ... we call defined names. We
extend the definit ion of Z-proof-witnesses by allowing proof-witnesses to
be built up also f rom defined names, i.e.

w : : = ~ h w l T r 2 w [(w , w) l i n l w l i n r w l s l w h e n w w w l w w l) ~ r ' . w
[(t ,w) I w t l ' ~ a . w l l e t s = w i n w [l e t a = T h s i n w [W ,

where s ranges over T~ U 79.
A proof-witness of a C- formula has the form (t~, (t2, ...(tin w). . .)) . If we

define a name d for such proof-witness the expressions 7rid,
~(~d),...,~(~-~d)) denote the t e rms t l , t2, . . . , t~ respectively, where
7r~ -1 represents n - 1 applications of ~r2. We define a set g of t yped
expressions of the form:

(7rld) n , (~h (Tr2d)) ~2 , (Trl (~r2(~r2d)))r3, ...,

where d ranges over ~D and T1, V2, 7"3, ..., range over types . We redefine the
set of X- te rms to be also allowed to be built up f rom expressions e ~ in E,
which are considered to be ~ - t e r m s of type r . Let 791 be a subset of l) .
The set of X791-terms is the set of X- te rms , all of whose defined names
are in 791. For example, if d E 791 and (Thd) ~--*~ E E and c : 7" E X then
(Trld)'--'~c is a N79Cterm of type r . Likewise we define N79Cfo'rmulae,
X791H: formulae, X79~G-formulae and X791C-formulae.

Let X be a s ignature and let 791 be a set of defined names. We define
two new sets w + and w - of proof-witnesses; roughly speaking, w- -proof -
witnesses will be used to a n n o t a t e formulae in the p rogram and the w +-
proof-witnesses will be used to a n n o t a t e goal-formulae. The set w + of
XZ)l-w+-proof-witnesses and the set w - of X791-w--proof-witnesses are
induct ively defined as follows:

w+ ::= w - I (w+, w+)I int w+ l in," w+ I ~,~.w+ I (t, w+)
I An.w+ I let d = w+ in w+ I V<

w - ::= rrlw- I rr2w- I 'r I w - w + I w - t [d ,

where r ranges over ~ , a ranges over .A, W ranges over dummies , d
ranges over 79t and t ranges over Z791-terms. We use w, Wl, w2, ... to write
w+-proof-witnesses and w~-, w2 , . . , to wri te w--proof-wi tnesses .

Let Z be a s ignature , d a defined name, :D I a set of defined names not
conta in ing d, w a Z:DI-w+-proof-witness and C a Z79 'C-formula . Then
d =d~1 w : C is called a definition, with definiendum d, definiens w and
type C.

A Z791-term t is well-typed w.r.t , a list of definitions A if t is a Z791-term
and for all expressions of the form (~r l (r~ - ld)) ~" occurr ing in t there is a

289

definition d =a~j w : 3=~: n...3=,,:~.C in A. Likewise we define the property
of being well-typed w.r.t, a fist of definitions for SD'-foi 'mulae, SD' -
w + and k2DI-w - proof-witnesses, SD 'H-formulae , SD'G-formulae and
SD'C-formulae. A fist of definitions A is well-formed w.r.t, a signature
S if the assertion 0; 0 bwytd A can be proved by using the inference rules
in Fig. 2.

a x i o m

:D' U {d}; A, d =~.s w : C k,~ytd A '

/) ' ; A I-~.na d =,~.j w : C, A '

The second rule has the following provisos attached:

1. d ~/~';
2. w is a well-typed s w.r.t . A;
3. C is a well- typed ~7) tC-formula w . r . t . A .

F i g . 2. The rules for F~iza.

We define a new concept of sequent 4 as follows: a sequent is a
quintuple X; A; F =~ w : F , where

1. L' is a signature;

2. A is a well-formed list of definitions w.r.t. ~ and D ~ is the set of na.mes
being defined in A;

3. F is a set of the form wl : F1, ...,wn : F~, where wl, ..., wn are well-
typed SD'-w--proof-witnesses w.r.t. A and F1,... , F,~ are either well-
typed ~D'H- or ~D'C-formulae w.r.t. A;

4. w is a well-typed SD'-w+-proof-witness w.r.t. A;
5. F is either a well-typed ~D'G- or SD 'C- fo rmula w . r . t . A .

We call S; A; F a basis.
Let the sequent cMculus H H cut be defined by the inference rules of

Fig. 3.

Theorem 2. All proofs in H H c~t are uniform proofs.

Pro@ Observe tha t the only rules tha t can be applied to non-a.tomic
succedent sequents are right introduction rules. []

4 We refer to the sequents defined in the previous section by L 2 ~ sequents.

290

a x i o m
L'; "4; F, w~- : A =~ w~" : A

Z ; ' 4 ; r a w [: Ha,~r2w I : H2, F ~ w : A
A::--~

S ; A; w;" : Ha A H 2 , F ~ w : A

E;'4;F=~wl :G1 Z;'4;F=~w2 :G2
::r

E ; "4; F =~ (wl, w2) : G1 ^ G2

S ; ' 4 ; F :=r w : Ga Z ; ' 4 ; F ~ w : G2
=# Vx ~ V2

~ ; "4; F ~ in l w : G1 V G2 E; "4; F ~ inr w : Ga V G2

E ; ' 4 ; r : H , F ::~ w : G

~ ; A ; F ~ A r . w : H D G

S ; A; F, w'~ : G D A ::V, w l : G S ; "4; I', w'~ : G D A, w ~ w l : A =~ w : A1
D::v

S ; "4; F ~ w : [t / z] B

S ; 3 ; F ~ (t , w) : 3=:r
~ q

S ; ' 4 ; r 2 w 7 : [(T q w a) ~ / x] C , F ~ w : A

S ; A; w ~ : 3x:rC, r ~ w : A
S ~

Z U { a : 7-}; "4; ff ==~ w : [a / x l G

~ ; .4; i ~ =~)ta.w : V=:,.G

S ; A ; w T t : [t / x] H , w 7 : V . : ~ H , F ~ w : A

~ ; ,5; w~- : V~:~-H, F =~ w : A

~ ; A ; d : C , F ~ wa : A

~ ; "4; F ~ le t d = w in wa : A

Z; "4; w~- : HI , ..., w~ H' , ~ w : A '
cut)`conv

~ ; . 4 ; w Z : H a , . . . , w ~ : H,~ ~ w : A

Provisos:

1. The meta-variables A, A a , A ' range over atomic formulae; the meta-variables
G, Ga, G2 range over G-formulae; the meta-variables H, Hi , . . . , Hn, H~ , . . .H" ra.nge
over H-formulae; B is either a G-formula or a C- formula and C ranges over C-
formulae;

2. in ~ D , r is a new abstract realiser;
3. in ~ 3 and V ~ , t is a Z - t e r m of type r ;
4. in ==r V, a is a new parameter ;
5. in 3 3 , w~- is of the form rr2(...(r2d)...);
6. in cut, the definition d =~,s w : C is a member of A;

r r !
7. in)`cony, Ha, ..., Hn, A are),-convertible to H1, ..., H , , A respectively.

F i g . 3. The calculus H H ~*.

291

The inference rules of Fig. 4 define for bases the proper ty of being
well-formed: we say that a basis 22; A; F is well-formed if the assertion
~-~lb ,V; A; F is provable.

axiom
~-~sb E; 0; r

b~l b S; A, d =d.s" w : C; F

Fig. 4. Inference rules of b,~lb.

T h e o r e m 3. Let kJ; A; F ~ w : G be a sequent where ~; A; F is a well-
formed basis and let 1" be of the fo rm rl : H1, ..., rn : Hn, where rl , ..., rn
are distinct abstract' realisers in T~ and H1, ..., Hn are ZH- formulae . I f
~- HHcut 22; A ; 1" =:~ w : G then there is a proof-witness Wl s.t.
~Lj~)7; F* =~ wa : G*, where F*, G* result f rom 1", G respectively by 7~-
placing all definienda by their definientia.

Proof. A sketch of the proof goes as follows. Let p be a proof of
22; A; F =~ w : G. Then a proof Pl of Z'; F* :=~ wl : G* can be built up
by following the s tructure of the proof Pl and by changing the proof-
witnesses accordingly. For example, let

22; A ; F , d : C :* w3 : A
cut

22; A; F :=r let d = w2 in w3 : A

be an instance of the cut-rule in p. By induction hypothesis we know how
to obtain a proof of 27; F* ::~ w4 : C* from the proof of well-formedness
of the basis 22; A; F and a proof of S ; F * , r : C* ==~ w5 : A*, where r is
a new abstract reMiser and F*, C*,A* result fi'om F , C , A respectively
by replacing all definienda by their definientia. Then this instance of the
cut-rule in p originates an instance

~ ; F * ~ w 4 : C * 2 2 ; F * , r : C * ~ w s : A *
cut

22; F* ~ let r = w4 in w5 : A*

of the cut-rule in Pa. []

T h e o r e m 4. Let 27; A; F =r w : G be a sequent where ~; A; F is a well-
formed basis. I f ~ HHc~,t 22; A ; 1 ~ ~ W : G then there is a proof-witness "wa
s.t . ~-HHeUt 22; ();]-'* ~ W 1 : G * , where F*, G* result f i v m F, G respectively

292

by replacing all definienda by their definientia; in other words the cut-rule
' is admissible.

Proof. Observe that i f the re i s a p r o o f o f Z ; / 1 , d =d~s w : C, /1 ' ;F ~ Wl : G
where there are no applications of the cut-rule with definition d =d~i w : C
then ~ ; /1 , /1 '* ; 1"* ~ wl : G is a provable sequent of H H ~'t, where/1'*, P*
result from/1~, 1" respectively by replacing all definienda by their defini-
entia. Then the proof follows by induction on the s t ructure of the proof of
~-HHCUt ~; A~; 17" ::~ W : G and from the proof of well-formedness of ~V;/1;/~.

[]

Let Z be a signature. Let 7) be a set of ~ H- fo rmu l ae H1, ,.., H,~. Let
1" be the set containing the pairs rl : H1,. . . , rn : Hn, where r l , . . . , r~
are distinct abstract realisers in T~. Let A be a list of definitions. The
pair (A, 7)) is a program if ~ ; A; / " is a well-formed basis. Assume (/1, 7))
is a program. Assume also that G is a G-formula and Z; A; F =~ W : G
is a sequent, where W is a dummy. Achievement of the goal G w,r.t.
the program (/1,7)) corresponds to a search for a proof of the sequent
~ ; / 1 ; 1" ~ W : G in the calculus H H c~t. During the search for a proof
of this sequent the proof-witness W is instantiated. If the proof-search
is successful W is instantiated with a proof-witness where dummies do
not occur. From this proof-witness one can extract , among various other
things, the instantiation for the existentially quantified variables occur-
ring in G.

T h e o r e m 5. Let Z be a signature and F the set containing the pairs
rl : H1, . . . , r~ : H,~, where r l , . . . , rn are distinct abstract realisers in

and H1, . . . ,H~ are ~H-formulae. Let G be a ~G-formula. Then, if
•; 1" ::~ w : G is' provable in L J ~ then there is a proof-witness wl s.t.
Z; (); F ~ Wl : G is provable in H H cut.

Proof. The proof follows from the observations that (i) we only need to
consider cut-free proofs of Z; F ~ w : G; (ii) all L J ~ sequents occurring
in the proof of ~ ; F ~ w : G contain only H-formulae in the antecedent
and a G-formula in the succedent; (iii) all the L J ~ rules A o , D O , V
can be permuted above the L J a rules ~ A, ::~ V, =~D, ~ 3 and ::~ V. []

For any provable sequent of H H c~'t we can find one of its proofs by
applying the following search strategy. If the goM formula is not atomic we
apply right introduction rules until the goal becomes atomic. When the
goal formula is atomic there might be several rules that can be applied.
If there is a defined name d occurring in the goal and there is a definition
d =~s w : C in the list of definitions we apply the cut-rule and we mark

293

this definition as used so that no other applications of the cut-rule are
a t t empted with this definition. We keep applying the cut-rule until no
further applications are possible. Next, we apply 3 =~ until no further
applications of 3 =~ are possible. At this point all the formulae in the
antecedent are H-formulae so we proceed by backchMning as usual, i.e.
roughly speaking we proceed by breaking up the conjunctions on the left
and by unifying the goal formula with the heads of program formulae
start ing with the formulae that were originated from cut formulae.

4 E x a m p l e

The example presented below is based on an example given in [Boo84] to
show that cut-free proofs may be exponentially longer than proofs using
instances of the cut-rule.

Let r be a primitive type. Let Z be the signature

{ l : r , c : T - . r - . v , L : v -+ o} .

Informally, we can interpret ~- as the set of natural numbers and c a.s the
addition of two natural numbers. Let F be the set containing only the
following pairs:

rl : L1,
r 2 : Vx:rVx,:rVx2:,r(L(c(CXXl)X2) D L(cx(cx,x2))),
,3 : Vx: (Lx D

Let x, t be vectors of variables and terms respectively, say of size n. Let
V =>* represent n applications of the rule V ==~. Let H , H ' be abbreviations
for V• D A ') , G D A ~ respectively and let r be an abstract realiser. Let
/ / be the basis ~ ; A ; / ' , r : H. Let the notat ion l I , w l : H l ~ . . . , w ~ : H ~

signify ~ ; A ; F , r : H , w l : H 1 , . . . , w ~ : H a . Then the rule F P stands for
the sequence of inferences shown in Fig. 5.

H, r t : [t/x]H' ::~ Wl : [t/x]G H, [t / x]H' , r t w l : [t/x]A' :=~ rtwl : A
D ~

H, rt : [t/x]H' =~ rtwa : A

11=~ r t w l : A V::~*

Fig. 5. The sequence of inferences b- P.

Consider we want to prove in L J a tile goal L ((A x . c x (c 1 1)) ((A x . c x (c 1 1)) l))

w.r.t, the program F using a uniform proof. Figure 6 shows a uniform

294

proof of this goM together with the instantiat ions of the dummy proof-
witnesses. After performing all substitutions, we obtain for the dummy

Z ; F ~ Wr : L1 a x iom
F P

~7; F ~ W~ : L(cll) ~-p
E ; F ~ W5 : L (c (c l l) l)

F P
~ ; r =~ W4 : L (c l (c l l))

~ - p
~Y:; F =:~ W3: L(c(cl(c11))l) [-p

~-p
~, ; J" =~ Wl : L (c (c l (c l l)) (c l l))

/~ C O TI/U
; V ~ Wa : L ((A x . c x (c l l)) (c l (c l l)))

)tCOn'O

The instantiations for the dummy proof-witnesses are:
Wl ~-* ra(c l (c l l))11W2; W2 ~-~ ra(c(cl(c11))1)Wa; Wa ~-~ ra(c l (c l l))W4;

W4 ~-~ r2111Ws; W~ ~ ra(c l l)W6; W6 ~-* ralWv;
Wr ~'* rl ;

Fig. 6. A uniform proof.

proof-witness W1 the proof-witness

r 2 (c l (c l l)) l l (r a (c (c l (c l l)) l) (r a (c l (c l l)) (r 2 1 1 1 (r 3 (c l l) (r 3 1 r l))))) .

In this proof the sequence of inferences shown in Fig. 7, for appropriate
instantiat ions of a , occurs twice. If we had used the cut-rule with cut for-
mula V x : r (L x D L (c x (c l l))) we would have needed to prove the sequence
of inferences in Fig. 7 only once. We will now show how to construct a
proof of this goal using instances of the cut-rule as we explained before.

27; F :=> W4 : L a
b P

Z ; F ~ Wa : L(cal)
F-P

E ; r ~ w~ : ~(c(c~1)1)
~ P

8 ; F * W1 : L(ca(cll))

The instantiations for the dummy proof-witnesses are:
W1 ~-* r z a l l W 2 ; W2 ~ ra(cotl)W2; W3 ~ ra~W4.

Fig. 7. A sequence of inferences repeated in the proof of Fig. 6

Let A be the list whose only member is the definition

295

+2 =d~, (kx.cx(cll),Aa.Ar4.r2all(r3(cal)(r3ar4)))
: 3I:,--,rV~:,(Lx D L(Ix)) .

A proof of the well-formedness of the basis Z; ,5; F can be obtained by
combining the axiom ~-wfb Z; (); F with the proof presented in Fig. 8. By
using the defined name +2 we rewrite the goal
L((Ax .cx(c l l)) ((Ax .cx(c l l)) l)) into L(a'l +2 (~'1 +2 1)), where for brevity
we drop the types in C-expressions. Now we show how to construct a
proof of the sequent ~7;,5; F => W : L(rrl +2 (~rl +2 1)), where W is a
dummy proof-witness, by applying the proof-strategy described in the
previous section. The occurrence of the defined name +2 in the atomic
goal triggers an instance of the cut-rule with its type being the cut formula
to be used. We look up the list of defined names and we find the type
3l:,-~Vx:~(Lx D L (f x)) for the name +2. We apply the cut-rule and we
have now to prove the sequent:

(i) E; ,5; +2 : ~I:.~-,~V~r(Lx D L(f x)) , r => I/V~ : L(Tq +2 (711 +2 1)).

