Skip to main content

Constant-time convexity problems on reconfigurable meshes

  • Conference paper
  • First Online:
Parallel and Distributed Computing Theory and Practice (CFCP 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 805))

Included in the following conference series:

  • 152 Accesses

Abstract

The purpose of this paper is to demonstrate that the versatility of the reconfigurable mesh can be exploited for the purpose of devising constant time algorithms for a number of important computational geometry tasks relevant to image processing, computer graphics, and computer vision. In all our algorithms we assume that one or two n-vertex (convex) polygons are pretiled, one vertex per processor, onto a reconfigurable mesh of size √n × √n. In this context, we propose constant-time solutions for testing an arbitrary polygon for convexity, solving the point location problem, the supporting lines problem, the stabbing problem, constructing the common tangents for separable convex polygons, deciding whether two convex polygons intersect, and computing the smallest distance between the boundaries of two convex polygons. To the best of our knowledge this is the first time that O(1) time algorithms are proposed for these problems on this architecture for the “dense” case. The proposed algorithms translate immediately into constant-time algorithms that work on binary images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Aggarwal, Optimal bounds for finding maximum on array of processors with k global buses, IEEE Trans. on Computers, C-35, 1986, 62–64.

    Google Scholar 

  2. S. G. Akl and K. A. Lyons, Parallel Computational Geometry, Prentice-Hall, Englewood Cliffs, New Jersey, 1989.

    Google Scholar 

  3. M. J. Atallah and M. T. Goodrich, Parallel algorithms for some functions of two convex polygons, Algorithmica 3, (1988) 535–548.

    Google Scholar 

  4. D. H. Ballard and C. M. Brown, Computer Vision, Prentice-Hall, Englewood Cliffs, New Jersey, 1982.

    Google Scholar 

  5. S. H. Bokhari, Finding maximum on an array processor with a global bus, IEEE Transaction on Computers vol. C-33, no. 2, Feb. 1984. 133–139.

    Google Scholar 

  6. R. Cahn, R. Poulsen, and G. Toussaint, Segmentation of Cervical Cell Images, Journal of Histochemistry and Cytochemistry, 25, (1977), 681–688.

    Google Scholar 

  7. F. Chin and C. A. Wang, Optimal algorithms for the minimum distance between two separated convex polygons, University of Alberta, Tech. Report, January 1983.

    Google Scholar 

  8. R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis, Wiley and Sons, New York, 1973.

    Google Scholar 

  9. D. G. Feitelson, Optical Computing, MIT Press, 1988.

    Google Scholar 

  10. J. Jang and V. Prasanna, Parallel geometric problems on the reconfigurable mesh, Proc. of the International Conference of Parallel Processing, St. Charles, Illinois, 1992, vol. III, 127–129.

    Google Scholar 

  11. H. Li and M. Maresca, Polymorphic-torus network, IEEE Transactions on Computers, vol. C-38, no. 9, (1989) 1345–1351.

    Google Scholar 

  12. T. Lozano-Perez, Spatial Planning: A Configurational Space Approach, IEEE Trans. on Computers, C-32, 1983, 108–119.

    Google Scholar 

  13. M. Maresca and H. Li, Connection autonomy and SIMD computers: a VLSI implementation, Journal of Parallel and Distributed Computing, 7, (1989) 302–320.

    Google Scholar 

  14. M. Maresca, H. Li, and P. Baglietto, Proc. International Conference on Parallel Processing, St. Charles, Illinois, 1993, vol. I, 282–289.

    Google Scholar 

  15. R. Miller, V. K. P. Kumar, D. Reisis, and Q. F. Stout, Parallel Computations on Reconfigurable Meshes, IEEE Trans. on Computers, in press.

    Google Scholar 

  16. S. Olariu, J. L. Schwing, and J. Zhang, Fundamental Data Movement for Reconfigurable Meshes, Proc. of the International Phoenix Conf. on Computers and Communications, Scottsdale, Arizona, April 1992, 472–480.

    Google Scholar 

  17. S. Olariu, J. L. Schwing, and J. Zhang, Time-Optimal Convex Hull Algorithms on Enhanced Meshes, BIT, 33 (1993) 396–410.

    Google Scholar 

  18. S. Olariu, J. L. Schwing, and J. Zhang, Fast Computer Vision Algorithms on Reconfigurable Meshes, Image and Vision Computing Journal, 10 (1992), 610–616.

    Google Scholar 

  19. S. Olariu, J. L. Schwing, and J. Zhang, Constant Time Computational Geometry on Reconfigurable Meshes, SPIE Conference on Vision Geometry, Boston, November 1992, SPIE Vol. 1832, 111–121.

    Google Scholar 

  20. D. Parkinson, D. J. Hunt, and K. S. MacQueen, The AMT DAP 500, 33rd IEEE Comp. Soc. International Conf., 1988, 196–199.

    Google Scholar 

  21. T. Pavlidis, Computer Graphics, Computer Science Press, Potomac, MD, 1978.

    Google Scholar 

  22. V. K. Prasanna and C. S. Raghavendra, Array processor with multiple broadcasting, Journal of Parallel and Distributed Computing, vol 2, 1987, 173–190.

    Google Scholar 

  23. B. Preas and M. Lorenzetti, Eds., Physical design and automation of VLSI systems, Benjamin/Cummings, Menlo Park, 1988.

    Google Scholar 

  24. A. Rosenfeld and A. Kak, Digital Picture Processing, Academic Press, New York, 1982.

    Google Scholar 

  25. J. Rothstein, Bus automata, brains, and mental models, IEEE Trans. on Systems Man, and Cybernetics 18, (4), 1988, 522–531.

    Google Scholar 

  26. A. Schuster and Y. Ben-Asher, Algorithms and optic implementation for reconfigurable networks, Proceedings of the 5th Jerusalem Conference on Information Technology, October 1990.

    Google Scholar 

  27. D. B. Shu, L. W. Chow, and J. G. Nash, A content addressable, bit serial associate processor, Proceedings of the IEEE Workshop on VLSI Signal Processing, Monterey CA, November 1988.

    Google Scholar 

  28. M. I. Shamos, Computational Geometry, Doctoral Dissertation, Yale University, 1979.

    Google Scholar 

  29. D. B. Shu and J. G. Nash, The gated interconnection network for dynamic programming, S. K. Tewsburg et al. (Eds.), Concurrent Computations, Plenum Publishing, 1988.

    Google Scholar 

  30. G. T. Toussaint, Movable Separability of Sets, in G.T. Toussaint ed., Computational Geometry, Elsevier Science Publishers, North-Holland, Amsterdam, 1985.

    Google Scholar 

  31. G. T. Toussaint Ed., Computational Geometry, Elsevier Science Publishers, North-Holland, Amsterdam, 1985.

    Google Scholar 

  32. D. Vernon, Machine vision, automated visual inspection and robot vision, Prentice-Hall, Englewood Cliffs, New Jersey, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michel Cosnard Afonso Ferreira Joseph Peters

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bokka, V., Gurla, H., Olariu, S., Schwing, J.L. (1994). Constant-time convexity problems on reconfigurable meshes. In: Cosnard, M., Ferreira, A., Peters, J. (eds) Parallel and Distributed Computing Theory and Practice. CFCP 1994. Lecture Notes in Computer Science, vol 805. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58078-6_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-58078-6_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58078-2

  • Online ISBN: 978-3-540-48435-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics