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Abs t r ac t .  In this paper we present a mechanism to define names for 
proof-witnesses of formulae and thus to use Gentzen's cut-rule in logic 
programming. We consider a program to be a set of logical formulae 
together with a list of such definitions. Occurrences of the defined names 
guide the proof-search by indicating when an instance of the cut-rule 
should be attempted. By using the cut-rule there are proofs that can be 
made dramatically shorter. We explain how this idea of using the cut-rule 
can be applied to the logic of hereditary Harrop formulae. 

1 I n t r o d u c t i o n  

T h e  c o m p u t a t i o n  m e c h a n i s m s  b o t h  for logic and  for  func t iona l  p r o g r a m -  
m i n g  are  searches  for cu t - f ree  proofs .  F i r s t ,  in p u r e  logic p r o g r a m m i n g  
the  ach i evemen t  of  a goal  G w.r . t ,  a p r o g r a m  P can be seen 1 as the  

search  for a p r o o f  in G e n t z e n ' s  in tu i t ionis t ic  sequent  calculus LJ  [Gen69],  
of  the  sequent  P =~ G,  t h a t  by  G e n t z e n ' s  cu t - e l imina t ion  t h e o r e m  can be 

cut - f ree  [Bee89], [Mil90]; a A- te rm found  as a wi tness  to  a p r o o f  conta ins  
a m o n g  o the r  th ings  the  answer  subs t i t u t i on .  Second,  the  conven t iona l  

v iew of func t iona l  p r o g r a m m i n g ,  as in [Tho91],  is t h a t  one c o n s t r u c t s  

a sequence  of defini t ions and  an express ion  to  be  eva lua ted ;  the  eval- 

ua t i on  of  the  express ion  is done  by  rep lac ing  the  def inienda by  the i r  

def in ient ia  and  subsequen t  no rma l i s a t i on .  By  the  C u r r y - H o w a r d  corres-  
p o n d e n c e  be tween  t y p e s  and  p ropos i t ions ,  the  eva lua t ion  of express ions  
in func t iona l  p r o g r a m m i n g  co r r e sponds  to  the  n o r m a l i s a t i o n  of proofs  in 

G e n t z e n ' s  n a t u r a l  deduc t ion  s y s t e m  NJ .  So, b o t h  processes  yield cut-fl 'ee 

proofs ,  us ing  "cu t - f ree"  first  in the  sequent  calculus sense and  second in 

the  n a t u r a l  deduc t ion  sense. 

* Supported by JNICT (Portugal) grant BD/1423/91-IA and by ESPRIT grant BRA 
7232 "GENTZEN". 

1 This view is contrary to the one expressed in [GLT89], where a program is a set of 
sequents and the achievement of a goal w.r.t, a program is the search for a proof 
using instances of the sequents in the program as proper axioms and the cut-rule as 
the only inference rule. The latter approach does not generalise when we allow for 
non-Horn formulae in the program. 
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From a type-theoretic point of view [ML84], [Tho91], in logic program- 
ming we give a specification (goal formula) and we want to find an object 
meeting that  specification, and in functional programming we give a spe- 
cification (type) and an object (the expression to be evaluated) meeting 
the specification and we want to t ransform the object into another  object 
in normal form meeting the specification. 

If we were to allow the cut-rule in proof-search some formulae would 
have much shorter proofs. For example, in [Boo84] it is shown tha t  there 
are formulae whose shortest cut-free proofs are exponentially longer than 
their shortest proofs using instances of the cut-rule. The problem of using 
the cut-rule is to decide when and how the cut-rule should be applied; in 
other  words, what are the adequate lemmas to use in proving a theorern. 
The lemmas are usually established based on experience. In programming,  
we do not expect to establish lemmas during the proof-search. Instead 
we expect the programmer  to know what lemmas may be useful and 
define names for the proofs of these lemmas. Then,  during the search for 
a proof of a formula we can use these formulae previously established 
without having to prove them severM times. As a result of proof-search 
in this framework we can obtain proofs with instances of the cut-rule; if 
required cut-elimination can be applied. Although we allow for instances 
of the cut-rule during the search for a proof, proof-search can still he 
efficient since the application of the cut-rule only needs to be a t t empted  
in particular circumstances, to be described in full below. Brietty, the cut- 
rule is a t tempted  if there is an occurrence of a defined name in the goal 
in which case the type of the defined name is used as cut formtlla. 

In our system we have two layers of typed objects. Oil one layer the 
objects are ,k-terms with constants and their types are the simple types 
of Church's theory of types. On the other  layer the objects are proof- 
witnesses and their types are logical formulae. Terms may occur both in 
proof-witnesses and logical formulae but occurrences of proof-witnesses 
in the logical formulae are not allowed. 

This paper is organized as follows. We start  by introducing the un- 
derlying language of typed A-calculus with constants and by presenting 
the calculus L J  ~ for intuitionistic logic with proof-witnesses annota t ing 
the formulae. Next, we describe the idea of using definitions to control 
the proof-search and we apply this idea to the logic of heredi tary Harrop 
formulae. An example of how this technique may be used to find shorter 
proofs follows. Finally we mention other related works and present some 
concluding remarks. 
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2 L o g i c a l  P r e l i m i n a r i e s  

We will i n t roduce  the  under ly ing  language  of  t yped  A-calculus with con- 
s t an t s  based  on [Milg0]. Let  us consider  a t y p e  sys tem wi th  a set S of 
primitive types. We assume the  symbol  o, the  type  of  propositions, to  be 
a m e m b e r  of 3 .  T h e  set of  types is the  closure of  $ under  the  fo rm a t io n  of 
func t ion  types .  T h e  cons t ruc to r  of  func t ion  types  is deno ted  by -+ and it 

associates  to  the  r ight .  T h e  symbols  v, r0, ... are used to  deno te  a r b i t r a r y  
types .  Any  type  v can be wr i t t en  as T1 -+ ... --+ "rn --+ TO, where  To is a 
pr imi t ive  type .  In the  pa r t i cu la r  case where  n = 0 the  t y p e  r is jus t  r0. 