As a consequence of applying the cut-rule the proof-witness W is insta,n-
tiated with

let +2 = <),a:.cx(cll),)~a.)~r4.r2all(r'a(cal)(raar4))) i'n kV1.

~PtO {a : r};0;r4 :La, F=>~4 :La ~ - p
~'tO {a: r}; (); r4 : La, F :=> r3ar4 : L (ca l) ~-p

~P U {a : r}; 0; r4 : La, I p ~ r3(cal)(raar4) : L (c (c a l) l)
~ - p

tO {a: r}; O ; r , : La, F ~ r2a11(ra(ca1)(raa'r4)) : L (c a (c l l))
Aconv

tO {a: r}; (}; r4 : La, f f ~ v2a l l (r3 (ca l) (raar4)) : L ((A x . c x (c l l)) a)
D

tO {a: r}; (); F ~ Ar4 .r2al l (ra(ca l) (raar4)) : La D L ((A x . c x (c l l)) a)

E; O; F ~)~a. ,kr4.r2al l (ra(cal) (raar ,)) : V=:T(Lz D L((),•.cm(c11))z)) ~ V
~ 3

Z'; 0; F ~ (Ax . cx (c l l) ,Aa .Ar4 . r2 a l l (ra (c a l) (ra a r4))) : 3] V~:r(Lx D L (f x))

Fig. 8. A proof of well-formedness of ~; ZX; F.

Figure 9 shows a proof of the sequent (i) together with the instantiations
of the dummy proof-witnesses generated during the search for the proof.
In this proof, we start by replacing in the cut formula the symbol f by
the term rq+2. Then we use the cut formula twice to simplify the goal
and we are left with an axiom sequent.

296

axiom

~ P
E; z~; ~ + ~ : V = . (L . ~ L(~I +~ .)) , r ~ w~ : L(~I +~ ~)

F-P
Z'; Zi; ~r2+2 : V.:~(Lx D L(~h +2 x)) , F ~ W~ : L(r~ +~ (rl +2 1))

3 ~
Z; A; +~ : 3! V,:,.(Lx D L(fm)), F ~ W~ : L(r1 +2 (Th +2 1))

The instanti~tions for the dummy proof-witnesses are:

W~ ~ r2 +2 (~r~ +2 1)W2; W2 ~ r2 +2 1W3; W3 ~ r~.

Fig. 9. A proof of (i).

Replacing all the dummy proof-witnesses by their instantiations we
obtain for the initial goal L(Trl +2 (7rl +2 1)) the proof-witness

let +2 = (Ax.cx(cll), Aa.Ar4.r2all(r3(cal)(r3ar4)))
in ~2 +2 (~1 +2 1(~2 +2 lrl)) .

One of the consequences of the Curry-Howard correspondence between
types and propositions is the relation between normalisation and cut-
elimination. For if we normalise the proof-witness we obtained for the
goal L(m'l +2 (~rl +2 1)) we obtain the term

r2(c1(c1I))11(r3(c(c1(c11))1)(r3(cl(c1I))(r2111(r3(c11)(r31r1))))),

which is a witness for a cut-free proof of L ((A x . c x (c 1 1)) (A x . c x (c 1 1)) l)) .

In fact this proof-witness is the same as the proof-witness we obtained
for the uniform proof of Fig. 6.

5 R e l a t e d a n d F u t u r e W o r k

The typed logic programming language AProlog [NM88] is based on the
logic of higher-order hereditary Harrop formulae for which uniform proofs
are complete, as shown in [MNPSgl]. It supports modular programming,
abstract data types and higher-order functions and predicates. We showed
how to extend the logic of first-order hereditary Harrop formulae to have
definitions of names to control the applications of the cut-rule. We intend
to look at the possibility of having non-hereditary Harrop formulae in a
program provided they are paired with a proof-witness that would guide
the application of left introduction rules. In fact this problem arises if we
try to extend the set of formulae we allowed as cut formulae in the setting
of first-order hereditary Harrop formulae.

Two different views of logic programming based on the system of
dependent types LF [HHP87] are given in [Pfegl] and in [Pymg0].

