
Automated Reasoning with Uncertainties

Flavio S. Correa da Silva

Ph.D.

University of Edinburgh
1992

Abstract

In this work we assume that uncertainty is a multifaceted concept which admits several different

measures, and present a system for automated reasoning with multiple representations of uncer¬

tainty. Our focus is on problems which present more than one of these facets and therefore in

which a multivalued representation of uncertainty and the study of its possibility of computational

realisation are important for designing and implementing knowledge-based systems.

We present a case study on developing a computational language for reasoning with uncertainty,

starting with a semantically sound and computationally tractable language and gradually ex¬

tending it with specialised syntactic constructs to represent measures of uncertainty, preserving
its unambiguous semantic characterisation and computability properties. Our initial language
is the language of normal clauses with SLDNF as the inference rule, and we select three facets
of uncertainty, which are not exhaustive but cover many situations found in practical problems:

vagueness, statistics and degrees of belief. To each of these facets we associate a specific measure:

fuzzy measures to vagueness, probabilities on the domain to statistics and probabilities on possible

worlds to degrees of belief.

The resulting language is semantically sound and computationally tractable, and admits relatively

efficient implementations employing a — (3 pruning and caching.

ii

Acknowledgements

My supervisors were Paul Chung (during the first two years), Jane Hesketh (during the final

year) and Dave Robertson (all the way through it). I cannot overstate how important, useful and

pleasant their guidance and friendship was to develop this project.

Didier Dubois and Henri Prade kindly accepted me as a visiting student at the IRIT - Universite
Paul Sabatier (Toulouse), during November 1990. This research owes much to the technical
advice and stimulating discussions with both Dubois and Prade, and with Jerome Lang and

Sandra Sandri.

Many people have generously offered me important advice and suggestions along the development
of this work. I would like to thank especially Fahiem Bacchus, John Fox and V.S. Subrahmanian.

Others have been patient enough to read early drafts of this thesis and make many insightful
comments and suggestions. Those were Alvaro Fernandes, Alex Gammerman and Tom Kane.

Thanks to my examiners J. Paris and A. Bundy for being so severe as they were with their
corrections and suggestions for change, consequently forcing me to change significantly the final

quality of this work.

It was once said that the best of all presents is the presence of our friends. It is a pleasure to

have so much to thank to so many friends. In special, I would like to thank Brian Ross, Alvaro,

Regina; Dave, Margot, Jane, Paul, Anissa; Alan Black, Dave Moffat, Ian Lewin, Suresh, Am,

Joke, Emilio, Blanca, Franziska, Rob Scott, Keiichi, Carla, Nelson, Sheila Rock and Lais.

Thanks to my family.

The financial support for the development of this PhD project came from CNPq - Conselho
Nacional de Desenvolvimento Cientifico e Tecnologico (Brazil) - grant nr. 203004/89.2.

iii

Declaration

I declare that I composed this thesis myself in its entirety and that it describes my own research.

Flavio Soares Correa da Silva

Edinburgh

February 17, 1993

IV

Contents

Abstract ii

Acknowledgements iii

Declaration iv

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Relation with Similar Works in the Area 3

1.2 Plan of the Work 5

2 Preliminaries 7

2.1 Probability and Fuzzy Measures 8

2.1.1 Fuzzy Measures 8

2.1.2 Probability Measures 11

2.1.3 Probabilities of Fuzzy Events 19

2.2 Logic Programming with Negation 21

v

3 A Language Supporting Fuzzy Predicates 33

3.1 Reasoning with Fuzzy Predicates 34

4 A Language Supporting Probabilities on the Domain 42

4.1 Reasoning with Probabilities 44

5 A Language Supporting Degrees of Belief 55

5.1 Adding Possible Worlds 55

5.2 Reasoning with Possible Worlds 58

5.3 Probabilities on the Domain with Possible Worlds 61

5.4 Adding Probabilities on Possible Worlds 71

5.5 Reasoning with Probabilities on Possible Worlds 77

5.6 Dealing with Conditional Beliefs 78

6 Implementation Issues 88

6.1 The "Non-Optimised" Meta-Interpreter 89

6.2 Computational Optimisation I: a — f3 Pruning 95

6.3 Computational Optimisation II: Caching 105

6.4 Combining Optimisations I and II 107

7 Summary and Discussion 118

Bibliography 122

vi

List of Figures

2.1 Fuzzy Membership Function for the Class "Middle-Aged" 9

2.2 Fuzzy Membership Function for the Class "Fat" 12

2.3 Fuzzy Membership Function for the Class "NON-Fat" 13

2.4 "Middle-Aged" AND "Fat" 14

2.5 "Middle-Aged" OR "Fat" 15

2.6 Completion Comp(P) of a program P 24

2.7 SLDNF 26

2.8 Dependency relation for the predicates in the program P 27

2.9 and/or-tree for Pq{o) 29

2.10 and/or-tree for ^7(6) 29

2.11 and/or-tree for "is Carla fit for aerobics?" 32

2.12 one possible and/or-tree for "is anyone susceptible to dehydration?" 32

3.1 Extended completion of a program P 36

3.2 e-SLDNF 38

3.3 and/or-tree for P&(a) 40

3.4 and/or-tree for Pr(b) 40

vii

5.1 *-Comp{P) 59

5.2 *-SLDNF 60

5.3 and/or-tree for Pe(a) 62

5.4 and/or-tree for 5*7(6) 81

5.5 and/or-tree for Pe(a) - rigid truth-degrees 82

5.6 and/or-tree for 597(a) - rigid truth-degrees 83

5.7 /3-Comp(P) 83

5.8 (3-SLDNF 84

5.9 and/or-tree for Pe(a) 85

5.10 and/or-tree for 597(6) 86

5.11 and/or-tree for fit(flavio), including degrees of belief 87

6.1 and/or-tree for P6{a) generated by a — /3 procedure 106

6.2 and/or-tree for Pe(a) generated by a — /3 procedure - ineffective case 106

6.3 and/or-tree for 5*6(0) generated by caching procedure Ill

6.4 Experimental Results - Execution Times for Resolving Query Q\ 113

6.5 Experimental Results - Execution Times for Resolving Query Q2 114

6.6 Experimental Results - Execution Times for Resolving Query Q3 115

6.7 Experimental Results - Execution Times for Resolving Query Q4 116

6.8 Experimental Results - Execution Times for Resolving Query Q5 117

viii

List of Tables

5.1 Truth-degrees in fi 56

5.2 Derived Truth-degrees in 0 57

6.1 Experimental Results - Execution Times for Resolving Query Q\ Ill

6.2 Experimental Results - Execution Times for Resolving Query Q2 Ill

6.3 Experimental Results - Execution Times for Resolving Query Q3 112

6.4 Experimental Results - Execution Times for Resolving Query Q\ 112

6.5 Experimental Results - Execution Times for Resolving Query Q5 112

ix

"One should be always a little improbable"
O. Wilde

x

1

Introduction

When reasoning we frequently use uncertain information, i.e. information that is incomplete,

vague, only partially reliable or based on statistical associations. Hence, when building automated

reasoning systems we frequently need tools and mechanisms to represent uncertainty.

In this work we present a system for automated reasoning with multiple representations of un¬

certainty: uncertainty is a multifaceted concept, and because of this there are several techniques

for measuring it. Our focus in this work is on problems which present more than one of these

facets, a situation in which it is important to differentiate kinds of uncertainty. Our interest is

on a multivalued representation of uncertainty and the study of its possibility of computational

realisation, therefore, despite understanding that in many cases different measures of uncertainty

can be amalgamated into a single formalism, we are not interested in doing so.

We present a case study on developing a computational language for reasoning with uncertainty,

starting with a semantically sound and computationally tractable language and gradually ex¬

tending it with specialised syntactic constructs to represent measures of uncertainty, preserving

its unambiguous semantic characterisation and computability properties. Our initial language

is the language of normal clauses with SLDNF as the inference rule (i.e. the language of pure

PROLOG1 [Kun89]), which:
1 this language is reviewed in chapter 2

1

1. INTRODUCTION 2

1. is expressive enough to represent a significant portion of first-order logic,

2. admits computationally tractable implementations, and

3. has a well defined formal semantics.

We select three specific facets of uncertainty for our study, which are not exhaustive but cover

many situations found in practical problems. These facets are:

1. vagueness, which describes the extent to which a non-categorical statement is true - a vague

predicate is one whose truth-value admits intermediate values between true and false (e.g.

the predicate "fat" qualifying the weight of a person);

2. statistics, which describes the likelihood of selecting an element or class of elements belong¬

ing to the domain of discourse;

3. degrees of belief, which describe the belief apportioned to statements represented by sen¬

tences in our language.

To each of these facets we associate a specific measure. We associate fuzzy measures to vagueness

[DP88, Rus90b, Zad88], probabilities on the domain to statistics [Bac90c, Hal90] and probabilities

on possible worlds to degrees of belief [Che88, CdSB91, KJ87, Nil86, Pea88, Sha76].

The expected contribution of this work is the empirical confirmation that automated reason¬

ing with multiple representations of uncertainty can be done in a practical sense. Nonetheless,

the language which was constructed to provide this confirmation is expected to be useful as a

tool to implement knowledge-based systems. We also expect this work to be an instance of a

general methodology to construct pluralistic uncertainty management systems, by adding on for¬

mally specified uncertainty measures to an existing semantically sound knowledge representation

mechanism in an "as modular as possible" way.

1. INTRODUCTION 3

The resulting language in our experiment is semantically sound and computable. In order to

make it computationally efficient, we explore the applicability of some standard optimisation

techniques, such as a — @ pruning and caching, to the inference mechanisms employed in the

language.

1.1 Relation with Similar Works in the Area

Our approach can be compared with some other eclectic approaches for managing uncertainty as

follows:

In [Cla90] we find the distinction between symbolic and numerical kinds of uncertainty, where

numerical kinds are those based on real numbers and symbolic kinds are those based on some

discrete collection of symbols representing states of uncertainty. This classification contrasts with

our view in the sense that it regards as of secondary importance the following aspects:

• whether uncertainty measures have a clearly specified semantics;

• whether the measures are of fuzziness or of probability.

Also, it does not account for measures attached to objects in the domain.

The conclusion in that article supports our view that representations of uncertainty must be

powerful enough to treat different measures of uncertainty simultaneously:

'(...) The problem (...) is that many domains of interest to artificial intelligence

are composed of a mixture of quantitative and qualitative relations. So no uncertainty

management technique may be unequivocally appropriate. This raises the need to in¬

telligently combine different uncertainty management techniques and suggests that an

important area of research is the use of both symbolic and quantitative representations

of uncertainty in the same application.' [Cla90]

1. INTRODUCTION 4

The classification in [Saf87] identifies the following kinds of uncertainty, identified by their mea¬

sures:

• Bayesian;

• Dempster-Shafer;

• Explicit (i.e. symbolic);

• Others, including multi-valued and fuzzy logics.

The emphasis in that work is on selecting the appropriate algebra of uncertainty, as opposed to our

emphasis on treating the combination of different algebras. That paper generated a collection of

responses [Cla88], in which many technical aspects were further explored and clarified, including

the differentiation between measures of fuzziness and of probability.

Languages to represent and reason with probabilities on the domain are presented in [Bac90c,

Hal90]. These works also analyse the problem of representing and reasoning with probabilities

on possible worlds and propose hybrid languages to deal with probabilities on the domain and

on possible worlds. The main difference between them is the set of constraints imposed on the

languages to achieve computability2. The difference between probabilities on the domain and on

possible worlds is better understood with some of the examples found in [Hal90]: an example of a

statement declaring probabilities on the domain is the statement "the probability that a randomly

chosen bird will fly is greater than 0.9"; an example of a statement declaring probabilities on

possible worlds is the statement "the probability that Tweety (a particular bird) flies is greater

than 0.9"; and an example of a statement declaring probabilities on both the domain and possible

worlds is the statement "the probability that Tweety flies is greater than the probability that a

randomly chosen bird will fly". The main difference between the results presented in those works

2these constraints are reviewed in chapter 4

1. INTRODUCTION 5

and ours is that those results are mainly theoretical and pay little attention to implementation

issues, whereas ours is directed towards building a programmable language.

None of these two works refers to the problem of dealing with vague (i.e. fuzzy) predicates. This

problem is addressed in [DP88], where possibilistic measures are used instead of probabilities

on possible worlds and possibilistic and fuzzy measures are treated within a single framework.

The analysis of probabilities of fuzzy events is developed in [Kle82, Sme82], where probabilities

are treated as expected truth-values. This analysis is developed outwith the context of applying

the measures to logical statements, but it constitutes the basis upon which we construct our

language.

1.2 Plan of the Work

In chapter 2 we review the main concepts of fuzzy set theory, probability theory and logic pro¬

gramming which are used throughout the rest of the work. The material presented in that chapter

is not original and is presented in order to set the notation and to make this work self-contained.

In chapter 3 we introduce a logic programming language that can treat fuzzy predicates, and

that treats negation by finite failure.

In chapter 4 we extend this language to deal with probabilities on the domain. The language

implements a significant subset of the logic Lv [Bac88, Bac90a, Bac90c], extended with fuzzy

predicates. The logic Lp was known to have computable subsets, but we are not aware of any

previous implementations of it.

In chapter 5 we introduce the concepts of possible worlds and degrees of belief to the language.

These concepts are introduced in a way that brings close relations between the formalism pre¬

sented here and well-known formalisms like Incidence Calculus [Bun85, CdSB91], Probabilistic

Logic [Nil86] and the Dempster-Shafer Theory of Evidence [Sha76, FH89b],

1. INTRODUCTION 6

In chapter 6 we explore some implementation issues.

Finally, chapter 7 summarises and concludes this work.

2

Preliminar ies

In this chapter we review the concepts of fuzzy and probability measures and of logic programming

that we are going to use in the rest of the work.

First we introduce the concept of fuzzy sets and relations, to be used later in the interpretation

of fuzzy sentences, then we review the basic concepts of probability theory and its extensions to

fuzzy events. Finally, we review those concepts of logic programming that we need to define our

own language, which include models for interpretation and execution of logic programs.

Throughout this and the following chapters we include some clarifying examples to illustrate spe¬

cific points of our work. These examples are not essential to the understanding of the theory, but

they are expected to help making the reading of this work more amenable. Additionally, anecdotal

examples are included to suggest how this language could be used in "practical" situations.

7

2. PRELIMINARIES 8

2.1 Probability and Fuzzy Measures

2.1.1 Fuzzy Measures

Given a countable1 set D, fuzzy set theory was developed to treat vaguely defined subsets by

allowing degrees of membership. A fuzzy membership function measures the degree to which an

element belongs to a subset or, alternatively, the degree of similarity between the class (subset)

to which an element belongs and a reference class. Formally, a fuzzy subset F of a referential set

D is defined by an arbitrary mapping pp : D —*■ [0,1], in which, for an element d G D, PF{d) = 1

corresponds to the intuitive notion that d G F and PF(d) — 0 to the notion that d £ F [DP89].

Example 2.1 The set of middle-aged people can be defined by the fuzzy membership function

Pma(x)> where x ranges over a representation of the age of individuals (in years). pma(x) is

presented in Figure 2.1.

Set-theoretic operations can be extended to fuzzy sets. In [DP89] the requirements for operations

on fuzzy sets to be considered extended set operations are presented as follows: let / and g be

conventional unary and binary operations on 2D - the set of subsets of D - and let / and g be

their extensions on the set 2D of fuzzy subsets of D. The extensions should be such that

1. they are closed, i.e. the results of operations on sets are also sets (F\,F2 € 2D =$■ ~fF\ G 2D,

E\gF2 € 2D), and

2. they are reducible to the conventional operations, i.e. the results of the extended operations

on conventional sets coincide with the ones of conventional operations {F\,F2 G 2D =k

~fFi = fFi, F\'gF2 = F\gF2).
1 actually, fuzzy set theory can be defined on uncountable sets. We restrict our attention to countable sets, here,

as this is the kind usually needed to characterise domains of discourse for knowledge-based systems

PRELIMINARIES

age(years)

Figure 2.1: Fuzzy Membership Function for the Class "Middle-Aged"

2. PRELIMINARIES 10

Triangular norms and conorms have been proved to obey these requirements as extensions to

the operations of intersection and union, respectively [Kle82]. A triangular norm is any function

T : [0,1] X [0,1] —y [0,1] such that:

• T(x, 1) = x (boundary condition);

• xx< x2,yi < 2/2 => T(xi,y1) < T(x2, y2) (monotonicity);

• T{x,y) = T(y,x) (commutativity);

• T(T(x, y), z) = T{x, T(y, z)) (associativity).

The conorm of a triangular norm is the function S : [0,1] X [0,1] —» [0,1] defined by:

Furthermore, following [DP89], any function C : [0,1] —»■ [0,1] such that C(pF(d)) = 1 — PF(d)

obeys the requirements as extension of complementation.

However, not all algebraic properties of set operations are necessarily shared by triangular norms

and conorms. In fact, as presented in [Kle82], the only norms and conorms that are also dis¬

tributive and idempotent2 are T — min and S = max - known as Zadeh's triangular norms and

conorms. Henceforth, in order to keep fuzzy set operations as close as possible to conventional

set operations, we adopt the following functions as our extended set operations of intersection,

union and complementation3:

2i.e. that obey the following rules:

s{x,y) = 1 - r(l - x,l - y).

2. T(x,x) = x and 5(i,i) = x (idempotency).
Conventional set union and intersection are both distributive and idempotent

3 these are the most commonly used definitions of fuzzy set operations

2. PRELIMINARIES

• intersection: pa<-\b(x) = min{pa{x)i Pb(x)s'i

• union: paub(x) = rnax{g,a(x), Pb(x)}',

• complementation: p~,a(x) = 1 — pa(x)-

11

Example 2.2 Given the class of middle-aged people - represented by pma{x) as before (Figure

2.1) - and the class of fat people - represented by p/(y) with y ranging on a representation of the

weight of individuals (in kg) (Figure 2.2) - and given that both measures refer to the same set

of individuals, we can derive the classes of NON-fat, middle-aged AND fat, and middle-aged OR

fat people. These are presented pictorially in Figures 2.3, 2-4 and 2.5, respectively. Observe that

binary set operations correspond to evaluations in the Cartesian product space of the corresponding

membership functions.

2.1.2 Probability Measures

Given a finite set D - to be identified later with the domain of discourse of our language - we

define a particular collection of systems of subsets of D, which we call the collection of algebras

of D, and measures on these algebras which we denominate probability measures. Since the

interpretations of predicates of arity greater than 1 belong to cartesian products of members of

a partition of D, we extend the concept of algebras and probability measures to partitions and

cartesian products of members of partitions of D.

Given a finite set D, an algebra \D on D is a set of subsets of D such that:

• D £ XD',

• A £ XD =>■ ~~>A £ XD',

• A, B £ xd => Al) B 6 XD-

PRELIMINARIES

weight(kg)

Figure 2.2: Fuzzy Membership Function for the Class "Fat"

PRELIMINARIES

weight(kg)

Figure 2.3: Fuzzy Membership Function for the Class "NON-Fat"

age(years)

Figure 2.4: "Middle-Aged" AND "Fat"

years)

weight(kg)

Figure 2.5: "Middle-Aged" OR "Fat"

2. PRELIMINARIES 16

Any subset of D is called an event on D. Events belonging to xd are called measurable events.

The basis x'd °f an algebra \D is the subset of \D such that:

(Hx'd;

A,Be x'di a / B => An B = {};

. k eXD^^Au...,Anex'D-K = UiAi.

A probability measure on xd is a function V : xd —* [0,1] such that:

• V{D) = 1 (total probability);

• A fl B = {} =>■ V(A U B) = V{A) + V(B) (finite additivity).

As presented in [FH89b], once v is defined for x'd ^ can be extended to the whole algebra by

finite additivity. This is useful as we can specify a probability measure by defining its value only

for the elements of x'd-

Given two measurable events A, B € XD> the conditional probability V{A\B)A is defined as5:

V(B) £ 0

V(B) = 0

Two measurable events A, B are called independent iff:

V{A\B) = V{A)

which, as a corollary, gives that:
4 to be read as "the probability of the event A given the event B"
5 notice that, as a corollary of the definition of an algebra, A, B € Xd xd [Dud89]

2. PRELIMINARIES

V(AnB) = V(A)xV(B)

17

if A and B are independent.

The set D can be partitioned into m subsets Di,..., Dm such that

• Di fi Dj = {}, i,j = 1,m.

• d = ur

We can have independent algebras6 XDi and probability measures Vi for each set Di. If we

assume that all events in each XDi are pairwise independent, we can extend measures to cartesian

products of the sets Di of a partition of D: the cartesian product of a collection of bases of

algebras of elements D\,...,Dm of a partition of D is the basis j? of an algebra of the cartesian

product of the sets D\, ...,Dm, and the measure V on the corresponding algebra x is defined as:

• '• X [0,1]-

• ?(A) =nrw

where

- A = [A\, ..., -Am],

- Ai e XDi,

- Vi is the probability measure defined on XDi-

Probability measures can be extended to non-measurable events, i.e. sets Aj £ 2D \ xd• Given

D, xd and V, we define the inner and outer extensions to V (V* and V*, respectively) as [Dud89,

GS82, FH89b]:
6 two algebras and \2 are independent iff each event X, £ xi is independent of every event yj £ x2 and

vice-versa

2. PRELIMINARIES 18

• V*,V* : 2d -> [0,1]

. V.(A) = sup{V(X) :XC A,X exd} = V(\JX : X C A,X € x'd)

. V\A) = inf{V(X) :ACX,XeXD} = V([JX : X n A ± {}, X e X'D)

Inner and outer measures can be extended to cartesian products of a partition of D. Given

a collection of elements of a partition of D, and given also the algebras XDi and

probability measures of each D{,i — 1,m, we have:

. 2Dix-xD" ^ [0,1]

. VmM) = sup{Pm{X):X C A,X 6 x) = Vm([jX :XC A,X ex').

. V*m(A) = inf{Vm(X) : A C X,X € x} = Vm{\JX :Ifl4/{},Ief).

The measures Vm* and V^ can be regarded as approximations from below and from above to

the probabilities of non-measurable events: if we could evaluate the probability Vm(A), then

we would have that Vm*{A) < Vm(A) < V^(A). Indeed, for measurable events we have that

Vm*(A) = 'Pm(A) = V*m{A).

As presented in [FH89a],the best approximations we have for conditional probabilities of non-

measurable events can be given by the following expressions:

• V*(A\B) = { V*(Al\B) + V\-*Ar\By V^A 0 + V*^A n B"> ± 0
[0, V^A n B) + V*{^A n B) = 0

• v*(A\B) = [v\Ar\B) + vA^Ar\By B*(An b)+ va^ad B) ± o
I 0, V*(AnB) + V*(^AnB) = 0

For the case of measures on x, these expressions can be stated as:

• Vm*{A\B)=[BrnA A nB) + V*X->A n B)' Vm*(A n B) + V^{pA n B) A 0I 0, VmAAnB) +V^An5) = 0

2. PRELIMINARIES 19

• V^(A\B) = { V*JA n B) + Vm^A n B)' V™(A n 5) + V™*hA 95)/ 0I 0, P* (A D B) + Vm.(pA 95) = 0

2.1.3 Probabilities of Fuzzy Events

A sentence containing vague predicates defines a fuzzy set of elements of the domain of discourse

(or of elements of the cartesian product of members of one of the partitions of the domain of

discourse). Hence, if we allow fuzzy predicates in our language we must be prepared to specify

the probability of fuzzy events.

In [Kle82] the concept of algebra is extended to fuzzy sets and in [Pia88, Sme82, Tur88] the

definition of the probability of a fuzzy event is presented, reputed as originally by L. Zadeh

[Zad68].

A fuzzy algebra on D is defined by analogy with the concept of an algebra. It is a set Xd °f fuzzy

subsets of D, such that:

• /x(a : a G A) — constant =» A G Xd'i

• A G XD => € Xi>;

• A, B e Xd ^ A U B E XD

Given an algebra xd and a probability measure V on xd, the probability of the fuzzy subset

A e Xd is defined for every measurable A (i.e. for every A G Xd), and is given by the Lebesgue-

Stieltjes integral

VF(A) = fD /i(a : a G A)dV

From the computational point of view, we can access upper and lower bounds for this integral,

related to the extreme values of the membership function in A f~l A,-, A, G x'd:

2. PRELIMINARIES 20

Ea iCA x rnin{n(di) : a,- G A, n A}
< Vf{A) <

Ea^a^} P(Ai) X max{n(ai) : a, G A,- D A}

These expressions can be extended to the non-measurable cases and to 2DlX-xDm, where

Di, ...,Dm form a partition of D. Given a non-measurable fuzzy event A, we have:

Ea(ca 'Pm(Ai) x min{n{a,i) : a, € A; n A}
< ^(A) <

And for the case of conditional probabilities, we have:

. VFM\B) =
■p , 'Pm*2 + Pm3 7^ 0^m*2 T" f m3

. ^*(A|5) =

where

0, otherwise

min{ 1, sy? El? ~t~ "Pm*3 0
~7n2 t rm*3

0, otherwise

"Pm*i — EA,c[AnB] ^m(Ai) x miri-{/i(<ii) : a,' G A,- n [A n 5]}
- Vm*2 = EA,C[AnB] ^m(Ai) X mfli{/j(oi) : a,- G A,- D [A D 5]}
- 7^71*3 = EA.ch.4nB] ^m(A{) X Tnin{fj,(di) : a,- € A; n [->A n 5]}
~ ?mi = E^nfAnB^O^A,) X max{/x(a,) : a,- G A, fl [A n 5]}
~ Pm2 = EA.n[AnB]^{}^(At) X min{n(di) : a,- G At- fl[Afl 5]}
- ^m3 =EAnl^jW) X mar{/i(a,) : a; G A,- n [-.A D 5]}

Observe that we use Vm*2 in the denominator of VF,(A\B) instead of Pmtl. The reason for

that is that, since Vm*i underevaluates the inner measure Vm*(A D B), we cannot guarantee

2. PRELIMINARIES 21

that Vm*\ + V^3 > Vm*{A n B) + V^{pA n B). Hence we use Vm*2, since it is clear that

Vm*2 + ~Pm3 - ^m*(^ f~l B) + V^(-iA fl B). A similar argument explains the use of V^2 instead

of in the denominator of V^*(A\B).

2.2 Logic Programming with Negation

The language presented here is defined after [Kun89]. The class of logic programs supported by

this language is that of normal non-cyclical programs which are strict with respect to queries and

allowed (see definitions below). The symbols of the language are:

• variables x,y,...\

• constants a, b,

• n-ary predicates p, q7,

• the connectives ' ("if"), ("not"), ("and").

A term is a variable or a constant, an atom is a predicate application on terms, and a literal is

an atom (positive literal) or the negation of an atom (negative literal). A normal clause is an

expression p <— q\, ...,qn where p is an atom and q\, ...,qn are literals, n > 0. p is called the head

of the clause and qi,...,qn is called the body of the clause. When n = 0 the clause is called a

unit clause. A query clause is an expression q\, ...,qn where n > 0. A normal program is a finite

non-empty set of normal clauses.

Let Prp be the set of predicates in the program P. The immediate dependency relation □ is

defined as follows:

• given p,q € Prp,p~A q iff there is a clause in P in which p occurs in the head and q occurs

in the body.

7predicates of different arities always have different names

2. PRELIMINARIES 22

The dependency relation > is defined as the least transitive reflexive relation on Prp extending

□ : p > q means that p depends hereditarily on q.

Signed dependencies are defined as follows:

• p □+! q iff there is a clause in P in which p occurs in the head and q occurs in a positive

literal in the body;

• p □_! q iff there is a clause in P in which p occurs in the head and q occurs in a negative

literal in the body;

• >+i and >_i are the least pair of relations satisfying:

~ P >+i P,

- P^iqAq>jr^p >ixj r.

A program P is called call-consistent iff it does not have any p such that p >_i p. If P also does

not have any p such that p >+i p then it is called non-cyclical. P is called strict with respect to

a query <p iff there are no p G P, q 6 (p such that q >_i p and q >+i p. P is called allowed iff

every variable occurring in each clause of P occurs in at least one positive literal in the body of

the clause.

An instance of an expression8 £ is the expression £' obtained by replacing all occurrences of a

variable x in £ by a term different from x. The operation that generates instances is called

substitution. Essentially, a substitution is a mapping from variables to terms. A ground instance

of an expression £ is any variable-free instance of £. Given a program P, ground(P) stands for

the set of all ground instances of the clauses in P.

A substitution o of two expressions £i and £2 is a unifier iff £icr = £2(7. It is a most general unifier

(mgu) iff for any other unifier 7r of £1 and £2, £t-7T are instances of £,cr.

8an expression is a term, a literal or a clause

2. PRELIMINARIES 23

Assuming first-order logic with equality as the underlying language, the completion of a program

P (Comp(P)) is defined by the rules and axioms presented in figure 2.6 [Tur89].

The semantic model of a program P is defined in terms of its completion Comp(P). The domain

of Comp(P) consists of the non-empty set D of constants occurring in P. The interpretation

of a predicate p € Prp is a function I{p) : Dn —► {T, J.} where n is the arity of p, T stands

for "true" and JL stands for "false". The interpretation of the equality and the truth tables of

the connectives occurring in Comp(P) are defined as usual (see, for example, [Men87]). Any

interpretation that takes every expression occurring in Comp(P) to the value T is a model of P.

Now it is possible to introduce an inference procedure for this language. The procedure is

SLDNF9. First we must introduce some notation. In what follows:

• ifii are literals;

• Piili are positive literals;

• 9i are positive ground literals;

• £>ii f>i are (possibly empty) conjunctions of literals;

• cr, 7r are substitutions;

• R stands for "returns": ipRcr holds iff SLDNF succeeds on t/> with the substitution o as an

answer, in which case we say that if belongs to the success set R of the program;

• F stands for "fails": ifF holds iff SLDNF fails, in which case we say that ip belongs to the

finite failure set F of the program;

9 SLDNF stands for Linear Resolution with a Selection Rule for Definite Clauses, extended with IVegation by
Finite Failure. "Linear" indicates that each inference step uses the most-recently resolved clause as an input,
"selection rule" indicates the use of some fixed rule to select the other inputs of each inference, "definite clauses"
defines the class of clauses initially tractable by the procedure (a definite clause is a normal clause in which all
literals are positive), and "negation by finite failure" indicates that these clauses are extended to accomodate
negation - resulting in what we are calling normal clauses - and that negation is interpreted in the specific way
presented in the following paragraphs

2. PRELIMINARIES 24

• Rules:

Denoting by De fp the definition of the predicate p in the program:

— Defp = the set of clauses in P with p in the head,

Defp = {}
Va?[-ip(a?)]

2 Defv = {p(£) <-&:« = 1, fc} ^ {}
Vf[p(x) Vi=i 3((f = £) A V»)]

where

(a) f,t{ are tuples, with the proper arity, of variables ([®i,..., xm]) and terms
([hi,—, tmi]), respectively;

(b) x = t{ stands for xi = tu A ... A xm = tm,-;
(c) the scope of the existential quantifier is the variables occurring in the bodies of

the clauses in Defp;
(d) ipi are (possibly empty) conjunctions of literals; and
(e) the connective stands for equivalence.

• Axioms:

1. equality axioms [Men87]:
(a) \/x(x = x) (reflexivity);
(b) x\ = xi (C(xi,£i) -» C(x\,x2)) (substitutivity).

where x,xi,x2 are variables, C(xi,xi) is a clause and C(xi,x2) is the same clause
with some (but not necessarily all) occurrences of x\ replaced by x2;

2. t(x) x for each term in which x occurs.

Figure 2.6: Completion Comp(P) of a program P

2. PRELIMINARIES

• true stands for the empty query clause;

• yes stands for the identity substitution.

25

The procedure is defined by the inductive rules presented in figure 2.7.

The soundness and completeness of SLDNF with respect to this model of completion is obtained

from the literature. In [Apt87] we have that SLDNF is sound, i.e. that given a query and a

program P, if (using our notation) fiRo then Comp(P) |= fio, and if ipF then Comp(P) (= -iip,

where Comp(P) |= $ means that $ is a semantic consequence of Comp(P).

The completeness result can be found in [Kun89]: for the classes of programs and queries consid¬

ered in our work (actually, [Kun89] treats slightly more general classes of programs and queries,

allowing e.g. cycles and functions), if Comp(P) |= ifo then fiRo, and if Comp(P) f= ->iJj then

fiF.

This defines a rich subset of first-order logic with a computationally efficient inference procedure

and a formally specified declarative semantics.

Example 2.3 Consider the following program P:

px{x) «- P2{x),-*pz{x).
p4(x) <- p3(x).
ps(x) *- p4(x),~'Px(x).
p6(x) <- px{x).
p7{x) <- Ps(x).
Pq(x) <- p2(x),-<p7(x).
p2(a).
Ps(a)-
Pz(b).
And the queries:

p6{a).
Pr(b).

The predicates in this program have a dependency relation as shown in figure 2.8, where pt- —> p-

iff Pi Q Pj ■

PRELIMINARIES

true R yes.

(g,6),3[p<- : a = mgu(q,p), (ip,6)(xRn
(q,6)R(cnr)

(->g,S),gF,SR<r
(-<g,6)Ra

, V (g,fl),-i3fp<- V>1 : 3mffu(g,p)
1 j

,, s (q,6),V\Pi i>j] ■ 3(T = mgu(q,pj) =>■ (rpi,6)aF

(~>g,S),gRyes
hg,s)F

Figure 2.7: SLDNF

2. PRELIMINARIES 27

p6

Figure 2.8: Dependency relation for the predicates in the program P

2. PRELIMINARIES 28

The complete and/or-trees for these queries, indicating whether each node belongs to the success

(R) or the finite failure (F) sets, are as follows (figures 2.9 and 2.10), in which linked branches

represent "and-ed" dependencies and unlinked branches represent "or-ed" dependencies.

These trees compute the values _L for pe{a) (since it belongs to the finite failure set of the program)

and T for pj(b) (since it belongs to the success set of the program).

Anecdotal Example 2.1 We know the following people10:

Alice; Andy; Carla; Dave; Flavio; Ian;
Jane; Joanne; Kathleen; Otavio; Robert; William.

We also know that:

1. Andy, Carla, Dave, Flavio, Ian, Jane, Joanne and Robert work or study at the Department

of Artificial Intelligence at the University of Edinburgh;

2. Ian, Joanne, Kathleen and William are blond;

3. Kathleen and William are Robert's parents;

4- Alice and Otavio are Carta's parents;

5. Andy, Carla, Dave, Flavio, Ian, Jane, Joanne and Robert are young adults;

6. Flavio, Otavio, Ian and William are overweight; and

7. Carla and Kathleen have variable blood pressure.

When analysing these individuals' fitness for engaging in aerobic exercise sessions and their

susceptibility to dehydration, the following statements were accepted as true:

10 all characters portrayed in this and the following anecdotal examples are purely fictional and any resemblance
to any non-fictional people is merely coincidental.

PRELIMINARIES

F : pe(a)

R:p2(a) F : ~<p3(a)
I
R : p3(a)

R : Pa{o) R : ~<pi(a)
I I

R:p3(a) F:pi(a)

R ■ P2(a) F : ~>p3(a)
I

R : P3(a)

Figure 2.9: and/or-tree for pe(a)

R : P7(b)
I

R ■ P5(b)

R:p4(b) R:-<pi(b)
I I

R-.p3(b) F : pi(b)

F:p2(b) F : ~<p3(b)
I

R ■ P3(b)

Figure 2.10: and/or-tree for ^7(6)

2. PRELIMINARIES 30

1. If a person is susceptible to get sunburnt and is not a young adult, then this person is

susceptible to dehydration.

2. If a person is blond, then this person is susceptible to get sunburnt.

3. If a person has blond parents, then this person is blond.

4■ If a person is overweight, then this person is susceptible to dehydration.

5. If a person is a young adult and does not need special care, then this person is fit for

aerobics.

6. If a person is overweight or potentially hypertense, then this person needs special care.

7. If a person has variable blood pressure or is not a young adult and has a parent who has

variable blood pressure, then this person is potentially hypertense.

The questions are:

1. Is Carla fit for aerobics?

2. Is there anyone who is susceptible to dehydration?

The problem can be stated as a logic program as follows, where x, y, z are variables and the other

terms are constants:

dehyd(x) <— sunb(x),-<young(x).
sunb(x) <— blond(x).
blond(x) <— parent{x, y),parent(x, z), blond(y), blond(z).
dehyd(x) <— overw(x).
fit(x) <— young(x), -ispcare(x).
spcare(x) <— overw(x).
spcare(x) <— hyper(x).
hyper(x) <— varblpres(x).
hyper(x) <— parent{x, y), varblpres(y), ->young(x).

2. PRELIMINARIES 31

deptai(andy). deptai(carla).
deptai(dave). deptai(flavio).
deptai(ian). deptai(jane).
deptai(joanne). deptai(robert).

blond(ian). blond(joanne).
blondfikathleen). blond(william).

parenfirobert, kathleen). parent(robert, william).
parent(carla, alice). parent(carla, otavio).

young(andy). young(carla).
young(dave). young(flavio).
young(ian). young(jane).
young(joanne). young(robert).

overw(flavio). overw(otavio).
overw(ian). overw(william).

varblpres(carla). varblpres(kathleen).
The first query is evaluated as represented in the and/or graph in figure 2.11, concluding that

"Carla is not fit for aerobics".

The second query can be solved by several different ways. For example, it could be evaluated as

represented in figure 2.12, concluding that Kathleen is susceptible to dehydration, hence "someone

is susceptible to dehydration".

PRELIMINARIES

F : fit (carla)

R : young(carla) F : -<spcare(carla)
R : spcare(carla)

F : overw(carla) R : hyper(carla)
R : varblpres(carla)

Figure 2.11: and/or-tree for "is Carla fit for aerobics?"

R: dehyd(kathleen)

F : overw(kathleer^
R : -iyoung(kathleen) R : sunb(kathleen)

I I
F : young(kathleen) R : blond(kathleen)

Figure 2.12: one possible and/or-tree for "is anyone susceptible to dehydration?"

3

A Language Supporting Fuzzy
Predicates

The relationship between fuzzy logics and the resolution principle is well established. Since

[Lee72], one of the pioneering works in the area, several proposals have been made, aiming at

richer languages in respect of both the logical and the fuzzy relations supported.

In [Lee72] the language is limited to definite clauses [Apt87, Hog90] allowing fuzzy predicates

with truth-values always greater than 0.51. The semantics of the relevant connectives is defined

according to Zadeh's triangular norms and conorms and resolution is extended to propagate

truth-values in a way that is sound and complete with respect to the Herbrand interpretation

of sets of clauses. Several implementations based on [Lee72] have been proposed, e.g. the ones

described in [Hin86, IK85, Orc89].

More recent developments [Fit88, Fit90, KS91, Sha83, vE86] have focused on fixpoint semantics,

either working with definite programs or approaching the definition of negation by means other

than finite failure. We adopt negation by finite failure in this work, in order to have the more

conventional languages which are based on this principle (e.g. pure PROLOG) as proper subsets

of our language. This choice is corroborated by the results found in [Tur89, CL89, Fit85, Kun87,
1 the limitations on the types of clauses and range of truth-values are conditions imposed to obtain soundness

for the specific resolution procedure employed in [Lee72]

33

3. A LANGUAGE SUPPORTING FUZZY PREDICATES 34

Kun89, Kun90], which determine large classes of normal programs with a well-defined declarative

semantics2.

In what follows we introduce a language to deal with fuzzy predicates. First we present the

language, then its model theory and inference procedure.

3.1 Reasoning with Fuzzy Predicates

Fuzzy predicates can be defined by analogy with the concept of fuzzy sets. The interpretation

of predicates can be generalised to a function I(p) : Dn —► [0,1], with the extreme values cor¬

responding to the previous values T and J. (namely, T = 1 and _L = 0). This function can

be construed as a fuzzy membership function and the logical connectives can be interpreted as

fuzzy set operators - *—»* corresponding to complementation, 'V' corresponding to union, 'A' cor¬

responding to intersection, and corresponding to set-equivalence. Intuitively, the semantics

of a closed formula becomes a "degree of truth", rather than simply one value out of (T, ±}. Let

r denote this value and 7~(^>,r) state that "the truth-degree of if is r". This evaluation can be

made operational using an extended SLDNF (e-SLDNF) procedure, to be related to the model

of an extended completion of a program P (e-Comp(P)). We assume that the unit clauses (and

only them) in the program express truth-degrees, that is, unit clauses are of the form T(p, r),

where r > 0.3

The extended completion of a program P (e-Comp (P)) is defined as presented in figure 3.1.

Two classes of formulae can be identified in e-Comp(P):

• unit formulae, generated by rule 1 or from the unit clauses occurring in P; and
2
see chapter 2

3 the restrictions on how to declare truth-degrees are imposed to avoid ambiguity, redundancy and conflicting
declarations. The language presented here is monotonic and does not contain mechanisms to resolve truth-degrees
if they are declared for unit clauses as well as larger constructs (e.g. general normal clauses)

3. A LANGUAGE SUPPORTING FUZZY PREDICATES 35

• equivalence formulae, i.e. the remaining ones, all of them containing the connective <->.

The connectives occurring in e-Comp(P) are interpreted according to the truth-functions defined

below:

Assuming that:

• T(6, ts), and

We have that:

• T((S A V>)>r) => r = rnin{Ts,T^}

• T((6 V ip),r) =» r = max{rs,T^}

• T((-I6),T) => T = 1 - Ts

The completion of a conventional program defines a unique model for the program. For the

extended completion to do the same, a necessary condition is to fix the truth-values for the unit

clauses occurring in P as values greater than 0. This condition is also sufficient, as all the other

formulae in e-Comp(P) - i.e. the equivalence formulae and the unit formulae generated by rule

1 - must have truth-values equal to 1 in the model of the program.

A model for a program containing fuzzy predicates is any interpretation for which every expression

<p occurring in e-Comp(P) has a truth-value r > 0.

Our notation for logic programs and the e-SLDNF procedure is basically the notation used in

figure 2.7, with the following alterations:

T((S «-»• ip), 1) => rs = Tj,
T((6 V0,0) => ts

3. A LANGUAGE SUPPORTING FUZZY PREDICATES 36

• Rules:

1 Pefp — {}
V£[7*(->p(a), 1)]

Defy = (P(5) *-1>i'•* = !> •••>k} ^ (I
Vf[T(p(f), r) <-► max{ri : (® = /,•) A [(V>i / {} A 7"(V>;, r,))
V(V>i = {} A T(p(£),r<))]} = r]

where

(a) Defp is the set of clauses in P with p in the head;
(b) x, ti are tuples of variables ([®i,xm]) and terms ([tii,tmi]), respectively;
(c) x = ti stands for x\ = tu A ... A xm = tmi\
(d) ipi are (possibly empty) conjunctions of literals;
(e) the connective <-*• stands for equivalence.

• Axioms:

— same as in figure 2.6.

Figure 3.1: Extended completion of a program P

3. A LANGUAGE SUPPORTING FUZZY PREDICATES 37

• Re stands for "returns with a truth-value greater than 0": ip Re (ct,t) holds iff e-SLDNF

succeeds, assigning a truth-value r to ip, with the substitution a as an answer;

• Fe stands for "fails": ifFe holds iff e-SLDNF fails, implying the assignment of a truth-value

T = 0 tO 1p.

e-SLDNF is defined inductively as presented in figure 3.2.

The intuition underlying the definitions of e-Comp(P) and e-SLDNF is that we need the truth-

degrees declared in the unit clauses in a program P "transferred" to the heads of the clauses in

P in a consistent way. Central to these definitions is the notion of completed database, which

makes it possible to define the truth-degrees to be "transferred" as unique.

There are indications that the completeness results obtained for programs without fuzzy predi¬

cates can be mimicked for those containing fuzzy predicates (indeed, early drafts of this thesis

contained the sketch of a proof of these results - later showed to be faulty - based on the sup¬

position that fuzzy predicates could be rewritten as non-fuzzy ones and the "transferring" of

truth-degrees could be dealt with independently from the evaluation of queries to non-fuzzy pro¬

grams). These results have been object of research, and there are indications that they are at

least as complex - and hard to achieve - as their non-fuzzy counterparts exhibited in [Kun89].

Example 3.1 Consider the following program:

Pi(x) *- p2(x),^p3(x).
pA(x) *- p3(x).
Ps(x) *- pA{x),->pi(x).
p6(x) *- pi(x).
p7(x) <- p5(x).
pe(x) <- p2(x),->p7(x).

T(p2(a),0A).
T(p3(a), 0.2).
T(p3(b), 0.1).
And the queries:

3. A LANGUAGE SUPPORTING FUZZY PREDICATES 38

1. true Re (yes, 1)

(q, 6), max
2. (a)

f r{ : [pi <- i/>i], (Ji = mgu(q,pi), (tpi, S)<Jt Re (tt,-, r,)V
<Ji = mgu(q,pi), (<5)<r,- Re (x,-, r/), > — t

(ctx, r)
where ax is the substitution that generates r and the V'i are non-empty conjunctions.

(^g,6),gRe (yes,T'),T' < 1,6 Re (a,T"),min{(1 - r'),r"} = r

o hg,S),gFe,6 Re (<t,t)3-

, V (g, <S), i3fp <- V>1 : 3mgu(g,p)4- w (g,<5)>

/u\ (g^),v[pi n ^il : = m9u(q,Pi) => (ipj,S)(rFeW (?,*)>

(-ng,6),gRe (yes, 1)
(-<7,<S)Fe

Figure 3.2: e-SLDNF

3. A LANGUAGE SUPPORTING FUZZY PREDICATES 39

Pe(a).
Pz(b)-

The complete and/or-trees for these queries are as presented in figures 3.3 and 3.4- The trees

compute the truth-degrees for pe(a) and p^(b). It is worth observing that this language subsumes

the language without fuzzy predicates, having that one as the special class of programs in which

every clause has truth-degree 1 or 0. The truth-values obtained in example 2.3 could be derived

here if the program had its unit clauses replaced by the following clauses:

Anecdotal Example 3.1 On reviewing our statements on the anecdotal example 2.1, we con¬

clude that we are not being fair when we are so categorical about statements such as one's youth

or plumpness. To make things fairer, we update the unit clauses in our programs as below:

T(P2(a)tl).
T{pz{a),\).
nPs(b), 1).

T(deptai(andy), 1).
T(deptai(dave), 1).
T(deptai(ian), 1).

T(deptai(carla), 1).
T(deptai(flavio), 1).
T(deptai(jane), 1).
T(deptai(robert), 1).T(deptai(joanne), 1).

T(blond(ian),0.9).
T(blond(kathleen), 0.7).
T(blond(jane), 0.7).

T(blond(joanne), 0.9).
T(blond(william), 0.6).

T(parent(robert, kathleen), 1). T(parent(robert, william), 1).
T(parent(carla, alice), 1). T(parent(carla, otavio), 1).

T{young(andy), 0.9).
T(young(dave), 0.9).
T(young(ian), 0.9).

T(young(carla), 0.9).
T(young(flavio), 0.9).
T(young(jane), 0.9).
T(young(robert), 0.9).
T(young(otavio),0.3).
T(young(william), 0.3)

T(young(joanne), 0.9).
T(young(alice), 0.3).
T(young(kathleen), 0.4).

T(overw(flavio), 0.4).
T(overw(ian), 0.6).
T(overw(andy), 0.2).

T(overw(otavio), 0.7).
T(overw(william), 0.5)
T(overw(robert), 0.3).

T(varblpres(carla), 0.7). T{varblpres(kathleen), 0.8).
T(varblpres(flavio), 0.3).

A LANGUAGE SUPPORTING FUZZY PREDICATES

nP6(a),OA)

T(p2(a),0A)
T(P2(a),0.A)

T(-p3(a), 0.8)
I
T(p3(a), 0.2)

T(-ip7(a),0.8)
I

T(p7(a), 0.2)
I

T(p5(a), 0.2)

T(p4(a), 0.2)
I

T(p3(a), 0.2)

TH^a), 0.6)
I

T(Pi(a), 0.4)

T(p2(a), 0.4) T(-ip3(a), 0.8)
I

T(P3(a), 0.2)

Figure 3.3: and/or-tree for Pe(o.)

T(P7(b), 0.1)
I

T(p5(6),0.1)

T(p4(&), 0.1) T(-ipi(b), 1.0)
I I

T(p3(6), 0.1) F:Pl(b)

F:P2(b) T(-p3(6),0.9)
I

T(p3(&), 0.1)

Figure 3.4: and/or-tree for p7(&)

3. A LANGUAGE SUPPORTING FUZZY PREDICATES 41

With these unit clauses, the possible ground answers for the query "Is there anyone who is sus¬

ceptible to dehydration?" are4:

• T(dehyd(andy), 0.2).

• T(dehyd(fIavio), 0.4).

• T(dehyd(ian), 0.6).

• T(dehyd(jane), 0.1).

• T(dehyd(joanne), 0.1).

• T(dehyd(kathleen), 0.7).

• T(dehyd(otavio), 0.7).

• T(dehyd(robert), 0.3).

• T(dehyd(william),0.6).

Since the interpreter selects the answer that is the "most correct", the returned truth-degree is

actually 0.1, since it is the maximum truth-degree that we can obtain for the query.

4 Each alternative ground answer is generated by traversing an alternative and/or tree that resolves the query,
i.e. by exhaustively grounding the free variables in the query with a different term. There is a direct correspondence
between this and the execution of step 2(a) in figure 3.2, which generates exhaustively all answers to a query in
order to find the one with maximum truth-degree

4

A Language Supporting
Probabilities on the Domain

The problem of representing and reasoning with statistical knowledge has received some attention

recently [AH89, Bac88, Bac90a, Bac90c, Hal90]. This problem can be roughly characterised as

the problem of representing in a first-order language terms of the form Vg(fi)1. For example,

given a program like the one in example 3.1, we may have interest in statistical information such

as "what is the probability that there is a constant a such that pj(a)1n

In [AH89] we have the result that the set of valid formulae for first-order logic containing statistical

terms is not recursively enumerable, implying that a complete proof procedure for this logic does

not exist. Two different ways of constraining the language to achieve proof-theoretic completeness

have been proposed:

• in [Bac88, Bac90a] the probability measures are relaxed to non-cr-additive measures, that is,

the general probability axiom stating that "the probability of any (infinitely) countable set

of pairwise disjoint events equals the sum of the probabilities of those events" is reduced to

the case of finite sets of events. Moreover, the measures range on real closed fields2 rather

To be read as "the probability of selecting a vector of instances for the variables in x that make ip true"
2
a real closed field is a theory with equality containing the functions + and x and the predicate < and obeying

the following axioms [Sho67]:

42

4. A LANGUAGE SUPPORTING PROBABILITIES ON THE DOMAIN

than on real numbers.

43

• in [AH89, Hal90] the domain of discourse is bounded in size, i.e. it contains a number of

elements not greater than a fixed N.

Our base language to be extended to contain statistical expressions3 obeys all these constraints:

its domain is always finite and of fixed cardinality, so it is always bounded in size, cr-additivity

coincides with finite additivity for finite domains and, as we intend to compute probabilities,

field-valued measures are sufficient since, as pointed out in [Bac88], "computers are only capable

of dealing with rational numbers (and only a finite set of them)".

On the other hand, the language introduced here extends the aforementioned results in two

senses:

• we allow the occurrence of fuzzy events, i.e. statistical events that are characterised by

fuzzy sets, and

• following a line suggested in [Hal90], we admit the existence of non-measurable events and

the consequent need for inner and outer approximations for statistical measures.

Vi, y, z[(x + y) + z — x + (y + z)]. 30Vx[x + 0 = x].
3 - lVx[x + (-1 x x) — 0], Vx, y[x + y = y + x].
Vx, y, z[(x xy)xz = xx(yx z)]. 31Vx[x x 1 = x].
Vx[x A 0 —* 3y(x X y = 1)]. Vx, y\x x y = y x x],
Vx, y, z[x x (y + z) = (x x y) + (x x z)]. 0/1.
Vx[->x < x], Vx, y, z[x < y —* y < z —► x < z].
Vx, y[x <yVx = yVy<x\. Vx, y, z[x <y—>x + z<y + z],
Vx, j/[0 <x—► 0 < j/ —► 0 < x x j/]. Vx[0 < x —► 3y(y x y = x)].
The set 3? of real numbers is a particular real closed field in which the continuity property is valid [IK77]:

for each nonempty subsets A and B of SR, with a < b for each pair o <E A and b G B, satisfying
5R = A U B and A n B = {}, there exists a unique element x € 3? such that for every a € A, a < x, and
for every b € B, x < b.

3recall that our base language is the language of normal clauses containing fuzzy predicates, under allowedness
and strictness with respect to queries, and non-cyclical programs

4. A LANGUAGE SUPPORTING PROBABILITIES ON THE DOMAIN

4.1 Reasoning with Probabilities

44

Given a program P, the set of solutions with truth-values greater than 0 for a query if is always

finite. This set also defines a fuzzy set of tuples of elements of D - the domain of P.

If our language is extended to accommodate the specification of probability measures of algebras

of a partition of D through their bases, the set of solutions of if can be interpreted as a fuzzy

event in the appropriate cartesian product of D, and upper and lower bounds can be evaluated

for its probabilities using the measure of the corresponding cartesian product algebra.

The language is extended as follows:

• special unit formulae of the form V(Sc,p) are used to specify probability measures for D,

i.e. a collection of expressions of the form V(Scij, Pij) is attached to P, where the Scij form

the bases of algebras XDi of a partition of D and pij is the probability of Scij\

• some definitions are implicitly assumed as part of our inference procedure: the definitions

of the operations of addition (+) and multiplication (x), of the relations > and =, and

of the properties of non-negativity (p > 0 *— V(Sc,p)), finite additivity ('P(U"5'ct',p) <—

V(Sci,pi), ...,V(Scn,pn),p - Pi + ... + pn) and total probability ('P(D, 1)).

• special second-order expressions of the forms V*(S, if, p*) and V*(S, if, p*) are introduced,

to be read as "the lower and the upper bounds for the probability of having a tuple of

instances for the variables in S which satisfies if are />* and p*".

• special second-order expressions of the forms V*(S, ifi\ip2, P») and V*(S, ipi\ip2, P*) are in¬

troduced, to be read as "the lower and the upper bounds for the probability of having a

tuple of instances for the variables in S which satisfies ifi given if2 are p* and p*".

Intuitively, we want to be able to answer the query "what is the probability of having a tuple

4. A LANGUAGE SUPPORTING PROBABILITIES ON THE DOMAIN 45

of terms S that makes tp true?" or, taking into account the fuzzyness of ip and the program P,
" what is the expected truth-degree of xp when we range the tuple S through the whole domain

of discourse?". The answer (p) to a query like this can be obtained by generating exhaustively

the alternative answers to xp with the variables occurring in both S and xp admitted free in xp,

and then calculating the expected truth-degree of xp taking into account the declared probability

of each tuple of ground terms that generated each truth-degree. Since probabilities of generic

tuples of ground terms may have to be estimated by means of inner and outer measures (as not

all tuples belong to cartesian products of the algebra XDi), the value (p) must, in the general

case, be approximated from below and from above by (p„) and (p*), respectively. Similarly,

for conditional probabilities, we want to be able to answer the query "what is the probability of

having a tuple S that makes xp\ true whenever xp2 is true?", or "what is the expected truth-degree

of xp\ when we range the tuple S through those elements in the domain that make xp2 true?".

These expressions are evaluated as follows:

• V*(S,xp,p„) and V*(S,xp,p*):

1. generate K^, the finite fuzzy set of tuples of instances of the free variables in xp which

associate a non-zero truth-degree r to xp.

If xp does not have free variables, is the singleton set containing the tuple of terms

occurring in xp with its respective truth-degree.

If xp contains free variables, then is generated by substituting exhaustively each

free variable in xp by elements of D and then selecting the substitutions which generate

the desired truth-degrees.

2. generate - the projection of over S: select from the tuple of free variables in xp

those which are also in S, and extract the corresponding tuples of instances from K^.

3. (a) If it'! ^ {} then:

4. A LANGUAGE SUPPORTING PROBABILITIES ON THE DOMAIN 46

i. generate the cartesian product algebra and measure of the same arity as the

tuples in assuming the elements of D to be statistically independent.

ii. generate p* and p*:

P* = 'Pm(S') * min{r : p(A) = r,K G Si (~l K^}, Si G xb

p* = E^nATf*{} vm{si) X max{t : p(k) = t,K € 5,- n k$}, si € xb
where m is the arity of the tuples in K^.

(b) If K* = {} then

make p* = p* = r, where T(^,r).

• A>.(S',V'i|V'2,P.) and V,i|V,2? P*):

1. generate and

2. generate minA,min'A,minA,maxA,max'A and maxA:

- minA = zs-ckfr M Vrn{Si) x min{T : p(K) = r,K e Si n Si € x'd
- min'A = Es.n/cs, ^)#{} ^(5.) x mm{r : p(K) = t,K G 5,- n 5,- G xb
- minA = E^.ca- , Vm{Si) x rmn{r : p(A') = r, A" G 5,- n A'(S^ ,)}, A, G xb— (-,V'1,V'2) v 7

- maxA = E^nAT^ ^{} Pm(£) X max{r : p(/?) = r, K G £ nAT^^}, 5,- G xb
- max'A = Es.cA'5 , ^m(A.) X max{r : p(A') = r, A' G 5,- n A's, .J, A, G xb•— (V»l »v»2) v ;

- maxA = Zs,nK^^{}Vrn(St)xmax{r:p(K) =T,KeSinK^u4;2)},Siex'D
3. generate p* and p*:

f mip^ max, + max~, ^ 0
• p, = ^ max'A + maxAI 0, maxA + maxA = 0

f mini 1, — maxA ^ minA + minA ± 0
• p* _ J 1 ' mm'A -f mmA J A A ^

[0, mznA + minA - 0

Since probabilities are completely defined by measures on the constants of the language, terms

of the forms V*(S, V>, P*)> V*(S,ip,p*), V*(S, P*) and V*{S, bi|^2, p*) never occur as

heads of program clauses. Moreover, these terms only admit truth-degrees in {0,1}.

4. A LANGUAGE SUPPORTING PROBABILITIES ON THE DOMAIN 47

Example 4.1 Consider the program of example 3.1, with the unit clauses declaring truth-degrees

replaced by the clauses below:

T(p2(a), 0.4).
T(p2(c), 0.7).
T(p2(e), 0.2).
T(pi(d), 0.5).
T(p3(a),0.2).
T(p3(b), 0.1).
T(p3(e),0.2).
T(p3(c), 0.8).
T(p3(/),0.4).

^4nc? u>z£/j the following additional clauses representing statistical knowledge:

V({a,c}, 0.5).
7>({e, <*,&}, 0.2).
^({/},0.3).
Where each clause (V(S,p)' is to be read as "the probability of randomly selecting an element

from the domain which belongs to S is p".

And the queries:

P*([x], Pe(x),p*).
V*([x],p6(x),p*).
V*{[x],p6(a),pt).
V*([x, y], (p6(x),p6(y)),p*).
rP*{[x],Pe{x)\p7(x),p,).
These queries are evaluated as follows:

• V*([x],P6(x),p*).:

Making if = pe,(x), we have, by repeated application of the resolution procedure presented

in figure 3.2, that I{^ = {a/0.4, c/0.2, e/0.2, d/0.5}, where a/r indicates that the degree to

which a is a member of K^, is t, i.e. if we have that T{pe{oc),T) then a/r will be a member

of Kp6(x) •

since x is the only free variable in if, we have that = Kq, ^ {}. Since V({a, c}, 0.5) and

min{0.4,0.2,0.2,0.5} = 0.2, we have that:

p* = 0.5 X 0.2 = 0.1.

A LANGUAGE SUPPORTING PROBABILITIES ON THE DOMAIN 48

V*([x\,p6(x),p*).:

Like in the previous case, we have that K^ = Ky, = {a/0.4,c/0.2,e/0.2,d/0.5} ^ {}.
The sets {a,c} and {e,d,b} have non-empty intersection with K^, and V({a, c}, 0.5) and
V({e,d,b}, 0.2). Furthermore, max{r : p(K) = t,K G {a,c}fl K^} = 0.4 and max{r :

p(K) — t,K G {e, d, b} flK= 0.5. Hence, p* = 0.5 x 0.4 + 0.2 x 0.5 = 0.3.

These two results tell us that if we could evaluate the expected truth-value ofpe(x), it would

belong to the interval [0.1,0.3].

V*([x],p6(a),p,).:

In this case, K^ = {}, thus p» = r, where T(ip,r).

T(p6(a)> 0.4) => p* = 0.4.

V*([x, y], (.P6(x),p6(y)), p„).:

To evaluate this query we need the probability measure V2* on the cartesian power xd>

specified by:

- P2({[a,a],[a,c],[c,a],[c,c]},0.25).

- V2({[a, e], [a, d], [a, fe]> [c> CMC> d], [c> &]}> °-10)-

- ^2({[e,a],[rf,a],[5,a],[e,c],[d,c],[6,c]},0.10).

- ViUWJUcJ}}, 0.15).

- Vidif, a],[f,c]},0.15).

- V2({[f,e],[f,d],[f,b}}, 0-06).

- V2({[e,f],[dJUbJ]},0-06).

- ?2({[/,/]},0.09).

- P2({[e, e], [e, d], [e, b], [d, e], [d, d], [d, 6], [6, e], [b, d], [b, b]}, 0.04).

4. A LANGUAGE SUPPORTING PROBABILITIES ON THE DOMAIN 49

making tp = (P6(x), pe(y)), we have that
= K+ = { [<*» «]/0.4, [a, c]/0.2, [a, e]/0.2, [a, <1/0.4,

[c, a]/0.2, [c, c]/0.2, [c, e]/0.2, [c, d]/0.2,
[e, a]/0.2, [e, c]/0.2, [e, e]/0.2, [e, d]/0.2,
[d, a]/0.4, [d, c]/0.2, [d, e]/0.2, [d, d]/0.5}.

Thus,

= 0.25 x 0.2 = 0.05.

• U*([x],P6{x)\p7(x), p*).:

For ip = (p6(%) A pr{x)) we have that:

K} = {a/0.2, c/0.2,e/0.2}

minA = 0.2 x 0.5 = 0.1

max'A = 0.2 X 0.5 — 0.1

For = (-^(z) A P7(x)) we have:

K$ = {a/0.2, c/0.8,e/0.2,6/0.1,//0.4}
= 0.8 x 0.5 + 0.2 x 0.2 + 0.4 x 0.3 = 0.56

Hence, we have:

= minA = 0.1 = Q152
maxA A maxA 0.1 + 0.56

If the program does not contain fuzzy predicates, i.e. if every clause in the program has a truth-

degree which is either 0 or 1, then the language is an implementation of a significant portion of

the logic Lp, introduced in [Bac88].

Example 4.2 (a program not containing fuzzy predicates):

Consider the program of example f.l, with the unit clauses declaring truth-degrees replaced by the

clauses below:

4. A LANGUAGE SUPPORTING PROBABILITIES ON THE DOMAIN 50

T(p2(a), 1.0)
T(p2(c), 1.0)
T(p2(e), 1.0)
T(p2(d), 1.0)
^(P3(a),l-0)
r(p3(&),i.0)
^"(P3(e), 1.0)
r(P3(c), i.o)
T(p3(/),1.0).
And the queries:

V*([x],p6(x),p*).

These queries are evaluated as follows:

V*{[x],p&(x),p*).:

Making ip = pe(x), we have that K^ = K^ = {c?/1.0}.

p* = 0.2 X 1.0 = 0.2.

v*{[x],vg{x)\pi{x),p*).:

For if = (pe(x) A Pi(x)) we have that:

Kl = {d/1.0}

maxA = 0.2

min'A = 0.2

For tp = ("'PeC^) A P2(x)) we have:

Kl = {a/1.0, c/1.0,e/1.0}

minA = 0.5

This gives us:

p* _ maxA
mmA + mm« OTTS = °'286

4. A LANGUAGE SUPPORTING PROBABILITIES ON THE DOMAIN 51

A discrete probability measure is a measure defined on the whole power set 2D instead of only a

particular algebra \D C 2D [Bun85, FH89b, CdS91, CdSB90]. When a program does not contain

fuzzy predicates and has a discrete probability measure, then exact probability evaluations are

available for any query, and the interval defined by V» and V* always has length 0.

Example 4.3 (a program not containing fuzzy information and with a discrete probability mea¬

sure):

Consider the program of example 4.2, with the unit clauses declaring statistical knowledge replaced

by the clauses below:

P(W,o.i).
V({c}, 0.1).
7>({e},0.2).
V({d}, 0.2).
V({b}, 0.2).
van,o.2).
And the queries:

V*([x],P6(x),P*)-

These queries are evaluated as follows:

• U*([x],p6(x),p*).:

Making = Pe{x), we have that = K^ = {d/1.0}.

p* = V({d}) = 0.2.

Notice that, since every event is measurable, the upper and lower bounds for probabilities

always coincide.

• P*([®],P6(s)b2(«),/»*)•••

For if: = (pe(%) A Pi(x)) we have that:

K% = {d/1.0}

4. A LANGUAGE SUPPORTING PROBABILITIES ON THE DOMAIN 52

maxA — min'A = 0.2

For ip — (-ipe(x) A P2(x)) we have:

Kl = {o/l.O, c/1.0,e/1.0}

minA = 0.4

This gives us:

<•' = rarra = °-333
Observe that this result coincides with the classical definition of conditional probability:

?{[x],(P6(®)»P2(®)),0.2).

V([x],p2(x),0.6).

V*([x],p6(x)\p2(x),p*),p* = gj = 0.333.

Anecdotal Example 4.1 Given the situation described at the anecdotal example 3.1, the De¬

partment of Physical Education wants to know whether it is necessary to maintain a team of

paramedics available during the aerobic exercise sessions because of the practitioners from the

Department of Artificial Intelligence. A team of paramedics is considered necessary if the prob¬

ability of having someone who is susceptible to dehydration doing exercises is high. A survey

revealed that from 100 times that someone from the Department of Artificial Intelligence went to

do aerobics, 10 times this person was a student, 10 times s/he was a lecturer and 20 times s/he

was another member of the staff. It is known that:

• Dave and Jane are lecturers,

• Carla, Flavio, Ian and Robert are students, and

• Andy and Joanne are members of the staff.

What is the probability of having someone who is susceptible to dehydration?

4. A LANGUAGE SUPPORTING PROBABILITIES ON THE DOMAIN 53

We can calculate approximations from below and from above to this value with the queries

• f>*([x],(deptai(x),dehyd(x)),pf) and

• V*([x\, (deptai(x),dehyd(x)), p*).

We know that (see anecdotal example 3.1)

• = {andy/O.2, flavio/0.4, ian/O.6, jane/0.1, joanne/0.1, robert/O.3}

We define a partition on the domain D of our program, such that we have the set

• D\ = {andy,carla,dave, flavio,ian,jane,joanne,robert}

as a member of the partition. We also define the algebra which has as basis the set

• x'di = {{dave,jane},{carla,flavio,ian,robert},{andy,joanne}}

and the probability measure defined by:

• V({dave, jane}, 0.1).

• V({carla, flavio, ian, robert}, 0.7).

• V{{andy, joanne}, 0.2).

From these values, we have:

• p* = 0.2 x min{p{andy), p(joanne)} = 0.2 x min{0.2,0.1} = 0.02.