We assume the re  is a set C of  t y p e d  constants of  and  a set A" of  
d e n u m e r a b l y  m a n y  variables of each type .  We also assume the re  is a set ~4, 
whose me m be r s  we call parameters, with  den u m erab ly  m a n y  p a r a m e t e r s  
of each type .  We use a, a l ,  a2, ... as p a r a m e t e r s .  A signature Z is a set ,  
whose  e lements  are e i ther  cons tan ts  or pa r am e te r s .  We of ten  display the  
m e m b e r s  of a s igna ture  as pairs s : r ,  where  s is e i ther  a cons tan t  
or a p a r a m e t e r  and  r is its type .  Terms  are built  up f rom cons tan ts ,  
p a r a m e t e r s  and  variables by appl ica t ion  and  abs t r ac t i on  over  variables as 

usual ,  sub jec t  to  the  t ype  rules. For example ,  if x is a variable of  t y p e  r ,  
a is a p a r a m e t e r  of t ype  ~- and c is a cons t an t  of t y p e  v --+ r --~ r t h en  
)~x.cax is a t e r m  of  t y p e  T --+ r .  An atomic formula A is a t e r m  of the  
fo rm ptl. . . tn, where  p is a cons tan t  of t y p e  rl --~ ... --+ Tn --~ o; A is a 
first-order atomic formula if vl,  ..., T, are pr imi t ive  types  different  f rom o. 
(Logical) formulae are buil t  up f rom a tomic  formulae  by using the  logical 
constants A : o -+ o --+ o, V : o --+ o ~ o, D: o ~ o ~ o, and for every  
t yp e  v, 3~ : ( r  --+ o) --+ o and V~ : (v --~ o) --+ o. We use the  infix n o t a t i o n  

t l  A t2, t l  V t2, t l  D t2 to  display Atlt2,Vtlt2,D tit2 respect ively,  and we 
display fo rmulae  of the  fo rm 3~()~x.t),V~()~x.t) as 3,:~t,V~:~t respectively.  

As usual ,  an occur rence  of a symbol  s wi thin  a t e r m  can be classified 
as e i ther  bound if s occurs  in the  scope of  )~s or free otherwise .  A t e r m  
is closed if it conta ins  no fl'ee variable occurrences .  We use [tl/x]t to  
ind ica te  the  t e r m  ob ta ined  f rom t by replacing the  free occur rences  of the  
variable x by the  t e r m  t l  changing bound  variable names  to  avoid variable 
cap ture .  We define (a)fl~l-convertibility as usual  and  we ident i fy  t e rms  
t h a t  are a -conver t ib le .  Normal ly  we abbrev ia t e  (a ) /~ / -conver t ib i l i ty  by 

A-convertibility. A t e r m  is in normal form if it conta ins  no occurrences  
of/~- or ~/-redexes. For  every  t e rm  t, t has  a unique n o rm a l  fo rm th a t  we 
wri te  Anorm( t). 

Let  Z be a s ignature .  A Z- term is a t e r m  all of whose  symbols  occur-  

ring freely are  member s  of  Z ;  in o the r  words,  a Z - t e r m  is a closed t e r m  
all of whose cons tan t s  and  pa r ame te r s  are in Z .  A Z-formula is a fo rmula  
all of  whose nonlogical  cons tan t s  occur r ing  freely are  m e m b e r s  of Z .  
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Let  L/ be a denumerab le  set ,  whose  m e m b e r s  W, W1, W2, ... we call 
dummies. Let  Tr be a denumerab le  set ,  whose  m e m b e r s  r, r l ,  r2, ... we call 
abstract realisers. 

T h e  set w of  proof-witnesses is induc t ive ly  defined as follows: 

w ::= 7hw [~r2w I ( w , w )  l i n l w  l i n r w  I r [ w h e n w w w  I ww I~\,'.w 
I ( t ,  I I I le t  r = i n  I le t  a = I W ,  

where  r ranges  over T~, a ranges  over  A,  W ranges  over U and t ranges  
over  closed te rms.  We use w, Wl, w2, ... to  wri te  proof-wi tnesses .  

An occur rence  of  a p a r a m e t e r  a in a proof-wi tness  is free if it is no t  
in the  scope of  ),a or let a; it is bound otherwise .  Let  ~U be  a s igna ture ,  
A proof-wi tness  w is a Z-proof-witness i f  all its cons tan t s  are in Z and  if 
all the  p a r a m e t e r s  occurr ing  freely in w are also in Z .  

A sequent is a quadrup le  Z ;  F =v w : F ,  where  

1. Z is a s ignature ;  

2. _F is a finite set of pairs r l  :F1 ,  ..., r,~ : F~, where  r l ,  ..., r~ are dis t inct  
abs t r ac t  realisers and F1, ..., F,~ are  Z - fo rmu lae ;  

3. w is a Z-proof -wi tness ;  
4. F is a Z - fo rmu la .  

T h e  set F is called the  antecedent of  the  sequent  and the fo rmula  F is 
called the  succedent of the  sequent .  In fo rmal ly  we read  a sequent  as: the  
t e r m  w witnesses the  provabi l i ty  of  the  goal  F w.r . t ,  the  set of a s sumpt ions  
F over s igna ture  Z .  

F igure  1 presents  the  sequent  calculus L J  ~ for in tu i t ionis t ic  logic over  
t y p e d  A-terms wi th  proof-witnesses  a n n o t a t i n g  the  formulae .  

T h e o r e m  I.  Let ~;  F ~ w : G be a provable sequent in L J  ~. Then there 
is a proof-witness wl s.t. the sequent ~;  F =~ wl : G has a proof with no 
instances of the cut-rule. 

Proof. By induc t ion  on the  s t r u c t u r e  of  the  p ro o f  of  the  sequent  
~ ;  F ==~ w : G and  the  size of the  cut  f o rmu la  as usual.  [] 

A uniform proof, as defined in [MNPS91] ,  is a p roo f  in which each 
occur rence  of  a sequent  whose succedent  is n o n a t o m i c  is the  conclusior~ 
of  the  rule t h a t  in t roduces  its top-level  connect ive .  

3 P r o o f - S e a r c h  U s i n g  t h e  C u t - R u l e  

By  T h e o r e m  1, if we avoid using the  cut - ru le  of  L J  ~ we can still p rove  
all the  sequents  we could prove before.  However ,  t he re  are then  p r o o ~  
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a x i o m  
E ; F , r : A = ~ r : A  

22;r l  : A ,  r2 : B , F = : , w : C  

Z ;  r : A A B ,  F ~ let  rl  = rrlr in  let  r2 = r2r  in  w : C 

S ; F = ~ w ~ : A  2 2 ; F ~ w 2 : B  2 2 ; F ~ w : A  

2 2 ; F ~ ( w ~ , w 2 ) : A A B  =>A ~ ; F ~ i n l w : A V B  

S , ; F ~ w : B  22;F, r 1 : A ~ w l : C  S ; F ,  r 2 : B = ~ w 2 : C  
==~ v2 

~ ;  F =~ i n r  w : A V B 22; F, r : A V B =~ w h e n  r(Ar~ . w l ) ( A r 2 . w 2 )  : C 

2 2 ; F , r : A D B ~ w l : A  2 2 ; F , r : A D B ,  r a : B = ~ w 2 : C  
D ~  

S ;  F, r : A D B :~ let  rl  = rwa in  w2 : C 

S ; r  : A , F  =~ w : B 

L ' ; F  =~ Ar .w : A D B 
~ D  

S ;  V =:, w :  [ t / x ] A  

22; P , ~  (t,  w )  : 3=:~A 
o 3  

22 U {a : r} ;  r l  : [ a / x ] A , F  ~ w :  B 

~U;r : 3~: rA,  F ~ let  a = rqr  in  let  rl  = 7r2r i n  w : B 
3 ~  

S ; t l  : [ t / x ] A , r  : V = : , A , F  =~ w : B 

~ ; r  : V=:rA, F ~ let  rl  = r t  in  w : B 

S ; F = ~ w : B  S ; r : B , F = ~ w x  : A  

Z ;  F ~ let  r = w in  w l  : A 

V ~  
U { a :  r } ;  F =~ w :  [ a / x ] A  

Z ;  F =~ A a . w  : V=:~A 

' ' A '  S ; r l  : A 1 , . . . , r ,  : A ,  =~ w : 
c u t  

S ; r l  : A 1 , . . . , r , ,  : A ,  ~ w : A 

V=r 

=~V 

Aconv 

Prov isos :  

1. in 
2. in 
3. in 

4. in 
5. in 
6. in 
7. in 
8.  ixt 
9. in 

t h e  a x i o m ,  A is an a t o m i c  fo rmula ;  
A ::~ and  V =~, r l  a n d  r2 are  n e w  a b s t r a c t  reMisers ;  
D=; ", r l  is a n e w  a b s t r a c t  real iser ;  
=~ 3, t is a S - t e r m  of  t y p e  7-; 
=r V, a is a n e w  p a r a m e t e r ;  
3 =~, a is a n e w  p a r a m e t e r  a n d  r l  is a n e w  a b s t r a c t  real iser ;  
V =~, t is a S - t e r m  of  t y p e  r a n d  r l  is a n e w  a b s t r a c t  real iser ;  
cut ,  r d o e s  n o t  occu r  in F ,  

Aa,  ..., A , ,  A are  )~-convert ible to  A1, ..., An ,  A respec t ive ly .  ~COnVj t I 

F i g .  1. T h e  ca lcu lus  L J  ~ 
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t h a t  will be exponentially longer than  if they were built up by using the 
cut-rule. The problem of using the cut-rule is tha t  it does not preserve the 
subformula property since the cut formula, the formula B in the cut-rule 
of LJ ~, might not occur in the conclusion sequent and so, proof-search is 
difficult. 

Usually in logic programming a program is a set or a list of logical 
formulae. In our approach we consider a program to be a set of logical 
formulae together with a list of definitions. The names being defined in 
the list of definitions will guide the search for a proof since they will be 
responsible for triggering instances of the cut-rule. The cut-rule is applied 
only in case there is an occurrence of a defined name in the goal formula. 
In this case the cut-rule is applied and the cut formula is the type of the 
defined name. Below, we explain how this idea of using the cut-rule can be 
apphed to the logic of first-order hereditary Harrop formulae, for which 
uniform proofs are complete as shown in [MNPS91], and thus efficient 
proof-search strategies can be devised. 

The 2 set H of first-order hereditary Harrop formulae 3 is inductively 
defined by: 

H::=AIHAHIG~A1V~:r 
C: :=  A I G A G I  G V G I  3~:r I H D G I V~:r 

where the meta-variable A ranges over the set of first-order atomic for- 
mulae and 7 ranges over the set of primitive types different frorn o. We 
define the set I of I-formulae as: 

I::= A I I A I I I  D AIV~:,I, 

whel"e the meta-variable A ranges over the set of first-order atomic for- 
mulae and T ranges over the set of primitive types different from o. The 
set o f / - fo rmulae  is the intersection of the sets of H- and G-formulae. A 
formula is called a C(ut)-formula if it has the form 

3A :-rl...3f,:~,,I, 

where T1, ..., r~ are arbi trary types and I is an I-formula.  
Let Z be a signature. The set of ZH-formulae is the set of all ~-  

formulae tha t  are also H-formulae. Likewise we define the sets of ZG-  
formulae and ZC-f  ormulae. 