297

Elf [Pfe91], [Pfe92] is a logic programming language based on types
through the propositions-as-types correspondence. Achieving a goal (type)
G w.r.t, a program (context) F corresponds to a search for a closed object
M of type G, where the language is determined by a signature ~ such
that F ~-~ M : G is provable in a natural deduction formulation of LF.
The answer to a query is not only a subst i tut ion for the free variables
but a term of query type. Elf has two sorts of incompleteness w.r.t . LF,
one due to the use of a depth-first search and the other caused by the
undecidability of unification for the definitional equality = ~ used in LF.
As in our work, in Elf computat ion corresponds to a search for an object
of query type, but whereas in our case we search for a proof in a sequent
calculus, Elf searches for a natural deduction proof. A major difference
between Elf and our work is that in Elf a program is solely a list of type
assignments to variables; in our proposal a program is also allowed to
contain definitions, where a new variable is introduced as a name tot an
expression of a certain type.

In [Pym90], [PW91] logic programming is seen as a search tor a, proof
of the sequent F(a) ~ x A(a), where Z is a signature determining a
language; (a) is a list of indeterminates; /~ is a context assigning types
that may have occurrences of the indeterminates in (a) to variables and A
is a type that may have occurrences of indeterminates in (a) . The result
of a successful search is a mapping a from indeterminates to terms such
that there is a term M for which F(a)a F-2 M : A(a)a is provable in LF.
The resulting mapping being what one normally calls answer subst i tut ion
in logic programming. Although proof-search is carried out in a sequent
calculus that allows cut-elimination a search for a proof does not involve
uses of the cut-rule.

A Curry-Howard correspondence between a fragment of propositional
intuitionistic sequent calculus and a programming language, where evalu-
ation in the programming language corresponds to cut-elinfination in the
sequent calculus, is presented in [Wad93]. Evaluation in this program-
ming language is different from evaluation in the programming language
obtained by composing a translation of sequent calculus into natural
deduction with the Curry-Howard correspondence between natural de-
duction and ,k-calculus. In our work term assignment is done through this
composition of a translation of sequent calculus into natural deduction
with the Curry-Howard correspondence. In future work we intend to use
a term assignment similar to the one described in [Wad93] and investigate
what different evaluation mechanisms can be obtained from cliff)rent
algorithms to perform cut-elimination.

In [PW92] it is suggested that in logic programming the achievement

298

of a goal w.r.t, a program can be usefully divided into two phases: the
first being proof-search and the second being answer extraction. This idea
was considered for cut-free systems. In fact the same idea can be applied
to systems with cut-rule. For example, the two phases might be (i) the
search for a proof-witness of a goal in a system with the cut-rule; (ii)
the extraction of all the terms used to replace existentially quantified
variables in the goal and subsequent normalisation of these terms, thus
avoiding the normalisation of the entire proof-witness.

An analysis of logic programs as types in the sense of the Curry-
Howard correspondence is given in [Lip92]. A logic program is t ransformed
into an equational specification over the te rm model by exploiting a
uniformity in the predicates and parameters in the program. A program
is writ ten as a realisability goal and there is a search for a function that
returns a proof-witness for every choice of parameters. This mechanism
of synthesising functions can be seen as a way of generating automatic-
ally cut formulae. For it should be possible to employ the idea of using
definitions to guide the proof-search by defining names for the synthesised
functions.

Deliverables [MB93] are proof-witnesses (f , w) of formulae of the form
3=:, 1 ~-F, where vl, ..., vn are primitive types different from o and F
is a formula. In [MB93] it is argued that deliverables are the products
a software house should deliver to its customers, i.e. a program f and a
proof w that the program meets the original specification F. Elsewhere
[Pin] we exploit the idea of using definitions to control the applications
of the cut-rule to give a proof-theoretic semantics to integrate logic and
functional programming by defining names for deliverables.

The language LeFun, as presented in [AKN89], is a programming
language tha t integrates logic and flmctional programming. In this lan-
guage a program is a list of logical formulae together with a list of
definitions. A definition in LeFun has the form name =~j A-term, thus
leaving out the specification the A-term satisfies as well as a proof-witness
for that. The computat ion mechanism is called residuation, which is
a mechanism to delay unification until the arguments of functions are
fully instantiated. In forthcoming work we expect to make precise the
relation of LeFun with the proof-theoretic semantics to integrate logic
and functional programming based on the idea of using names to guide
the proof-search.