• p* = 0.1 X max{p{jane)} + 0.7 X max{p(flavio), p(ian),p(robert)} + 0.2 x

max{p(andy), p{joanne)} = 0.1 X 0.1 + 0.7 X max{QA, 0.6,0.3} + 0.2 Xmaa;{0.2,0.1} = 0.47.

4. A LANGUAGE SUPPORTING PROBABILITIES ON THE DOMAIN 54

Hence, if we loosely rephrase "high probability" as "probability higher than 0.5", we conclude

that there is no need of paramedics during aerobics sessions due to folk from the Department of

Artificial Intelligence.

5

A Language Supporting Degrees of
Belief

5.1 Adding Possible Worlds

The concept of possible worlds has been evoked frequently as a useful device to aid modelling

uncertainty (see for example [Bac90c, Bac90b, Bun85, Bun90, CdSB90, CdSB91, FH89b, FHM90,

Hal90, KJ90, Nil86, Rus87, Rus90a, Rus89]). The general idea is the assumption that there is a

collection of worlds (or states, or interpretations), each of them assigning different truth-values

to the formulae in our language. Intuitively, a possible world should be viewed as a conceivable

hypothetical scenario upon which we can construct our reasoning.

Given a program P and a set of possible worlds fl = {uq,...}, a rigid formula is a formula which

is always assigned the same truth-value in all possible worlds.

We assume in our language that, given a program P, each possible world a;,- assigns a different

fuzzy truth-value to the set of unit clauses in P. We assume that the other clauses occurring in

P, i.e. the logical dependency and statistical relations expressed in P, are rigid.

Ideally, we should keep track of every possible world independently, and repeatedly apply the

machinery presented in the previous chapters for each of them each time we activated P with

55

5. A LANGUAGE SUPPORTING DEGREES OF BELIEF 56

a query if. This procedure becomes computationally intractable as the size of It gets bigger1.

Alternatively, we should be able to calculate singular truth-values like the minimum and the

maximum values occurring in It for each clause: given a program P with unit clauses of the form

and T*(C,-, r*) (representing minimum and maximum truth-degrees, respectively), we

should be able to derive the values and T*(ip,r*) for a query if.

It is not possible, however, to obtain these values for any query given only the singular values for

the unit clauses, as the example below shows:

Example 5.1 Consider the following program:

r(a) <- p(a),g(a).
s(a) <— p(a).
s(a) «- q(a).

T.(p(o), 0.2). T*(p(a), 0.8).
%(q(a), 0.3). T*{q{a), 0.6).

And assume that the truth-degrees have come from the possible worlds in II, according to Table

5.1 (values underlined):

^ = {^i 5^25^3}

Ui W>2 U3

T(p(a))
T{q(a)) OIO 4^ItO 0.5

M
(h8

M

Table 5.1: Truth-degrees in O

Using the procedure introduced in figure 3.2 for each possible world separately, the results in Table

5.2 follow:

which indicate that (values underlined, table 5.2):

Notice that fi is not even required to be finite. Obviously it would not be possible to keep track computationally
of an infinite set of possible worlds

5. A LANGUAGE SUPPORTING DEGREES OF BELIEF 57

UJl w2 u>3

T(r(«))
T(*(«))

ffi2

M
Offi

0.6
0.3

M

Table 5.2: Derived Truth-degrees in D

T.(r(a), 0.2).
T*(r(a),0.5).
Z»(s(a), 0.4).
T*(s(a), 0.8).
Observe that both 7~*(r(a), 0.5) and 7i(s(a), 0.4) cannot be derived from the initial program unless

we insert additional knowledge into the system.

Approximate solutions can be obtained for % and T*, i.e. we can obtain the values T* and T*,

such that %(ip) < and T*(V>) > T*(t/>) for any query if2

It is not difficult to verify that the following recursive rules satisfy these conditions:

r <- p => %(r) = %(p)
T\r) = t*(p)

r *— P,Q =>■ %(r) = min{%(P),%(Q)}
T*(r) = min{f*(P),T*(Q)}

r <— P 7i(r) = maz{7;(P), Z»(Q)}
r <- Q T*(r) = maa:{T*(P), f*(Q)}

r <- -ip => 7i(r) = 1 - T*(p)
f*(r) = 1 - 7i(p)

where p, r,... denote atoms and P,Q,R,... denote conjunctions of literals.

When applied to the example above, these rules give:

0.2).

2there is a slight abuse of notation here: when we say that < T»(V') for any query il>, we mean that, if we
have that T,(ip,r,) and then f, < r„. Symmetrically, when we say that T*(V0 > f°r any query
■0, we mean that, if we have that r*) and r*), then f* > r*.

5. A LANGUAGE SUPPORTING DEGREES OF BELIEF 58

T*(r(a), 0.6).

0.3).

r*0(a), 0.8).

which obey the desired inequality conditions.

5.2 Reasoning with Possible Worlds

The e-SLDNF procedure and the completion e-Comp(P) presented in chapter 3 must be changed

to accommodate the bounds for the truth-degrees across possible worlds. The completion of P is

redefined as *-Comp(P) as presented in figure 5.1.

A model for a program P is any interpretation for which every expression occurring in *-Comp(P)

has a value r* > 0.

In order to redefine the inference procedure as *-SLDNF we need the following in our notation

for the success and finite failure set:

. R*,R* :

, T"*) holds iff *-SLDNF succeeds, assigning r* to -0 as a lower bound for its truth-

degree;

ipR*(ip, t*) holds iff *-SLDNF succeeds, assigning t* to ip as an upper bound for its truth-

degree.

• F*,F* :

ipF* holds iff *-SLDNF fails, assigning r* = 0 to ip;

ipF* holds iff *-SLDNF fails, assigning r* = 0 to tp.

*-SLDNF is defined inductively as presented in figure 5.2:

A LANGUAGE SUPPORTING DEGREES OF BELIEF 59

Rules:

Defp = {}
Vx[%(->p(x), 1)]
Vx[r*(-.p(x), i)]

2 Defy = {p(U) *- A • « = 1, —, k) ± {}
Mx[%(p{x), r*) max{T*i : (x = U) A [(V>i 7^ {}»T*i))V
(V'i = {},T»(p(<i),r*t))]} = n]

Vf[T*(p(f),r*) <-► max{rf : (s = £) A [(V>i 7^ {}, T*(V>i, r*))
v(^ = {},r*(Kii),r;))]} = ri

where

(a) -De/P is the set of clauses in P with p in the head;
(b) x, are tuples of variables ([xi,im]) and terms ([fit,..., tmi\), respectively;
(c) x = t{ stands for x\ — t\i A ... A xm = tml-;
(d) the scope of the existential quantifier are the variables occurring in the bodies of

the clauses in Defp;
(e) ipi are (possibly empty) conjunctions of literals;
(f) the connective stands for equivalence.

Axioms:

— same as in 2.6.

Figure 5.1: *-Comp(P)

A LANGUAGE SUPPORTING DEGREES OF BELIEF 60

(a) true R, (yes, 1).
(b) true R* (yes, 1).

(q, 6), max <

(a)

(b)

r*i : \pi <- fa], - mgu(q, pj), (fa, 6)crt- R* (7r;, r„)V
aj = mgu(q,pi),(6)ai R* (ir
%((pi)at, t('), min{r[, r/'} = r„-

= r*

(g, 6), max

(q,6)R*(air, r»)
f r* : [p,- <- fa], a, = mgu(q,pi), (fa, S)at- i?* (7rt-, rf)V

<rt- = mgu(q,pi), (6)ai R* (nr/),
F*((Pi)°i, t"), min{T-, r"} = r?

= r

(q,S)R* (av,r*)
where C77r are the substitutions that generate r» and r* and the fa are non-empty conjunc¬
tions.

, x (-ig,^),(7(yes,r'),T' <1,6 R* (a, r"), min{(1 - r/),r//j - r»
^ (-.p,V)i2* (<r,r„)

/n (~<9,6),gR* (ves, t'),t' < 1,6 R* (g,T"),min{(1 - r'),r"} = r*
1 J WPVl

(a) fag,6),gF*,6 R, (a,r,)
(~>g,6)R* (cr, t,)

n s (->g,6),gF*,6 R* (tr,r*)

f v (g, 6), i3[p <- V>1 : 3mp(y, p)(j (OTn
(g, £), ~>3[p <- fa : 3mgu(q, p)

(a)

(b)

(a)

(b)

(q,fi),V\Pi ipi] ■ 3<r = mgu(q,pj) =» (fa,6)aF*
(q,s)F.

(q,6),y\pj <- V>t-1 : 3a = mgu(q,pi) =» (fa,S)aF*
(q,6)F*

fag,6),gR* (yes, 1)

fag,6),g R,(yes,l)
(-9,6) F*

Figure 5.2: *-SLDNF

5. A LANGUAGE SUPPORTING DEGREES OF BELIEF 61

Example 5.2 Consider the program introduced in example 3.1, with the unit clauses declaring

truth-degrees as follows:

%(p2(a), 0.2). f*(p2(a),0.4).
f*(p3(a),0.15). 7"*(p3(a), 0.2).
t*(p3(h),0.05). f*(p3(&),0.1).
And the queries:

pQ{a).
P7(b).

The complete and/or-trees for these queries, computing bounds for the truth-degrees ofPe(a) and

P7(b), are as presented in figures 5.3 and 5.f.

This language subsumes the one presented in the previous chapter, having that language as the

particular class of programs in which all truth-degrees are rigid.

Example 5.3 (all truth-degrees are rigid)

Consider the program of example 3.1, with the unit clauses declaring truth-degrees as follows:

%(p2(a),0.4). t*(p2(a), 0.4).
tfaia), 0.2). t*(p3(a), 0.2).
%(p3(b), 0.1). T*(p3(&), 0.1).
And the queries:

p6(a).
P7(b).

The complete and/or-trees for these queries are as presented in figures 5.5 and 5.6.

5.3 Probabilities on the Domain with Possible Worlds

Probability evaluations must take into account the bounds for truth-degrees across possible

worlds. The syntax of the language can be as before for declaring probabilities, but the evaluation

procedure must be changed as follows:

A LANGUAGE SUPPORTING DEGREES OF BELIEF

T*(p6(a), 0.4)
f.(p6(a), 0.2)

T*(Pi(a), 0.4)
0.2)

T*(P2(a),0.4)
f.(p2(a), 0.2)

T*(P2(a), 0-4) T*(-1p3(a),0.85)
T*(P2(a), 0.2) T,(->p3(a), 0.8)

f*(P3(a), 0.2)
f,(p3(a), 0.15)

T*(-p7(a), 0.85)
T«(-ip7(a), 0.8)

I
T*(p7(a), 0.2)
(p7(a), 0.15)

I
T*(p5(a), 0.2)
f.(p5(a), 0.15)

f*(p4(a), 0.2)
7i (p4(a),0.15)

I
T'(p3(a), 0.2)
7", (p3(a), 0.15)

T;(-Pi (a), 0.8)
7"»(-ipi(a),0.6)

I
T* (pi(a),0.4)
T„(px (a), 0.2)

f*(p2(a), 0.4)
f.(p2(a), 0.2)

^'*(-,P3(a)> 0.85)
^»(~'P3(a), 0.8)

I
T*(p3(a), 0.2)
f,(p3(a), 0.15)

Figure 5.3: and/or-tree for p&(a)

5. A LANGUAGE SUPPORTING DEGREES OF BELIEF 63

• V*(S,^,p*) and V*(S, , p*)\

- v*(s,ip,p*y.

1. generate K,/,*, the finite fuzzy set of tuples of instances of the free variables in ij)

which associate a non-zero lower bound for the truth-degree r# to ip.

If ij) does not have free variables, is the singleton set containing the tuple of

terms occurring in ip with its respective bound for the truth-degree.

If tp contains free variables, then is generated by substituting exhaustively

each free variable in ip by elements of D and then selecting the substitutions which

generate the desired bounds for truth-degrees.

2. generate /iE - the projection of over S: select from the tuple of free variables

in ip those which are also in S, and extract the corresponding tuples of instances

from /if,/,*.

3. (a) case 1: ± {}

i. generate the cartesian product algebra and measure of the same arity as the

tuples in assuming the elements of D to be statistically independent.

ii. generate p*:

P* = cKs Prn(Si) X = P*(K) = T,, K <E S{ fl /i|*}, Si £ %£,1
— ip +

(b) case 2: = {}:

make p* = r», where 7*(V>,r*).

- V*(S,iJ>,p*):

1. generate Kl, the finite fuzzy set of tuples of instances of the free variables in ip

which associate a non-zero upper bound for the truth-degree r* to

If iJj does not have free variables, is the singleton set containing the tuple of

terms occurring in ip with its respective bound for the truth-degree.

5. A LANGUAGE SUPPORTING DEGREES OF BELIEF 64

If ij) contains free variables, then KL is generated by substituting exhaustively

each free variable in V by elements of D and then selecting the substitutions

which generate the desired bounds for truth-degrees.

2. generate K^s - the projection of over S: select from the tuple of free variables
in xjj those which are also in S, and extract the corresponding tuples of instances

from K^.
3. (a) case 1: K^s ^ {}

i. generate the cartesian product algebra and measure of the same arity as the

tuples in K^s assuming the elements of D to be statistically independent.

ii. generate p*:

P* = 12§inK'S^{}'pm(Si) X max{T* : p*(K) = t*,K G Si n K]f},Si G x'D
(b) case 2: K^s = {}:

make p* — r*, where T*(tp,T*).

• V*(S,ipi\ip2,P*) and V*(S, V>i|V>2, P*)-

1. generate and

2. generate minA,min'A,minA,maxA,max'A and maxA:

- minA-Yls cks "PmiSi) xmzn{r*: p*(K) — r«, K G S{C\K?. SiE^
- min'A = J2g.nK*s

^ Vm(Si) Xmin{n: p*(K) - r„ k G S{ D Si G x'd
- minA — Y2§ick^ ^ 'Pm(Si) xmin{r*: p+(K) — t*, K GSiOK^^Si&Xd
- maxA —ESinK*s ^ }#{> Xmax{r*: p*(K) = r*, K G 5t nK($x^2)}, Si ex'D
- max'A = J2§ cks Pm(St)xmax{r*: p,*(lt) = T*,K eSiHKf. .)J,Siex'D
- maxA = Es,nA'*^i *{} Vrn(St) Xmax{r*: p*(K) = t*, k GSiDK^ ^}, S{ G x'd

3. generate p* and p*:

5. A LANGUAGE SUPPORTING DEGREES OF BELIEF 65

if max'A + maxA ± 0
• p, = { maxA + maxA A A[0, max'A + maxA = 0

f mini 1, — maxfr j mjn/ _|_ min-' ± o
% p* —) 1 mmA + mmA 1 A A '

[0, + minA = 0

Example 5.4 Consider the program of example \.l, with the unit clauses declaring truth-degrees

as follows:

%(p2(a), 0.2). T*(p2(a),0.4).
t(p2(c), 0.3). T*(p2(c),0.7).
r.(p2(d),o.i). r*(P2(d),o.2).
r.(p2(e),0.2). T*(p2(e), 0.5).

f*(p2(/),0.1).
t(p3(a),0.1). T*(p3(a),0.2).
r,(p3(rf),o.i). r'(p3(rf), 0.2).
f„(p3(c), 0.4). T*(p3(c), 0.8).
r.(p3(/),0.2). T*(p3(/),0.4).

r*(p3(6),o.i).
And the queries:

V*([x],p&(x), p*)-
Vj\x\,p6(x)\p7(x),p*).

These queries are evaluated as follows:

'P*([x],P6(x)iP*)-:

Making ip — Pe,{x), we have, by repeated application of the resolution procedure presented in

figure 5.1, that

= {a/0.2, c/0.2,d/0.1,c/0.2}.

Hence,

/>, = 0.5 X min{p(a)} = 0.5 X 0.2 = 0.1.

• V*([x],p6(x)\p7(x),pJ.:

For iJj = (p6(x) A P7(x)) we have that:

5. A LANGUAGE SUPPORTING DEGREES OF BELIEF 66

= {a/0.1, c/O.M/O.1}

Kf = {a/0.2, c/0.6, rf/0.2, //O.I}

minA = 0.1 X 0.5 = 0.05.

max'A — 0.6 x 0.5 + 0.1 x 0.3 = 0.33.

For *0 = (^Peix) A p7(x)) tae Aaae:

A';5 = {a/0.2, c/0.8, d/0.2,5/0.1, //0.4}

maxA = 0.8 X 0.5 + 0.2 X 0.2 + 0.4 X 0.3 = 0.56.