2 The letter H is used to denote hereditary Harrop formulae ra.ther tha.n D beca.use 
we use below the letter D to denote sets of defined names. 

3 First-order hereditary Harrop formulae, as defined in [MNPS91], are formulae i~L 
A-normal form; here we also consider formulae in non-)~-normal form. 
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Let 79 be a set,  whose members  d, dl ,  d2, ... we call defined names. We 
extend  the  definit ion of Z-proof-witnesses  by allowing proof-witnesses to 
be built  up also f rom defined names,  i.e. 

w : : = ~ h w l T r 2 w [ ( w , w )  l i n l w l i n r w l s l w h e n w w w l w w l ) ~ r ' . w  
[ (t ,w) I w t l ' ~ a . w l l e t s = w i n w [ l e t a = T h s i n w [ W ,  

where s ranges over T~ U 79. 
A proof-witness  of a C- formula  has the  form (t~, (t2, ...(tin w). . . )) .  If we 

define a name  d for such proof-witness the  expressions 7rid, 
~(~d),...,~(~-~d)) denote  the t e rms  t l , t2, . . . , t~ respectively, where 
7r~ -1 represents  n - 1 applications of ~r2. We define a set g of t yped  
expressions of the  form: 

(7rld) n , (~h (Tr2d)) ~2 , (Trl (~r2(~r2d)))r3, ..., 

where d ranges over ~D and T1, V2, 7"3, ..., range over types .  We redefine the  
set of X- te rms  to be also allowed to be built  up f rom expressions e ~ in E, 
which are considered to be ~ - t e r m s  of type  r .  Let 791 be a subset of l) .  
The  set of X791-terms is the  set of X- te rms ,  all of whose defined names  
are in 791. For example,  if  d E 791 and  (Thd) ~--*~ E E and c : 7" E X then  
(Trld)'--'~c is a N79Cterm of type  r .  Likewise we define N79Cfo'rmulae, 
X791H: formulae,  X79~G-formulae and  X791C-formulae. 

Let X be a s ignature  and let 791 be a set of defined names.  We define 
two new sets w + and  w -  of proof-witnesses;  roughly  speaking,  w- -proof -  
witnesses will be used to a n n o t a t e  formulae  in the p rogram and the w +- 
proof-witnesses will be used to a n n o t a t e  goal-formulae.  The  set w + of 
XZ)l-w+-proof-witnesses and the set w -  of  X791-w--proof-witnesses are 
induct ively  defined as follows: 

w+ ::= w -  I (w+,  w+)I  int w+ l in," w+ I ~,~.w+ I (t, w+) 
I An.w+ I let d = w+ in w+ I V< 

w -  ::= rrlw- I rr2w- I 'r I w - w  + I w - t [ d ,  

where r ranges over ~ ,  a ranges over .A, W ranges over dummies ,  d 
ranges over 79t and t ranges over Z791-terms. We use w, Wl, w2, ... to write 
w+-proof-witnesses  and  w~-, w2 , . . ,  to  wri te  w--proof-wi tnesses .  

Let Z be a s ignature ,  d a defined name,  :D I a set of defined names not  
conta in ing d, w a Z:DI-w+-proof-witness and  C a Z79 'C-formula .  Then  
d =d~1 w : C is called a definition, with  definiendum d, definiens w and 
type C. 

A Z791-term t is well-typed w.r.t ,  a list of definitions A if  t is a Z791-term 
and for all expressions of the form (~r l ( r~ - ld ) )  ~" occurr ing in t there is a 
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definition d =a~j w : 3=~: n...3=,,:~.C in A. Likewise we define the property 
of being well-typed w.r.t, a fist of definitions for SD'-foi 'mulae, SD' -  
w + and k2DI-w - proof-witnesses, SD 'H-formulae ,  SD'G-formulae  and 
SD'C-formulae. A fist of definitions A is well-formed w.r.t, a signature 
S if the assertion 0; 0 bwytd A can be proved by using the inference rules 
in Fig. 2. 

a x i o m  

:D' U {d}; A, d =~.s w : C k,~ytd A '  

/ ) ' ;  A I-~.na d =,~.j w : C, A '  

The second rule has the following provisos attached: 

1. d ~/~'; 
2. w is a well-typed s w.r.t .  A;  
3. C is a well- typed ~7) tC-formula  w . r . t . A .  

F i g .  2. The  rules for F~iza. 

We define a new concept of sequent 4 as follows: a sequent is a 
quintuple X; A; F =~ w : F ,  where 

1. L' is a signature; 

2. A is a well-formed list of definitions w.r.t. ~ and D ~ is the set of na.mes 
being defined in A; 

3. F is a set of the form wl : F1, ...,wn : F~, where wl, ..., wn are well- 
typed SD'-w--proof-witnesses w.r.t. A and F1,... ,  F,~ are either well- 
typed ~D'H-  or ~D'C-formulae  w.r.t. A; 

4. w is a well-typed SD'-w+-proof-witness w.r.t. A; 
5. F is either a well-typed ~D'G- or SD 'C- fo rmula  w . r . t . A .  

We call S;  A; F a basis. 
Let the sequent cMculus H H  cut be defined by the inference rules of 

Fig. 3. 

Theorem 2. All  proofs in H H  c~t are uniform proofs. 

Pro@ Observe tha t  the only rules tha t  can be applied to non-a.tomic 
succedent sequents are right introduction rules. [] 

4 We refer to the  sequents defined in the previous section by L 2  ~ sequents.  
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a x i o m  
L'; "4; F, w~- : A =~ w~" : A 

Z ; ' 4 ;  r a w [  : Ha,~r2w I : H2, F ~ w : A 
A::--~ 

S ;  A; w;" : Ha A H 2 , F  ~ w : A 

E;'4;F=~wl :G1 Z;'4;F=~w2 :G2  
::r 

E ;  "4; F =~ (wl, w2) : G1 ^ G2 

S ; ' 4 ;  F :=r w : Ga Z ; ' 4 ;  F ~ w : G2 
=# Vx ~ V2 

~ ;  "4; F ~ in l  w : G1 V G2 E;  "4; F ~ inr  w : Ga V G2 

E ; ' 4 ;  r : H , F  ::~ w : G 

~ ; A ; F  ~ A r . w :  H D G  

S ;  A; F, w'~ : G D A ::V, w l  : G S ;  "4; I', w'~ : G D A,  w ~ w l  : A =~ w : A1 
D::v 

S ;  "4; F ~ w : [ t / z ] B  

S ; 3 ; F  ~ ( t , w ) :  3=:r 
~ q  

S ; ' 4 ; r 2 w  7 : [ ( T q w a ) ~ / x ] C , F  ~ w :  A 

S ;  A;  w ~  : 3x:rC, r ~ w : A 
S ~  

Z U { a :  7-}; "4; ff ==~ w :  [ a / x l G  

~ ;  .4; i ~ =~ )ta.w : V=:,.G 

S ;  A ; w T t :  [ t / x ] H , w  7 : V . : ~ H , F  ~ w :  A 

~ ;  ,5; w~- : V~:~-H, F =~ w : A 

~ ;  A ; d  : C , F  ~ wa : A 

~ ;  "4; F ~ le t  d = w in  wa : A 

Z;  "4; w~- : HI ,  ..., w~ H' ,  ~ w : A '  
cut  )`conv 

~ ; . 4 ; w  Z : H a , . . . , w ~  : H,~ ~ w : A 

Provisos: 

1. The  meta-variables  A,  A a , A '  range over atomic formulae; the meta-variables 
G, Ga, G2 range over G-formulae; the meta-variables  H, Hi , . . . ,  Hn,  H~ , . . .H"  ra.nge 
over H-formulae;  B is either a G-formula or a C- formula  and C ranges over C- 
formulae; 

2. in ~ D ,  r is a new abstract  realiser; 
3. in ~ 3 and V ~ ,  t is a Z - t e r m  of type r ;  
4. in ==r V, a is a new parameter ;  
5. in 3 3 ,  w~- is of the form rr2(...(r2d)...); 
6. in cut,  the  definition d =~,s w : C is a member  of A; 

r r ! 
7. in )`cony, Ha, ..., Hn,  A are ),-convertible to H1, ..., H , ,  A respectively. 

F i g .  3. The  calculus H H  ~*.  
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The inference rules of Fig. 4 define for bases the proper ty  of being 
well-formed: we say that  a basis 22; A; F is well-formed if the assertion 
~-~lb ,V; A; F is provable. 

axiom 
~-~sb E; 0; r 

b~l  b S;  A, d =d.s" w : C; F 

Fig.  4. Inference rules of b,~lb. 

T h e o r e m  3. Let kJ; A; F ~ w : G be a sequent where ~;  A; F is a well- 
formed basis and let 1" be of the fo rm rl : H1, ..., rn : Hn, where rl ,  ..., rn 
are distinct abstract' realisers in T~ and H1, ..., Hn are ZH- formulae .  I f  
~- HHcut 22; A ;  1" =:~ w : G then there is a proof-witness Wl s.t. 
~Lj~ )7; F* =~ wa : G*, where F*, G* result f rom 1", G respectively by 7~- 
placing all definienda by their definientia. 

Proof. A sketch of the proof goes as follows. Let p be a proof  of 
22; A; F =~ w : G. Then a proof Pl of Z'; F* :=~ wl : G* can be built up 
by following the s tructure of the proof Pl and by changing the proof- 
witnesses accordingly. For example, let 

22; A ; F , d  : C :* w3 : A 
cut  

22; A; F :=r let d = w2 in w3 : A 

be an instance of the cut-rule in p. By induction hypothesis we know how 
to obtain a proof  of 27; F* ::~ w4 : C* from the proof  of well-formedness 
of the basis 22; A; F and a proof of S ; F * , r  : C* ==~ w5 : A*, where r is 
a new abstract  reMiser and F*, C*,A* result fi'om F , C , A  respectively 
by replacing all definienda by their definientia. Then this instance of the 
cut-rule in p originates an instance 

~ ; F * ~ w 4 : C *  2 2 ; F * , r : C * ~ w s : A *  
cut 

22; F* ~ let r = w4 in w5 : A* 

of the cut-rule in Pa. [] 

T h e o r e m  4. Let 27; A; F =r w : G be a sequent where ~;  A; F is a well- 
formed basis. I f  ~ HHc~,t 22; A ;  1 ~ ~ W : G then there is a proof-witness "wa 
s.t .  ~-HHeUt 22; (); ]-'* ~ W 1 : G * ,  where F*, G* result f i v m  F, G respectively 
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by replacing all definienda by their definientia; in other words the cut-rule 
' is admissible. 

Proof. Observe that  i f the re i s  a p r o o f o f Z ; / 1 , d  =d~s w : C, /1 ' ;F  ~ Wl : G 
where there are no applications of the cut-rule with definition d =d~i w : C 
then ~ ; /1 , /1 '* ;  1"* ~ wl : G is a provable sequent of H H  ~'t, where/1'*,  P* 
result from/1~, 1" respectively by replacing all definienda by their defini- 
entia. Then the proof follows by induction on the s t ructure  of the proof of 
~-HHCUt ~;  A~; 17" ::~ W : G and from the proof  of well-formedness of ~V;/1;/~. 

[] 

Let Z be a signature. Let 7 ) be a set of ~ H- fo rmu l ae  H1, ,.., H,~. Let 
1" be the set containing the pairs rl : H1,. . . , rn  : Hn, where r l , . . . , r~  
are distinct abstract  realisers in T~. Let A be a list of definitions. The 
pair (A, 7)) is a program if ~ ;  A; / "  is a well-formed basis. Assume (/1, 7)) 
is a program. Assume also that  G is a G-formula and Z;  A; F =~ W : G 
is a sequent, where W is a dummy. Achievement of the goal G w,r.t.  
the program (/1,7)) corresponds to a search for a proof of the sequent 
~ ; / 1 ;  1" ~ W : G in the calculus H H  c~t. During the search for a proof  
of this sequent the proof-witness W is instantiated.  If the proof-search 
is successful W is instantiated with a proof-witness where dummies do 
not occur. From this proof-witness one can extract ,  among various other 
things, the instantiation for the existentially quantified variables occur- 
ring in G. 

T h e o r e m  5. Let Z be a signature and F the set containing the pairs 
rl : H1, . . . , r~  : H,~, where r l , . . . , rn  are distinct abstract realisers in 

and H1, . . . ,H~ are ~H-formulae.  Let G be a ~G-formula. Then, if 
•; 1" ::~ w : G is' provable in L J  ~ then there is a proof-witness wl s.t. 
Z; (); F ~ Wl : G is provable in H H  cut. 

Proof. The proof follows from the observations that  (i) we only need to 
consider cut-free proofs of Z;  F ~ w : G; (ii) all L J  ~ sequents occurring 
in the proof  of ~ ;  F ~ w : G contain only H-formulae in the antecedent 
and a G-formula in the succedent; (iii) all the L J  ~ rules A o ,  D O ,  V 
can be permuted  above the L J  a rules ~ A, ::~ V, =~D, ~ 3 and ::~ V. [] 

For any provable sequent of H H  c~'t we can find one of its proofs by 
applying the following search strategy. If the goM formula is not atomic we 
apply right introduction rules until the goal becomes atomic. When the 
goal formula is atomic there might be several rules that  can be applied. 
If there is a defined name d occurring in the goal and there is a definition 
d =~s  w : C in the list of definitions we apply the cut-rule and we mark 
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this definition as used so that  no other applications of the cut-rule are 
a t t empted  with this definition. We keep applying the cut-rule until no 
further applications are possible. Next, we apply 3 =~ until no further 
applications of 3 =~ are possible. At this point all the formulae in the 
antecedent are H-formulae so we proceed by backchMning as usual, i.e. 
roughly speaking we proceed by breaking up the conjunctions on the left 
and by unifying the goal formula with the heads of program formulae 
start ing with the formulae that  were originated from cut formulae. 

4 E x a m p l e  

The example presented below is based on an example given in [Boo84] to 
show that  cut-free proofs may be exponentially longer than proofs using 
instances of the cut-rule. 

Let r be a primitive type. Let Z be the signature 

{ l  : r , c  : T - .  r - .  v , L  : v -+ o} .  

Informally, we can interpret ~- as the set of natural  numbers and c a.s the 
addition of two natural  numbers.  Let F be the set containing only the 
following pairs: 

rl : L1, 
r 2 :  Vx:rVx,:rVx2:,r(L(c(CXXl)X2) D L(cx(cx,x2))), 
,3  : Vx: (Lx D 

Let x, t be vectors of variables and terms respectively, say of size n. Let 
V =>* represent n applications of the rule V ==~. Let H , H '  be abbreviations 
for V• D A ' ) ,  G D A ~ respectively and let r be an abstract  realiser. Let 
/ /  be the basis ~ ; A ; / ' , r  : H.  Let the notat ion l I ,  w l  : H l ~ . . . , w ~  : H ~  

signify ~ ; A ; F , r  : H ,  w l  : H 1 , . . . , w ~  : H a .  Then the rule F P stands for 
the sequence of inferences shown in Fig. 5. 

H, r t :  [t/x]H' ::~ Wl : [t/x]G H, [ t / x]H' ,  r t w l  : [t/x]A' :=~ rtwl : A 
D ~  

H, rt : [t/x]H' =~ rtwa : A 

11=~ r t w l  : A V::~* 

Fig. 5. The sequence of inferences b- P. 

Consider we want to prove in L J  a tile goal L ( ( A x . c x ( c 1 1 ) ) ( ( A x . c x ( c 1 1 ) ) l ) )  

w.r.t, the program F using a uniform proof. Figure 6 shows a uniform 
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proof of this goM together with the instantiat ions of the dummy proof- 
witnesses. After performing all substitutions, we obtain for the dummy 

Z ;  F ~ Wr : L1 a x iom  
F P  

~7; F ~ W~ : L(cll) ~-p 
E ;  F ~ W5 : L ( c ( c l l ) l )  

F P  
~ ; r =~ W4 : L ( c l ( c l l ) )  

~ - p  
~Y:; F =:~ W3: L(c(cl(c11))l) [-p 

~-p 
~, ; J" =~ Wl  : L ( c ( c l ( c l l ) ) ( c l l ) )  

/~ C O TI/U 
; V ~ Wa : L ( ( A x . c x ( c l l ) ) ( c l ( c l l ) ) )  

)tCOn'O 

The instantiations for the dummy proof-witnesses are: 
Wl ~-* ra(c l (c l l ) )11W2;  W2 ~-~ ra(c(cl(c11))1)Wa; Wa ~-~ ra(c l (c l l ) )W4;  

W4 ~-~ r2111Ws; W~ ~ ra(c l l )W6;  W6 ~-* ralWv; 
Wr ~'* rl ; 

Fig. 6. A uniform proof. 

proof-witness W1 the proof-witness 

r 2 ( c l ( c l l ) ) l l ( r a ( c ( c l ( c l l ) ) l ) ( r a ( c l ( c l l ) ) ( r 2 1 1 1 ( r 3 ( c l l ) ( r 3 1 r l ) ) ) ) ) .  

In this proof the sequence of inferences shown in Fig. 7, for appropriate 
instantiat ions of a ,  occurs twice. If we had used the cut-rule with cut for- 
mula V x : r ( L x  D L ( c x ( c l l ) ) )  we would have needed to prove the sequence 
of inferences in Fig. 7 only once. We will now show how to construct a 
proof of this goal using instances of the cut-rule as we explained before. 

27; F :=> W4 : L a  
b P  

Z ; F ~ Wa : L(cal) 
F-P 

E ;  r ~ w~ : ~(c(c~1)1)  
~ P  

8 ;  F * W1 : L(ca(cll)) 

The instantiations for the dummy proof-witnesses are: 
W1 ~-* r z a l l W 2 ;  W2 ~ ra(cotl)W2; W3 ~ ra~W4. 

Fig. 7. A sequence of inferences repeated in the proof of Fig. 6 

Let A be the list whose only member is the definition 
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+2 =d~, (kx.cx(cll),Aa.Ar4.r2all(r3(cal)(r3ar4))) 
: 3I:,--,rV~:,(Lx D L( Ix ) ) .  

A proof of the well-formedness of the basis Z; ,5; F can be obtained by 
combining the axiom ~-wfb Z; (); F with the proof presented in Fig. 8. By 
using the defined name +2 we rewrite the goal 
L((Ax .cx(c l l ) ) ( (Ax .cx(c l l ) ) l ) )  into L(a'l +2 (~'1 +2 1)), where for brevity 
we drop the types in C-expressions. Now we show how to construct a 
proof of the sequent ~7;,5; F => W : L(rrl +2 (~rl +2 1)), where W is a 
dummy proof-witness, by applying the proof-strategy described in the 
previous section. The occurrence of the defined name +2 in the atomic 
goal triggers an instance of the cut-rule with its type being the cut formula 
to be used. We look up the list of defined names and we find the type 
3l:,-~Vx:~(Lx D L ( f x ) )  for the name +2. We apply the cut-rule and we 
have now to prove the sequent: 

(i) E; ,5; +2 :  ~I:.~-,~V~r(Lx D L( f x ) ) ,  r => I/V~ : L(Tq +2 (711 +2 1)). 

As a consequence of applying the cut-rule the proof-witness W is insta,n- 
tiated with 

let +2 = <),a:.cx(cll),)~a.)~r4.r2all(r'a(cal)(raar4))) i'n kV1. 

~PtO {a : r};0;r4 :La, F=>~4 :La ~ - p  
~'tO {a:  r}; (); r4 : La, F :=> r3ar4 : L (ca l )  ~-p 

~P U {a : r}; 0; r4 : La, I p ~ r3(cal)(raar4)  : L ( c ( c a l ) l )  
~ - p  

tO {a:  r}; O ; r , :  La, F ~ r2a11(ra(ca1)(raa'r4)) : L ( c a ( c l l ) )  
Aconv 

tO {a:  r}; (}; r4 : La, f f  ~ v2a l l ( r3 (ca l ) ( raar4 ) ) :  L ( ( A x . c x ( c l l ) ) a )  
D 

tO {a:  r}; (); F ~ Ar4 .r2al l ( ra(ca l ) ( raar4) )  : La D L ( ( A x . c x ( c l l ) ) a )  

E; O; F ~ )~a. ,kr4.r2al l (ra(cal) (raar , ) ) :  V=:T(Lz D L((),•.cm(c11))z)) ~ V 
~ 3  

Z'; 0; F ~ (Ax . cx ( c l l ) ,Aa .Ar4 . r2 a l l ( ra ( c a l ) ( ra a r4 ) ) ) :  3] . . . .  V~:r(Lx D L ( f x ) )  

Fig.  8. A proof of well-formedness of ~;  ZX; F. 

Figure 9 shows a proof of the sequent (i) together with the instantiations 
of the dummy proof-witnesses generated during the search for the proof. 
In this proof, we start by replacing in the cut formula the symbol f by 
the term rq+2. Then we use the cut formula twice to simplify the goal 
and we are left with an axiom sequent. 
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axiom 

~ P  
E; z~; ~ + ~  : V = . ( L .  ~ L(~I +~ . ) ) ,  r ~ w~ : L(~I +~ ~) 

F-P 
Z'; Zi; ~r2+2 : V.:~(Lx D L(~h +2 x)) ,  F ~ W~ : L(r~ +~ (rl +2 1)) 

3 ~  
Z; A; +~ : 3! . . . .  V,:,.(Lx D L(fm)),  F ~ W~ : L(r1 +2 (Th +2 1)) 

The instanti~tions for the dummy proof-witnesses are: 

W~ ~ r2 +2 (~r~ +2 1)W2; W2 ~ r2 +2 1W3; W3 ~ r~. 

Fig. 9. A proof of (i). 

Replacing all the dummy proof-witnesses by their instantiations we 
obtain for the initial goal L(Trl +2 (7rl +2 1)) the proof-witness 

let +2 = (Ax.cx(cll), Aa.Ar4.r2all(r3(cal)(r3ar4))) 
in ~2 +2 (~1 +2 1(~2 +2 lrl)) .  

One of the consequences of the Curry-Howard correspondence between 
types and propositions is the relation between normalisation and cut- 
elimination. For if we normalise the proof-witness we obtained for the 
goal L(m'l +2 (~rl +2 1)) we obtain the term 

r2(c1(c1I))11(r3(c(c1(c11))1)(r3(cl(c1I))(r2111(r3(c11)(r31r1))))), 

which is a witness for a cut-free proof of L ( ( A x . c x ( c 1 1 ) ) ( A x . c x ( c 1 1 ) ) l ) ) .  

In fact this proof-witness is the same as the proof-witness we obtained 
for the uniform proof of Fig. 6. 

5 R e l a t e d  a n d  F u t u r e  W o r k  

The typed logic programming language AProlog [NM88] is based on the 
logic of higher-order hereditary Harrop formulae for which uniform proofs 
are complete, as shown in [MNPSgl]. It supports modular programming, 
abstract data  types and higher-order functions and predicates. We showed 
how to extend the logic of first-order hereditary Harrop formulae to have 
definitions of names to control the applications of the cut-rule. We intend 
to look at the possibility of having non-hereditary Harrop formulae in a 
program provided they are paired with a proof-witness that  would guide 
the application of left introduction rules. In fact this problem arises if we 
try to extend the set of formulae we allowed as cut formulae in the setting 
of first-order hereditary Harrop formulae. 

Two different views of logic programming based on the system of 
dependent types LF [HHP87] are given in [Pfegl] and in [Pymg0]. 
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Elf [Pfe91], [Pfe92] is a logic programming language based on types 
through the propositions-as-types correspondence. Achieving a goal ( type) 
G w.r.t,  a program (context)  F corresponds to a search for a closed object  
M of type  G, where the language is determined by a signature ~ such 
that  F ~-~ M : G is provable in a natural  deduction formulation of LF. 
The answer to a query is not only a subst i tut ion for the free variables 
but  a term of query type. Elf has two sorts of incompleteness w.r.t .  LF, 
one due to the use of a depth-first search and the other caused by the 
undecidability of unification for the definitional equality = ~  used in LF. 
As in our work, in Elf computat ion corresponds to a search for an object  
of query type,  but  whereas in our case we search for a proof in a sequent 
calculus, Elf searches for a natural  deduction proof. A major  difference 
between Elf and our work is that  in Elf a program is solely a list of type 
assignments to variables; in our proposal a program is also allowed to 
contain definitions, where a new variable is introduced as a name tot an 
expression of a certain type. 

In [Pym90], [PW91] logic programming is seen as a search tor a, proof 
of the sequent F(a) ~ x  A(a), where Z is a signature determining a 
language; (a)  is a list of indeterminates; /~ is a context assigning types 
that  may have occurrences of the indeterminates in (a)  to variables and A 
is a type  that  may have occurrences of indeterminates in (a) .  The result 
of a successful search is a mapping a from indeterminates to terms such 
that  there is a term M for which F(a)a F-2 M : A(a)a is provable in LF. 
The resulting mapping being what  one normally calls answer subst i tut ion 
in logic programming. Although proof-search is carried out in a sequent 
calculus that  allows cut-elimination a search for a proof  does not involve 
uses of the cut-rule. 

A Curry-Howard correspondence between a fragment of propositional 
intuitionistic sequent calculus and a programming language, where evalu- 
ation in the programming language corresponds to cut-elinfination in the 
sequent calculus, is presented in [Wad93]. Evaluation in this program- 
ming language is different from evaluation in the programming language 
obtained by composing a translation of sequent calculus into natural  
deduction with the Curry-Howard correspondence between natural  de- 
duction and ,k-calculus. In our work term assignment is done through this 
composition of a translation of sequent calculus into natural  deduction 
with the Curry-Howard correspondence. In future work we intend to use 
a term assignment similar to the one described in [Wad93] and investigate 
what different evaluation mechanisms can be obtained from cliff)rent 
algorithms to perform cut-elimination. 

In [PW92] it is suggested that  in logic programming the achievement 
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of a goal w.r.t, a program can be usefully divided into two phases: the 
first being proof-search and the second being answer extraction. This idea 
was considered for cut-free systems. In fact the same idea can be applied 
to systems with cut-rule. For example, the two phases might be (i) the 
search for a proof-witness of a goal in a system with the cut-rule; (ii) 
the extraction of all the terms used to replace existentially quantified 
variables in the goal and subsequent normalisation of these terms, thus 
avoiding the normalisation of the entire proof-witness. 

An analysis of logic programs as types in the sense of the Curry- 
Howard correspondence is given in [Lip92]. A logic program is t ransformed 
into an equational specification over the te rm model by exploiting a 
uniformity in the predicates and parameters  in the program. A program 
is writ ten as a realisability goal and there is a search for a function that  
returns a proof-witness for every choice of parameters.  This mechanism 
of synthesising functions can be seen as a way of generating automatic- 
ally cut formulae. For it should be possible to employ the idea of using 
definitions to guide the proof-search by defining names for the synthesised 
functions. 

Deliverables [MB93] are proof-witnesses (f ,  w) of formulae of the form 
3=:, 1 . . . . .  ~-F, where vl, ..., vn are primitive types different from o and F 
is a formula. In [MB93] it is argued that  deliverables are the products 
a software house should deliver to its customers, i.e. a program f and a 
proof w that  the program meets the original specification F.  Elsewhere 
[Pin] we exploit the idea of using definitions to control the applications 
of the cut-rule to give a proof-theoretic semantics to integrate logic and 
functional programming by defining names for deliverables. 

The language LeFun, as presented in [AKN89], is a programming 
language  tha t  integrates logic and flmctional programming.  In this lan- 
guage a program is a list of logical formulae together  with a list of 
definitions. A definition in LeFun has the form name =~j A-term, thus 
leaving out the specification the A-term satisfies as well as a proof-witness 
for that.  The computat ion mechanism is called residuation, which is 
a mechanism to delay unification until the arguments of functions are 
fully instantiated.  In forthcoming work we expect to make precise the 
relation of LeFun with the proof-theoretic semantics to integrate logic 
and functional programming based on the idea of using names to guide 
the proof-search. 

6 C o n c l u s i o n s  

There are proofs that  can be exponentially shorter if they  are allowed to 
use the cut-rule. The problem of automat ing proof-search in a calculus 
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with a cut-rule is tha t  we may apply the cut-rule to any sequent and 
once we have decided to apply the cut-rule we still have the freedom 
of applying the cut-rule with any formula as cut formula. Our idea of 
using definitions to guide the proof-search restricts the cut-rule in such a 
way tha t  its application is allowed only in case there is a defined name 
occurring in the goal formula, and in this case we only a t t empt  the cut- 
rule with the type of the defined name as cut formula. Thus, we can have a 
goal-directed proof-search that  in some cases will find proofs exponentiaJly 
shorter than  we would find with a cut-free search procedure. 
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