6 C o n c l u s i o n s

There are proofs that can be exponentially shorter if they are allowed to
use the cut-rule. The problem of automat ing proof-search in a calculus

299

with a cut-rule is tha t we may apply the cut-rule to any sequent and
once we have decided to apply the cut-rule we still have the freedom
of applying the cut-rule with any formula as cut formula. Our idea of
using definitions to guide the proof-search restricts the cut-rule in such a
way tha t its application is allowed only in case there is a defined name
occurring in the goal formula, and in this case we only a t t empt the cut-
rule with the type of the defined name as cut formula. Thus, we can have a
goal-directed proof-search that in some cases will find proofs exponentiaJly
shorter than we would find with a cut-free search procedure.

R e f e r e n c e s

[AKN89]

[Bee89]

[Boo84]

[Gen69]

[GLT89]

[HHP87]

[Lip92]

[MB93]

[Mil90]

[ML84]
[MNPS91]

[NM88]

[Pfegl]

H. Ait-Kaci and R. Nasr. Integrating logic and functional programming.
Lisp and Symbolic Computation, 2:51-89, 1989.
M. Beeson. Some applications of Gentzen's proof theory in automated de-
duction. In P. Schroeder-Heister, editor, Extensions of Logic Programming,
international workshop, Tiibingen, 1989, proceedings, volume 475 of LNCS,
pages 101-156. Springer-Verlag, 1989.
G. Boolos. Don't eliminate cut. Journal of Philosophical Logic, 13:373-378,
1984.
G. Gentzen. Investigations into logical deduction. In M. Szabo, editor, The
Collected Papers of Gerhard Gentzen, pages 68-131. North-Holla.nd, 1969.
J.Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge
University Press, 1989.
R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
In Proc. Second Annual Symposium on Logic in Computer Science, pages
194-204. IEEE, 1987.
J. Lipton. Relating logic programming and propositions-as-types: a logical
compilation. In Proc. of the Workshop on Types for Proofs and Programs,
Bdstad, Sweden, 1992.
J. McKinna and R. Burstall. Deliverables: a categorical approach to pro-
gram development in type theory. In A. Borzyszkowski a.nd S. Sokolowski,
editors, Mathematical Foundations of Computer Science 1993, volulue 711
of LNCS, pages 32-67. Springer-Verlag, 1993.
D. Miller. Abstractions in logic programming. In P. Odifreddi, editor, Logic
and Computer Science, pages 329-359. Academic Press, 1990.
P. Martin-L6f. Iutuitionistic Type Theory. Bibliopolis, Napoli, 1984.
D. Miller, G. Nad~thur, F. Pfenning, and A. Scedrov. Uniform proofs as

a foundation for logic programming. Annals of Pure and Applied Logic,
51:125-157, 1991.
G. Nadathur and D. Miller. An overview of AProlog. In Proc. F~/'th
Internat. Logic Programming Conference, Seattle, pa.ges 810-827. MIT
Press, 1988.
F. Pfenning. Logic programming in the LF logical framework. In G. Huet
and G. Plotkin, editors, Logical Frameworks, pages 149-181. Cambridge
University Press, 1991.

300

[Pfe921

[Pin]

[PWgl]

[PW92]

[Pyre90]

[Tho91]

[Wad93]

F. Pfenning. Dependent types in logic programming. In F. Pfenning, editor,
Types in Logic Programming, chapter 10, pages 285-311. MIT, 1992.
L. Pinto. Proof-theoretic semantics and integration of logic and functional
programming, (in preparation).
D. Pym and L. Wallen. Proof-search in the A/I-calculus. In G. Huet
and G. Plotkin, editors, Logical Frameworks, pages 309-340. Cambridge
University Press, 1991.
D. Pyre and L. Wallen. Logic programming via proof-valued computations.
In K. Broda, editor, Proc. 4th UK Conf. on Logic Programming, London,
1992. Springer, 92.
D. Pyre. Proofs, search and computation in general logic. PhD thesis,
University of Edinburgh, 1990.
S. Thompson. Type Theory and Functional Programming. Addison-Wesley,
1991.
P. Wadler. A Curry-Howard isomorphism for sequent calculus. Preprint,
University of Glasgow, December 1993.