Hence:

n _ minA _ 0.05 _ n n^R

max'A + maxA 0.33 + 0.56

Example 5.5 (all truth-degrees are rigid)

Consider the program of example 5.J,, with the following unit clauses declaring truth-degrees:

t(p2(a),0.4). f*(p2(a),0.4).
t(p2(c), 0.7). f*(p2(c),0.7).
%(p2(d),0.2). f*(P2(d), 0.2).
£(p2(e),0.5). f*(p2(e),0.5).
l(p2(/),0.1). t*(p2(/),0.1).
t(p3(a), 0.2). t*(p3(a),0.2).
r.(j>3(&),o.i). r*(p3(6),o.i).
f*(p3(d),0.2). f*(p3(d),0.2).
t,(p3(c),0.8). t*(p3(c), 0.8).
t(p3(/),0.4). f*(p3(/),0.4).
And /de queries:

P*([x],P6(x),p*).
V*([x],p6(x)\p7(x),p*).

These queries are evaluated as follows:

• ^.(W,P6(a;), p.)-'

Making ip = pe(x), we have that

5. A LANGUAGE SUPPORTING DEGREES OF BELIEF

K§, = {a/0.4, c/0.2, d/0.2, e/0.5, f /OA}.

p„ = 0.5 x 0.2 + 0.3 x 0.1 = 0.13.

67

• P*([x],P6(x)\P7(x), p*).:

For iJj = (p6(x) A P7(x)) we have that:

K&. = Kf = {a/0.2, c/0.2, d/0.2, //0.1}

minA — 0.13.

max'A = 0.13.

For ip — (~>pe(x) A P7(x)) we have:

Kl* = Ktf = {a/0.2, c/0.8, d/0.2,6/0.1, //0.4}

maxf = 0.56.

Hence:

=7 = 0.188.
max. + max.

Example 5.6 /a program containing only non-fuzzy rigid information and with a discrete prob¬

ability measure, in which every query admits an exact probability evaluation)

Consider the program of example 4-3, with the truth-degrees declared as follows:

l(p2(a), 1.0). t*(p2(a),1.0).
r,(p2(c), 1.0). r*(P2(c), 1.0).
f.(p2(d),i.o). r*(p2(d),i.o).
r»(p2(e), 1.0). r*(p2(e),1.0).
7; (p3(a), 1.0). r*(p3(a), 1.0).
t(p3(6),1.0). t*(p3(&),1.0).
%(P3(d), 1.0). t*(p3(rf),1.0).
f,(p3(c), 1.0). 7*(p3(c), 1.0).
t(p3(/),i.o). r*(p3(/),i.o).

j4rcc? i/i,e queries:

7*([x],p6(x),p»).
F*([x],p6(a;)b2(a;),P*).

5. A LANGUAGE SUPPORTING DEGREES OF BELIEF

These queries are evaluated as follows:

68

Making if = Pe{x), we have, by repeated application of resolution, that — {e/1.0}.

P* = V({e}) = 0.2.

For if = (p6(%) A P2(x)) we have that:

= Kf = {e/1.0}

maxA = min'A = 0.2.

For if = (->ps(x) A P2(x)) we have:

k^ = k;s = {a/1.0, c/1.0,d/1.0}

min^ = 0.4.

TVn's gives us:

0 9
p* = q 2 i. Q 4 = 0-333, which, as expected, concides with the result obtained from the
classical definition of conditional probability.

Anecdotal Example 5.1 From the situation portrayed at the anecdotal example 4.1, we have

the Department of Physical Education investigating how fit individuals from the Department of

Artificial Intelligence are for engaging into aerobics sessions. There is a suspicion that Flavio is

below the average fitness at this Department, and in order to evaluate this the following queries

are made:

• is Flavio fit?

5. A LANGUAGE SUPPORTING DEGREES OF BELIEF 69

• what is the probability of having someone from the Department of Artificial Intelligence who

is fit? (alternatively, what is the expected degree of fitness of someone from the Department

of Artificial Intelligence?)

However, before evaluating these queries it is remarked that the qualifier "variable blood pressure"

is quite unstable (i.e. it varies from day to day for each individual, due to several uncontrolled

factors) and that assuming a single truth-value for each individual for this qualifier is an oversim¬

plification. Alternatively, a collection of measures is made and the extreme values are recorded.

The results are:

• Carta's "blood pressure variability" is always quite high;

• Kathleen's "blood pressure variability" changes a lot from day to day;

• Flavio's "blood pressure variability" is usually quite low, although sometimes it goes very

high;

• Andy's "blood pressure variability" is always very low, but not always insignificant.

Given these informations, we update the unit clauses representing truth-degrees in our programs

as follows:

%(deptai(andy), 1). %(deptai(carla), 1).
T*(deptai(dave), 1). %(deptai(flavio), 1).
T*{deptai(ian), 1). T*(deptai(jane), 1).
%(deptai(joanne), 1). %{deptai(robert), 1).

%{blond(ian), 0.9). %{blond(joanne), 0.9).
%{blond(kathleen), 0.7). %{blond(william), 0.6).
T*(blond(jane), 0.7).

T*(parent(robert, kathleen), 1). %(parent(robert, william), 1).
T*(parent(carla, alice), 1). %(parent(carla, otavio), 1).

5. A LANGUAGE SUPPORTING DEGREES OF BELIEF

%(young(andy), 0.9). T*(young(carla), 0.9).
T*(young(dave), 0.9). T»(young(flavio),0.0).
%(young(ian), 0.9). %(young(jane), 0.9).
%(young(joanne), 0.9). T*(young(robert), 0.9).
%(yOUng(alice), 0.3). T*(young(otavio), 0.3).
%(yOUng(kathleen), 0.4). %(young(william), 0.3).

%(overw(flavio), 0.4). T+(overw(otavio), 0.7).T*(overw(ian), 0.6). %(overw(william), 0.5).%(overw(andy), 0.2). %(overw(robert), 0.3).

T*(varblpres(carla), 0.7). F*(varblpres(kathleen), 0.2).T*(varblpres(flavio), 0.3).
T*(deptai(andy), 1). T*(deptai(carla), 1).
T*(deptai(dave), 1). T*(deptai(flavio), 1).
T*(deptai(ian), 1). T*(deptai(jane), 1).
T*(deptai(joanne), 1). T*(deptai(robert), 1).

T*(blond(ian), 0.9). T*(blond(joanne), 0.9).
T (blond(kathleen), 0.7). T~*(blond(william), 0.6).
T* (blond(jane), 0.7).

T*(parent(robert, kathleen), 1). T*(parent(robert, william), 1).
T*(parent(carla, alice), 1). T*(parent(carla, otavio), 1).

T*(young(andy), 0.9). T* (young(car Ia), 0.9).
T*(young(dave), 0.9). T (young(flavio), 0.9).
T*(young(ian), 0.9). T*(young(jane), 0.9).
T*(young(joanne), 0.9). T*(young(roberi), 0.9).
T*(young(alice), 0.3). T* (young (otavio), 0.3).
T*(young(kathleen), 0.4). T*(young(william), 0.3).

F*(overw(flavio), 0.4). T*(overw(otavio), 0.7).
7~*(overw(ian), 0.6). T*(overw(william), 0-5).
F*(overw(andy), 0.2). T*(overw(robert), 0.3).

r*(varblpres(carla), 0.9). T*(varblpres(kathleen), 0.8).
T*(varblpres(flavio), 0.8). T*(varblpres(andy), 0.2).

5. A LANGUAGE SUPPORTING DEGREES OF BELIEF 71

The repeated application of the procedure in figure 5.2 for the query '(fit(x), deptai(x)). 'generates
the set

Ky = { anch//[0.8,0.8],car/a/[0.1,0.3],
dave/[0.9,0.9], flavio/[0.1,0.6],
ian/[0.4,0.4], jane/[0.9,0.9],
joanne/[0.9, 0.9], robert/[0.7,0.7]}

where a/[r»,r*] iff T*(a, r«), T*(a, r").

From these values and the probabilities on the domain given in anecdotal example we obtain

that:

• T*((fit(flavio), deptai(flavio)), 0.1).

• T*((fit(flavio), deptai(flavio)), 0.6).

• V*([x], (fit(x),deptai(x)), 0.32).

• P*([x], (fit(x),deptai(x)), 0.76).

These results indicate that the truth-degree for how fit Flavio is is smaller than the expected lower

bound for the truth-degree of how fit a generic individual is (since 0.1 < 0.32,), and also that the

truth-degree for how fit Flavio is is not bigger than the expected upper bound for the truth-degree

of how fit a generic individual can be (since 0.6 < 0.76).

5.4 Adding Probabilities on Possible Worlds

Different worlds can have different likelihoods. Given a set of possible worlds D, we can define a

probability measure B to represent these likelihoods. The expected value for the truth-degree of

a clause ip can be defined as B(if) = /q rd/3 , where T(ip,T).

When the sets u> of possible worlds in which sentences have "non-zero" truth-degrees are mea¬

surable, this defines a straightforward extension of Nilsson's probabilistic logic [Nil86] to deal

5. A LANGUAGE SUPPORTING DEGREES OF BELIEF 72

with fuzzy predicates. If we consider the non-measurable cases, then the language extends the

so-called Dempster-Shafer structures [FH89b, CdSB90]. Dempster-Shafer structures for preposi¬

tional languages are presented in [CdSB90] as tuples

[Sl,xn,B,At,XAt,i\

where:

• LI is a (possibly infinite) set of possible worlds;

• xn is a c-algebra of subsets of fI;3

• B is a probability measure on Xn4i

• At is the set of atomic propositions of a finite prepositional language5;

• XAt is the closure of At under A and -i;

• i - identified as the incidence mapping - is a mapping from \At to 2n as follows:

i XAt -* 2°.

- = {a; 6 fl : tp is true in oj}.

Which gives as corollaries the following properties:

3a cr-algebra xn is a set of subsets of fi such that:
- nexn;
- w € xn -+ ~>w € xn;
-

uji,u)2, ... € Xn U; '''i ^ Xo (where ui, are countable).

4 the symbol B is standing for both the expected truth-value of a clause across possible worlds and the probability
measure that generates it. It should be clear from the context in which case each of the interpretations is the
intended one

5a finite propositional language is a finite set of propositions $ = {pi, ...,pn} and its closure under the application
of the Boolean operators A and -i. The set of atomic propositions of a finite propositional language is the set
At = {<$i,..., }, where Si = p[A ... A p'n and p'j is either pj or ->pj

5. A LANGUAGE SUPPORTING DEGREES OF BELIEF 73

- *({}) = {}.

— KVpjeAtPj) —

— i(—1-0) = fI — i(ip).

- a ip2) = «(0i) n

- i(0i V 1P2) = u *(^2).

The probability measure B can be extended to the power set 2n by means of the inner and outer

measures B+ and B*, where:

• #„(£) = sup{5(w) :uC(,w£ xn};

• £*(£) = inf{B{u) : u D £,u e xn}-

Inner and outer measures work as approximations for the measures of non-measurable sets of

possible worlds and in [FH89b] we have the result that they correspond to Dempster-Shafer's

belief and plausibility measures in a precise sense. They also contain Nilsson's probabilistic logic

as the special case in which B is a discrete measure.

Dempster-Shafer structures are expressive enough to represent what two other important mech¬

anisms to represent degrees of belief can represent, namely Possibilistic Logic and Incidence

Calculus.

Possibilistic Logic [DP87, DP88, Som90, Rus89] assigns degrees of necessity and possibility to

sentences, which express the extent to which these sentences are believed to be necessarily and

possibly true, respectively. The semantics of possibilistic logic is defined based on a fuzzy set

of possible worlds, i.e. a set of possible worlds together with a fuzzy membership function that

describes the extent to which each possible world belongs to a referential set - the set containing

the "real" world. Given a sentence ip, the necessity measure N(iJ}) expresses the greatest lower

5. A LANGUAGE SUPPORTING DEGREES OF BELIEF 74

bound for the degree of membership of the worlds that support ip, and the possibility measure

II(V>) expresses the least upper bound for this degree of membership.

The fundamental axiom of possibility measures dictates that, given two sentences ipi and ip?,

II(V>i V fa) = max{II(V'i), 11(^2)}- As a corollary, it is always true that N(ip1 A tp2) =

min{N(ipi), N(1P2)}■ Necessity and possibility measures define intervals containing the degree of

belief ascribed to a sentence being true, and are related by the following expressions:

• n(v>) = 1 —

• N(ip) < n(v>)

Possibilistic Logic has been proved to be, "formally at least" [Sha87], a particular case of

Dempster-Shafer structures in which the sets forming the algebra xo are consonant, i.e. they are

a sequence Xi,X2,... such that ft D X\ D X2 2 ••••

Incidence Calculus [Bun85, Bun86, Bun90] was formalised in [CdSB90, CdSB91] as the tuples

[ft, 2n,B,At,xs<ZAt,i]

where:

• ft is the set of possible worlds;

• 2n is the power set of ft;

• B is a probability measure on xn!

• At is the set of atomic propositions of a finite propositional language;

• XscAt is the closure under A and -1 of a subset S of At-,

• i is a mapping from xsc.At to 2n with the same properties as before.

5. A LANGUAGE SUPPORTING DEGREES OF BELIEF 75

There is a procedure called the Legal Assignment Finder which, given a proposition ip from the

language of At, identifies upper and lower bounds for the degree of belief in ip, i.e. upper and

lower limits within which B(i(ip)) must fall.

The interest of this formalism, when compared with e.g. Dempster-Shafer Theory of Evidence,

is on the additional source of uncertainty it identifies: since incidences are allowed to be partial

mappings with respect to XAt (be. their domain is allowed to be a subset of XAt), a rational

agent may have to work with interval-based degrees of belief because of its inability to match

propositions with possible worlds.

This characterisation of an additional source of uncertainty is a useful device to help constructing

models for solving practical problems involving uncertain reasoning. However, in [CdSB90] it is

proved that, at least from a formal point of view, every Incidence Calculus has a semantically

equivalent Dempster-Shafer structure, i.e. for every tuple

IC = [fi, 2n, B, At, xscAti i]

there is a tuple

DS = [V,Xn,B',At,XAt,i']

such that the the belief and plausibility measures in DS are the same as the upper and lower

bounds in IC for every proposition from the language of At.

We extend the definition of Dempster-Shafer structures in two senses in order to make it expressive

enough for our language:

• the first extension is the replacement of the propositional language At by the language of

normal clauses. This is essentially a change in notation, since we are by definition dealing

5. A LANGUAGE SUPPORTING DEGREES OF BELIEF 76

with finite languages (i.e. languages in which we can only generate a finite set of semantically

distinct sentences), in which case we can always expand every sentence to its collection of

semantically equivalent ground sentences and produce the "propositional version" of the

language;

• the second extension is the addition of truth-degrees: each sentence must be allowed to

assume a truth-degree from the interval [0,1] in each possible world. In order to do so we

redefine the incidence mapping as:

i • XAt ->■ 2nxt0'1l

- i(ip) = {[w, r] : u G ft, r G [0,1\,T(ip, r), r > 0 in w}.

In which case we have the following properties:

- *'({}) = {}•

~ KVpjeAtPj) — {[^>1]}-
-) = {[u>, r] : u G ft, [('P(Vb < 1, r = 1 — r') OR

(T(iM), r=l)]}.

- i(\j>! A ip2) = {[w,r] : u G ft, T(V>i, n), T($2, r2), min{TX, r2> = r).

- i(ipi V ip2) = {[w, r] : u G ft, [(7"(^i, r), 2,1)) OR

(r(^i,l),%,r)) OR

(T(tp1,T1),T(ip2,r2),max{T1,T2} = r)]}.

Given expressions of the form Br(ip,/3*) and B*(ip, /3*) for the unit clauses occurring in a program

P - where /3* and f3* represent the inner and the outer extensions for the measure B - it is

not possible to derive the degrees of belief for all queries on P, unless the statistical dependency

among clauses is known [Bun85]. Nonetheless, bounds can be derived for these degrees of belief.

5. A LANGUAGE SUPPORTING DEGREES OF BELIEF 77

For programs without fuzzy predicates, these bounds can be defined by the following rules6 (from

[NS92]):
r <— p B+(r

B {r
= B,(p)
= B*(p)

r *— P,Q =k B*(r
B*(r

> max{0, [B*(P) + B*(Q) - 1]}
< min{B*(P),B*(Q)}

r «- P

r <- Q
IT
s-

*

*

2Q > max{B*(P),B*(Q)}
<min{l,[B*(P) + B*(Q)]}

r <— -<p B*(r
B (r

= 1 - B*(p)
= 1 - B*(p)

where p, q, r,... denote atoms and P,Q,R,... denote conjunctions of literals.

When a program contains fuzzy information, these rules can be further refined, since we have

that Z,(V') < B(i^) < for any clause V:

r <— p B*(r
B*(r

= B*(p)
= HP)

r «- P,Q => B*(r
B*(r

> B*(r) = max{%(r), [B*{P) + B*(Q) - 1]}
< B (r) = min{T*(r),B*(P),B*(Q)}

r <— P

r «- Q
B*(r
B (r

> B*(r) = max{%(r), B*(P), B*(Q)}
< B*(r) = min{T*(r), [B*(P) + B*(Q)}}

r <— ->p B*(r
B*(r

= i -HP)
= i - HP)

In what follows we introduce these concepts into our language.

5.5 Reasoning with Probabilities on Possible Worlds

The inference procedure defined in the previous chapters can be extended to deal with degrees of

belief. We define, in addition to *-SLDNF and *-Comp(P) previously presented, the procedure

and completion rules for evaluating degrees of belief in a program P presented in figures 5.7 and
6 again, we make an abuse of notation here: when we say we are actually referring to a /?, such that

and when we say B*(ip) we are actually referring to a /?* such that B*(i/j,P*)

5. A LANGUAGE SUPPORTING DEGREES OF BELIEF

5.8, in which the following notation conventions are adopted:

78

• tpRp*(ip, /3*) holds iff *-SLDNF succeeds, assigning /3* to ^ as a lower bound for its truth-

degree;

• ipRp(ip,/3*) holds iff *-SLDNF succeeds, assigning f3* to ip as an upper bound for its truth-

degree;

• ipFp* holds iff *-SLDNF fails, assigning /3* = 0 to tp;

• ipFp holds iff *-SLDNF fails, assigning (3* = 0 to ip.

Example 5.7 Consider the program introduced in example 5.2, with the unit clauses declaring

degrees of belief as follows:

B*(p2(a), 0.3). B*(p2(a), 0.35).
£,(p3(a),0.17). £*(p3(a),0.19).
£*(p3(6),0.06). B*(p3(b), 0.07).
And the queries:

p6(a).
P7(b).

The complete and/or-trees for these queries, showing all intermediate belief and truth values, are

as follows (figures 5.9 and 5.10):

5.6 Dealing with Conditional Beliefs

We may want to constrain our queries to a specific set of possible worlds in which a statement

is believed to be (to some extent) true. In other words, we may be interested in measuring

conditional beliefs on queries.

If we had the values for the inner and outer measures B*(ip) and B*(ip), we could evaluate

conditional beliefs by using the expressions given in [FH89a]:

5. A LANGUAGE SUPPORTING DEGREES OF BELIEF 79

• B.&i|V>2)={ + + T^OI o, Bm(ij)i,ip2) + B*(->il>\,ifo) = 0

.*•(*1*)-| + 01°) ^*(^1,^2) + = 0

However, we can only access the values < H*(V0 and B*(ip) > B*(ip) for a clause ifr. Since

we have that [FH89a]:

We immediately have that:

£ life) B,(y2)

Hence, we adopt these expressions as approximations for the lower and upper bounds for condi¬

tional degrees of belief:

• BM* V tU I ir2/ 5*(^) '

• B'Mfo) = min{l,^B*(ip2)
Example 5.8 Consider the program presented in example 5.7 and the queries:

B*(pe,(a)\pi(b)).
B (pe{a)\p7{b)).

We have that:

B.(pe(a),pT(b)) = 0.05.
B*(p6(a),p7(b)) = 0.07.

B*(pr(b)) = 0.06.
B*(p7(b)) = 0.07.

Thus, we obtain that:

B*(p6(a)\p7(b)) = 0.05/0.07 = 0.71.
B*(pe(a)\p7(b)) — min{ 1, 0.07/0.06} = 1.

5. A LANGUAGE SUPPORTING DEGREES OF BELIEF 80

Anecdotal Example 5.2 From the anecdotal example 5.1, we observe that we have a better

estimate for Flavio's "blood pressure variability" than just the extreme truth-degrees it can have.

This estimate can be expressed as bounds for the degree of belief on the truth of the sentence

"Flavio has a variable blood pressure". We can add to the program in the anecdotal example 5.1

a set of statements expressing degrees of belief on unit clauses, including the following:

B*(deptai(flavio), 1). B*(deptai(flavio), 1).
B*(young(flavio), 0.9). B*(young(flavio), 0.9).
B*(overw(flavio), 0.4). B*(overw(flavio), 0.4).
B*(varblpres(flavio), 0.3). B*(varblpres(flavio), 0.35).

If we replace the statements expressing extreme truth-degrees on unit clauses regarding Flavio by

the following:

Tfideptai(flavio), 1). T*(deptai(flavio), 1).
%(young{flavio), 0.9). T (young(flavio), 0.9).
T*(overw(flavio),0.4). T*(overw(flavio), 0.4).
T*(varblpres(flavio), 0.3). T*(varblpres(flavio), 0.9).
We generate the following estimates for the bounds to the truth-degree and the degree of belief on

"Flavio is fit for aerobics", based on *-SLDNF and (3-SLDNF (see also figure 5.11):

T*(fit(flavio), 0.1).
B*{fit(flavio), 0.15).
B*(fit(flavio), 0.6).
T (fit(flavio), 0.6).

A LANGUAGE SUPPORTING DEGREES OF BELIEF

T*(pr(b), 0.1)
7i(P7(6),0.05)

I
T*(ps(b), 0.1)
t(P5(b), 0.05)

r*(P4(b),o.i)
t,(p4(&), 0.05)

I
T'(p3(6),0.1)
f.(p3(&),0.05)

T*H>! (6), 1.0)
f.(-Pi(6), 1.0)

I
F* : pi(b)
F:pi(6)

F* : pa(6)
n :pa(6)

T*(-p3(6),0.95)
t.(-ip3(6),0.9)

I
T*{pz{b), 0.1)
t.(p3(6),0.05)

Figure 5.4: and/or-tree for P7(b)

A LANGUAGE SUPPORTING DEGREES OF BELIEF

f'(p6(a), 0.4)
7".(p6(a), 0.4)

"7"*(Pi(a)>0.4)
T*(pi(a): 0.4)

T'(p2(a), 0.4)
f,(p2(a), 0.4)

T*{Pi(a), 0.4) T*H>3(a), 0.8)
f,(p2(a), 0.4) f.(-p3(a),0.8)

J
r*(p3(a), 0.2)

f,(p3(a), 0.2)

T*(~>p7(a), 0.8)
T'*("1P7(a),0.8)

I
T*(p7(a),0.2)
f,(p7(a), 0.2)

I
r*(p5(a), 0.2)
f,(pB(a), 0.2)

f*(p4(a), 0.2)
7", (p4(a), 0.2)

I
r*(p3(a), 0.2)
t (p3(a), 0.2)

T*(pPi(a), 0.6)
t(-,Pl (a) ,0.6)

I
T*(p! (a), 0.4)
f,(p!(a), 0.4)

f;(p2(a), 0.4)
7", (p2(a), 0.4)

T;(-ip3(a), 0.8)
T*{-^Pz(a), 0.8)

I
T*(p3(a), 0.2)
f,(p3(a), 0.2)

Figure 5.5: and/or-tree for p&(a) - rigid truth-degrees

A LANGUAGE SUPPORTING DEGREES OF BELIEF

T*(P7(b), 0.1)
7i(P7(6),0.1)

I
T*(P5(6),0.1)
t(P5(b), 0.1)

T*(pA(b), 0.1) T*(->pi(b), 1.0)
f,(p4(b), 0.1) f.(-.Pl(6), 1.0)

I I
T*(p3(b), 0.1) F*:Pl(6)
f,(P3(6),0.1) F. :Pl(6)

F*:P2(6) T*(-P3(6),0.9)
F*:P2(b) f.(-P3(6),0.9)

I
T*(P3(6),0.1)
f,(P3(6),0.1)

Figure 5.6: and/or-tree for P7(a) - rigid truth-degrees

Rules:

1 Defy = (}
Vx[&(-ip(x), 1)]
Vz[£*(-.P(£), 1)]

2 Defv = {p(tj) *-fa:i = 1,A:} ^ {}
W[B*(p(x),p*) max{f3«i : (x = £) A [(fa ± {}, B+(fa, P*i))
V(fa = {},£*(K*i)>/M)3} = P*,%(p(x,T*),max{/3„T*} = /?*]

V£[0*(P(z),/r) - £{/?* : (x = £) A [(Vi f {},B*(fa,ft))
V(fa = {},£*(?(£), #))]} = T*(p(x, t*),min{fi*, r*} = /3*] '

Axioms:

— same as in figure 2.6.

Figure 5.7: (3-Comp(P)

A LANGUAGE SUPPORTING DEGREES OF BELIEF 84

(a) true Rp+ (yes, 1).
(b) true R*p (yes, 1).
(a)

(q, 6), max
f Am : b>i *- i>x],Oi = mgu(q,pi),
(rpi,S)(7i Rp* (7rf, A«) V <t,- = mgu(q,pi),
(<*K #/3* (tt,-, Ap, P")ft*i = A' + A" ~ 1 ,

P'*,%((q,8),T*),
max{T*,/3l} - f3*

(b)
A* : [Pi = rngu(q,pi),
(V>;,<5)<7; (tt,-, A*) v ai = mgu(q,pi),
(^)^» (*A Ap, B*(Pi°i, Pi), min{(3(, ft} - ft

ft*,t*((q,8),r*),
min{r*,(3'*} = /?*

(M)^ ((77T,/?*)
where CT7r are the substitutions that generate /?* and ft and the V>» are non-empty conjunc¬
tions.

(a)
ftg,8),gR*0 (yes, ft), ft < 1,6 Rp* (aft"),tftftg,8),T*),max{T*,(1 - ft) + /3" - 1} = ft

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(-,g,6)Rp* (a, ft)

ftg, 6),g Rp* (yes, ft), ft < 1,6 R% (a, ft'), f*(ftg, 6), r*),min{r*, (1 - ft), ft'} = ft
hg,8)Rp(a,p*)

(~>gft),gFp,6 Rp» (a, ft)
(->g,6)Rp+ (a, ft) '

(~,g,8),gFp*,6 R*0 (aft*)
ftg,6)R*p(aft*) '

(q,6), ftp <- V>] : 3mgu(q,p)
(q,8)Fp*

(q,6), ftp <- V> 1 : 3mgu(q,p)
(gft)F*p •

(g,8)ft[pi <- A\ ■ 3a = mgu(q,pj) =»• (ipj,8)aFp*
(q,8) Fp,

(?,£), V[p« <- V.] : 3cr = mgu(q,pi) =>• (ipi,8)a Ft
(l,8)F%

(~>g,8),g R*0(yes,l)
(~[g,8)Fp*

ftg,8),gRp* (yes, 1)
(~>g,6)F$

Figure 5.8: ftSLDNF

A LANGUAGE SUPPORTING DEGREES OF BELIEF

f*(Pe{a), .4)
#*(P6(a),.35)
#*(P6(a),.2)
T*{p6(a), .2)

T*(Pi(a), .4)
B*(pi(a),.35)

5.(pi(a),.2) f*(p2(a),.4)
T*(Pi(a), -2) /?*(p2(a), .35)

B,(P2(a), -3)
t,(p2(a),.2)

t*(p2(a),.4) T'(-^(a),.85)
B*(p2(a),.35) B*(->Ps(a),.83)
#*(p2(a), .3)
t.(p2(a),-2)

£J*(-ip3(a), .81)
T*{^Pz{a), -8)

J
T*(p3(o),.2)

B*(p3(a),.19)
4*(P3(a),-17)
7".(P3(a),-15)

T*(-ip7(a), -85)
B*(-.p7(a),.85)
B*(-ip7(a), .81)
T*(-.p7(a), -8)

I
T*(p7(a),.2)
4* (p7(a),.19)
B,(p7(a), .15)
7i(p7(a), .15)

I
T'CpbCO),. 2)
B*(p5(a), .19)
#*(Ps(a), -15)
f,(p5(a),.15)

f*(p4(a),.2)
B*(p4(a),.19)
&(p4(«0,.17)
f.(p4(a).- 15)

f*(p3(«),.2)
5*(ps(<0..19)
&(ps(a),.17)
T»(p3(a),.15)

T*(-pi(a),.8)
B*(-.Pl(a),.8)
£*(-ipi(a), .65)
f*(--pi(a), .6)

I
T*(pi(a),.4)
^(pi(a),.35)
4»(fi(a)>-2)
T*(pi(a), .2)

^*(P2(a), .4)
£*(P2(a),.35)
R*(p2(a),.3)
Up2(a),.2)

T*H>3(a),.85)
4*H>3(a),.83)
#»(->p3(a), .81)
T,(-.p3(a), .8)

I
T*(p3(a),.2)
B*(p3(a), .19)
#*(p3(a), .17)
f.(p3(a), .15)

Figure 5.9: and/or-tree for P6(a)

A LANGUAGE SUPPORTING DEGREES OF BELIEF

£*(P7(6),.07)
B.(P7(6),.06)
t(pr(b),.05)

I
T*(p5(&),.l)
4*(P5(6),.07)
F.(Ps(i), .06)
f.(p5(6), .05)

T*(p4(6),.l)
B*(p4(6),.07)
5,(p4(6), .06)
f.(p4 (6) ,.05)

I
T'(P3(6),. 1)
B*(ps(6),.07)
B.(P3(6),.06)
T.(P3(6),.05)

T*(-pi(6),l.)
S*(-PiW,l.)
B.(-«Pi(&)> 1.)
t,(-ipi(6), 1.)

:pi(6)
:pi(b)
: pi (6)
:pi(6)

F*

F*P
Fp.
F.

F* : p2(t)
F; : pa(6)
Fp* ■ Pi(b)
F. : p2(6)

T*(-p3(6),.95)
B*(->P3(t),.94)
F»(-'P3(6), -93)
f*(-'P3(b),.9)

I
f*(P3(6),.l)
B*(p3(4),-07)
B,(p3(6),.06)
t,(P3(b), .05)

Figure 5.10: and/or-tree for Pi(b)

A LANGUAGE SUPPORTING DEGREES OF BELIEF

%(young(flavio), 0.9)
B*(young(flavio), 0.9)
B* (young(flavio), 0.9)
T*(young(flavio),0.9)

T*(fit(flavio), 0.1)
B*(fit(flavio), 0.15)
B*(fit(flavid), 0.6)
T*(fit(flavio), 0.6)

T*(-ispcare(flavio), 0.1)
B*(~<spcare(flavio), 0-1)
B* (~<spcare(flavio), 0.1)
T*(-ispcare(flavio), 0.1)

T*(spcare(flavio), 0.4)
B*(spcare(flavio), 0.4)
B* (spcare(flavio), 0.75)
T* (speare(flavio), 0-9)

T*(overw(flavio), 0.4)
B»(overw(flavio), 0.4)
B*(overw(flavio), 0.4)
T*(overw(flavio), 0.4)

T»(hyper(flavio), 0.3)
B*(hyper(flavio), 0.3)
B* (hyper(flavio), 0.35)
T* (hyper(flavio), 0.9)

%(varblpres(flavio), 0.3)
B*(varblpres(flavio), 0.3)
B* (varblpres(flavio), 0.35)
T*(varblpres(flavio),0.9)

Figure 5.11: and/or-tree for fit(flavio), including degrees of belief

6

Implementation Issues

The language presented in the previous three chapters can be implemented as a PROLOG meta-

interpreter. One feature of the way the language is formalised is that it can be translated

into PROLOG clauses almost literally, i.e. we can identify a term, predicate and clause in the

PROLOG implementation with each term, predicate and clause in the language in an almost

immediate way.

Unfortunately, this implementation is not very efficient, as it requires the exhaustive search of all

solutions for any query to select the appropriate truth-value.

In this chapter we explore the applicability of two classical programming optimisation techniques

to this meta-interpreter in order to improve its efficiency in processing time. The techniques we

explore are a — (3 pruning and caching.

In the following sections we first present the "non-optimised" implementation, which is kept as

close as possible to a transliteration of the language presented in chapters 3, 4 and 5. Then

we introduce the a - (3 pruning optimisation strategy, caching, and finally we present some

experimental results of the application of these techniques.

There are four PROLOG programs available, implementing:

88

6. IMPLEMENTATION ISSUES 89

• the "non-optimised" meta interpreter;

• the interpreter employing the a — /? pruning search strategy;

• the interpreter employing the caching technique;

• the interpreter employing both a — f3 pruning and caching.

These programs can be accessed at the machines at the Department of Artificial Intelligence -

University of Edinburgh, or received upon request directly from the author.

6.1 The "Non-Optimised" Meta-Interpreter

Recalling that a program P in our language is a finite non-empty set of expressions of the following

forms:

• normal clauses of the form p <— q\,..-,qn> where p is an atom and qi,...,qn are literals,

n > 0;

• truth-degree unit clauses of the form %(p, r«) and T*(p, r*), representing lower and upper

hounds for truth-degrees across possible worlds, where p is an atom and r#,r* 6 (0,1];

• belief-degree unit clauses of the form B*(p,/3») and B*(p,/3*), representing lower and upper

bounds for degrees of belief across possible worlds, where p is an atom and /?*,/?* € (0,1];

• probability unit clauses of the form V(S,p), representing probabilities on the domain, where

S are sets of terms and p £ [0,1].

Where:

— r» is a lower bound for the truth-value of a clause, i.e. the truth-degree of that clause

is not smaller than r» in all possible worlds;

6. IMPLEMENTATION ISSUES 90

— r* is an upper bound for the truth-value of a clause, i.e. the truth-degree of that clause

is not greater than r* in all possible worlds;

— /?* is a lower bound for the degree of belief on a clause, i.e. the expected truth-degree

of that clause is not smaller than /?»;

— (3* is an upper bound for the degree of belief on a clause, i.e. the expected truth-degree

of that clause is not greater than /?*;

— p is the probability of a set of terms in the domain D of P, i.e. the probability measure

of a member of the basis of an algebra of an element of a partition of D.

And that:

1. A program P is valid iff its values are semantically supported, i.e.:

• for any clause ip:

— if r* is defined, then so is /?,, and r* < /?«;

— if /?» is defined, then so is f3*, and /3* < /?*;

— if (3* is defined, then so is r*, and (3* < r*;

• the set of probability clauses in P is such that it partitions the domain D of P, i.e.

IJPj = D, in which each Si belongs to an expression V(Si,pi), and there are no S, S'

such that 5 fl S' ^ {} and V(S, p),V{S', p') € P. Furthermore, the values p follow the

axioms of probability measures for each algebra of the partition of D.

2. A query Q is valid iff it is a non-empty finite conjunction of expressions of the following

forms:

• %(ip,r*) or 7"*(Vbr*), where ip is a query clause, and r* and r* are numerical term;

• or /?*), where tp is a query clause, and /?« and (3* are numerical term;

6. IMPLEMENTATION ISSUES 91

• V*{S, ip,p*) or V*{S, ip, p*), where S is a vector of variables, if is a query clause, and

and p* are numerical terms;

The language presented in the previous chapters can be implemented as a PROLOG meta-

interpreter as follows:

• *-SLDNF:

Given a program P and a query %(tp, r*):

1. assume that ip = where p is a literal and S is a query clause (notice that

tp = (p,true)).

2. solve %{p, tv), resulting either p R* (ov, tv) or p F

if p F* then return ip F

3. if p R* {<jv, tv) then solve %{6ov, ts), resulting either 6 R» (cr^crs, rs) or 6ov F

if 6ov F» then return ip F».

4. if 6 R* (<?vcrs,rs) then return ip R* (vvcrs, min{Tv, r^}).

To solve %(p,tP):

1. if p — true then return true R* {yes, 1).

2. if p = positive literal q then find the collection C of all expressions E in P such that

(a) E = pi <— ipi and 3cr,- = mgu(q,pi) and r„t), or

(b) E =) and 3<r,- = mgu{q,pi).

if C = {} then return q F». Otherwise

select from C the index j such that = maxc{T*i} and return q R# (cj>r*j)-

3. if p— negative ground literal ->g then solve T*(g,rg).

6. IMPLEMENTATION ISSUES 92

if g F* then return ->g R* (yes, 1).

if g R* (<7g, 1) then return ->gF

if g R* (<Tg,Tg), Tg < 1 then return ~^g R* (^s, 1 _ Tg).

Given a program P and a query T*(tp,T*):

1. assume that ip = (<p, 6), where <p is a literal and 6 is a query clause.

2. solve T*(<p, tv), resulting either <p R* (<tv,tv) ot ^]r*.

if f F* then return ij) F*.

3. if R* (av, tv) then solve T*(6ctv, ts), resulting either S R* ((tvas,ts) or 6av F*.

if 6crv F* then return ip F*.

4. if S R* (a^as, t$) then return ip R* (cr^crg,min{tv, r^}).

To solve T*(ip,Tv):

1. if <p = true then return true R* (yes, 1).

2. if <p = positive literal q then find the collection C of all expressions E in P such that

(a) E = Pi <— V>t and 3a,- = mgu(q,pi) and T*(ipi<Ji,T*), or

(b) E = t*(pi,r*) and 3cr,- = mgu(q,pi).

if C = {} then return q F*. Otherwise

select from C the index j such that t* = maxc{T*} and return q R* (aj,Tj).

3. if <p = negative ground literal -ig then solve T*(g, Tg).

if g F* then return -><? R* (yes, 1).

if g R+ ((Tg, 1) then return ->gF*.

if g R* (<rg,Tg), Tg < 1 then return -ig R* (<jg, 1 - Tg)-

• (3-SLDNF:

Given a program P and a query B*(ip,/3*):

6. IMPLEMENTATION ISSUES 93

1. assume that -ip = (p,8), where p is a literal and 6 is a query clause.

2. solve B*(p,Pv), resulting either p Rp* (a^,Pg,) or p Fp*.

if p Fp* then return ip Fp*.

3. if <p Rp* (av,Pv) then solve B*(6av,Ps), resulting either 6 Rp* (avag,Ps) or 6av Fp*.

if 8av Fp* then return Fp*.

4. if 6 Rp* (avag, (3S) then solve T*(ip, r*) and return ip Rp* (avag,max{r*, (3V + f3g - 1}).

To solve B*(p,Pv):

1. if ip — true then return true Rp* (yes, 1).

2. if p> = positive literal q then find the collection C of all expressions E in P such that

(a) E = pi <— tpi and 3ai — mgu(q,pi) and /?*,), or

(b) E - B*(pi,P*i) and 3ai - mgu(q,pi).

if C = {} then return q Fp*. Otherwise

select from C the index j such that (3*j = maxc{P*i} and return q Rp* (aj,/3*j).

3. if (p = negative ground literal -ig then solve B*(g,Pg).

if g Fp then return -ig Rp* (yes, 1).
if g R*p (og, 1) then return ~^gFp*.

if g Rp (ag,Pg),Pg < 1 then return ->g Rp* (ag, 1 - Pg).

Given a program P and a query B*(tp,P*):

1. assume that V7 = (v> ^)> where p is a literal and 6 is a query clause.

2. solve B*(p,Pv), resulting either p R*p (a^,Pv) or <p Fp.
if <p Fp then return Fp.

3. if p R*p (av,Pv) then solve B*(8av, Ps), resulting either 6 R*p (avag,Ps) or 8av Fp.
if 8av Fp then return i/j Fp.

6. IMPLEMENTATION ISSUES 94

4. if 6 R*p (avas,/3s) then solve r*) and return iJj Rp (a^crs, min{T*, (3V, Ps})-

To solve B*(tp,/3V):

1. if ip = true then return true R£ (yes, 1).

2. if <£> = positive literal q then find the collection C of all expressions E in P such that

(a) E = pi <— ipi and 3a; = mgu(q,pt) and Z?*(Vw.,/3*), or

(b) E = and 3ct, = mgu(q,pi).

if C = {} then return q Fp. Otherwise

calculate /?'* = and return q Rp (yes, (3'*).

3. if (p = negative ground literal -ig then solve B*(g,f3g).

if g Fp* then solve T*(-^g, rg) and return -ig Rp (yes, rg).

if g Rp* (crg, 1) then return ->gFp.

if g Rp*(vg,Pg),l3g < 1 then solve f*(->g,Tg) and return g R*p (ag,min{Tg,l - (3g}).

• Conditional Beliefs:

Given a program P and a query B*(ipi\ip2,P*)'

1. solve B*((il>1,^2),P'*) and B*(ip

2. if /3* = 0 then return f3* = 0. Otherwise
3'

3. return (3* =

Given a program P and a query B*(il>P*)'-

1. solve B*((i}>i,il>2),(3'*) and B*(^2,P*)-

2. if /3* = 0 then return f3* = 0. Otherwise

3. return (3* —

6. IMPLEMENTATION ISSUES

• Probabilities and Conditional Probabilities on the Domain:

as presented in chapter 5.4.

95

6.2 Computational Optimisation I: a — (3 Pruning

Some values are generated and immediately discarded when computing the collections C of

expressions in %,T* and B*, as only the maximum value in C is used for further calculations.

Similarly, when generating 7^,7"* and B* for conjunctive queries, the minimum value obtained

for a conjunct is used and the others are discarged.

In [Mel85] the a — f3 pruning strategy, originally proposed to increase the efficiency of search pro¬

cesses in game trees, is employed to guide query evaluation in expert systems. The fundamental

idea is that some operations can be simplified in the evaluation procedure whenever a value is

selected from a partially ordered set of alternatives and the choice is made based on this partial

order. We do not have to generate the (truth or belief) values for all elements of C if we can

generate one value and verify that no other value can be greater than it, and we do not have to

generate the (truth of belief) values for each conjunct in a query if we can generate one value

and verify that no other conjunct can produce a smaller value.

Assuming that:

s aN(S, a) denotes that d is a lower bound for a in N(6, a) - where N is one of T*,T*, B*, B*,

and

• (3N(ip,/3) denotes that /? is an upper bound lor (3 in N(ip,/3).

• *-SLDNF:

Given a program P and a query 7»(^>,r*):

1. assume that if) = (yb^), where <p is a literal and 6 is a query clause.

6. IMPLEMENTATION ISSUES 96

2. solve Tt(<p, tv), resulting either <P R• (av, tv) or p F

if p F* then return V* F+.

3. if p R* (av,Tv) then solve a%(6(rv,Ts).
if Ts > rv) then return ip R* (oV'rv)- Otherwise

4. solve %(Sav,Tf), resulting either S R„ ((Tvas,Ts) or Sav F».

if 6crv Ft then return \j) F*.

5. if 6 R» (av(Ts,ts) then return ip R* (tJ^crs,min{rv, **})•

To solve T,(<p, tv):

1. if ip — true then return true R* (yes, 1).

2. if <p = positive literal <7 then find one expression E in P such that

(a) E = pi *— ipi and 3a,- = mgu(q,p,) and t*»), or

(b) £ = %(pi,T*i) and 3a,- = mgu(q,pi).

if there is no such E then return <7 F«. Otherwise solve /3%(p, fv).

if fv < T*i then return p R* (a,-, r„). Otherwise find another expression F with the

same conditions and iterate the process.

3. if p = negative ground literal ->g then solve T*(g,Tg).

if g F* then return -1g R* (yes, 1).

if g R* (<rg, 1) then return -1gF+.

if g R* (<Jg, Tg),Tg < 1 then return ->g R* (crg, 1 - rg).

To solve aTt(ip,T):

1. assume that ip = (p,6), where p is a literal and S is a query clause.

2. solve a%(p, rv), resulting either <p R* (a^r^) or <p F*.

if p Ft then return V> F».

IMPLEMENTATION ISSUES

3. if <p R» (av,tv>) then solve aT*(6(rv,fs).

if > Ty, then return rv. Otherwise

4. solve %(6<tv,ts), resulting either 6 R* r$) or F*.

if Sa^ F* then return ip F*.

5. if 6 R« {crvcr6,T$) then return min{rv,Ts).

To solve a%((p,T<f):

1. if (p = true then return true R+ (yes, 1).

2. if <p = positive literal q then find one expression E in P such that

(a) E = Pi <— ipi and 3a; = mgu(q,pi) and 7i(Vw,r«,-), or

(b) E = %(pi,T+i) and 3o, = mgu(q,Pi).

if there is no such E then return q F». Otherwise return r»,-.

3. if (p = negative ground literal ->g then solve T*(g,rg).

if g F* then return rv = 1.

if g R* (<?g, 1) then return ->gF

if g R* (vg,Tg), Tg < 1 then return Tv = 1 — rg.

To solve f37l(il>, r):

1. assume that ip = (<p,S), where <p is a literal and 6 is a query clause.

2. solve T*(<P, tv), resulting either tp R* (<rv, tv) or <p F*.

if ip F* then return ip Fm. Otherwise return tv.

To solve /3%(<p,tv):

1. if ip = true then return true R* (yes, 1).

6. IMPLEMENTATION ISSUES 98

2. if tp = positive literal q then find one expression E in P such that

(a) E = pi <— rpi and 3a,- = mgu(q,pi) and %(tpiUi,Tmi), or

(b) E = T+(pi, r*i) and Bcr; = mgu(q,pi).

if there is no such E then return q F*. Otherwise solve P%(tp,fv).

if fv < r„- then return tp R* (cr,-,r„). Otherwise find another expression E with the
same conditions and iterate the process.

3. if tp — negative ground literal ->g then solve T*(g,rg).

if g F* then return -ig R* (yes, 1).

if g R* (ag, 1) then return ~<gF*.

if g R* (ag, tg), tg < 1 then return -*g R« (ag, 1 - tg).

Given a program P and a query T*(tp,r*):

1. assume that tp = (<p, 6), where tp is a literal and 6 is a query clause.

2. solve T*(tp, tv), resulting either tp R* (av, rv) or tp F*.

if tp F* then return tp F*.

3. if tp R* (av,Tg,) then solve aT*(6av,fs).

if fs > tg, then return tp R* (av,tv). Otherwise

4. solve f*(Sav,Ts), resulting either 6 R* (av<rs, t$) or F*.

if 6<tv F* then return tp F*.

5. if 6 R* (<7vas,Ts) then return tp R* (avas,min{Tv,Ts}).

To solve T*(tp, tv):

1. if tp — true then return true R* (yes, 1).

2. if tp — positive literal q then find one expression E in P such that

6. IMPLEMENTATION ISSUES 99

(a) E - pi <- ipi and 3<r,- = Tngu(q,p{) and T*(Vw, r*), or

(b) E = and 3<rt- = mgu(q,Pi).

if there is no such E then return q F*. Otherwise solve (3T*(p>,tcfi)-

if fv < t* then return p R* (a,-, r*). Otherwise find another expression E with the
same conditions and iterate the process.

3. if ip = negative ground literal ->g then solve %(g, rg).

if g F* then return ->g R* (yes, 1).

if g R* ((Tg, 1) then return -<gF*.

if g R, (ag, Tg), rg < 1 then return -ig R* (ag, 1 — rg).

To solve a7"*(V',T):

1. assume that ip = (<p,6), where (f is a literal and 6 is a query clause.

2. solve aT*(f,rv), resulting either ip R* (<7v,rv) or (p F*.

if p F* then return if) F*.

3. if tp R* (<7v,rv) then solve aT*(Sav, r$).

if tg > tv then return tv. Otherwise

4. solve T*(S(tv,ts), resulting either 6 R* (ctv(t$,t$) or F*.

if Sav F* then return ij) F*.

5. if S R* (<tvcts,ts) then return min{Tv,Ts}.

To solve aT*(<p,tv):

1. if <p = true then return true R* (yes, 1).

2. if p = positive literal q then find one expression E in P such that

(a) E = pi <— i>i and 3<t; = mgu(q,pi) and r*), or

6. IMPLEMENTATION ISSUES 100

(b) E - f*(pi,T?) and 3<r,- = mgu(q,Pi).

if there is no such E then return q F*. Otherwise return r*.

3. if (p = negative ground literal ->g then solve %(g,rg).

if g then return rv — 1.

if g R» (<Jg, 1) then return ->gF*.

if g R„ (crg,Tg),Tg < 1 then return tv = 1 - r5.

To solve pT*(tp,r):

1. assume that ip = (<^, (5), where p is a literal and 6 is a query clause.

2. solve T*((p,Tv), resulting either tp R* (ctv,tv) or ip F*.

if <p F* then return i/) F*. Otherwise return tv.

To solve (3T*(ip,rv):

1. if p = true then return true R* (yes, 1).

2. if p = positive literal q then find one expression E in P such that

(a) E = pi <— ipi and 3<7,- = mgu(q,pi) and T*(^t(Jx, t*), or

(b) E = t*(pi,r*) and 3<r,- = mgu(q,pi).

if there is no such E then return q F*. Otherwise solve /3T*(p,fv).

if tv < r* then return p R* (crt-,r*). Otherwise find another expression E with the

same conditions and iterate the process.

3. if p— negative ground literal ->g then solve %(g,Tg).

if g F» then return ->g R* (yes, 1).

if g (<7g, 1) then return ->gF*.

if g Rm (<Jg, Tg), Tg < 1 then return -ig R* (ag, 1 — rg).

6. IMPLEMENTATION ISSUES 101

• /3-SLDNF:

Given a program P and a query B*(i/>,P»)'-

1. assume that ijj = (<p,8), where <p is a literal and 6 is a query clause.

2. solve B*(<p,f3v), resulting either cp Rp* ((7^,(3^) or p Fp*.

if p Fp* then return ip Fp*.

3. if ip Rp* ((7^,(3^) then solve B*(6av, /3s), resulting either 6 Rp* ((Tvas,f3s) or 6av Fp*.

if 6c7V Fp* then return ^ Fp*.

4. if 6 Rp* (a^ag,^) then solve f*(ip,T*) and return ij) Rp* (<7vcrg,max{T*, (3V + (3g - 1}).

To solve B*(p,(3v):

1. if cp = true then return true Rp* (yes, 1).

2. if cp — positive literal q then find the collection C of all expressions E in P such that

(a) E = pi *- ipi and 3a, = mgu(q,pi) and B*(cptat, f3*i), or

(b) E = B*(pi,(3*i) and 3= mgu(q,Pi).

if C = {} then return q Fp*. Otherwise

select from C the index j such that f3*j = maxc{P*i} and return q Rp* ((7j,(3*j).

3. if cp — negative ground literal ->g then solve B*(g,Pg)-

if g Fp then return ->g Rp* (yes, 1).
if g R*p (og, 1) then return ~<gFp*.
if g R*p (ag,(3g),l3g < 1 then return ~>g Rp* (ug, 1 - f3g).

Given a program P and a query B*(ip,f3*):

1. assume that tp = (p,6), where cp is a literal and 6 is a query clause.

6. IMPLEMENTATION ISSUES 102

2. solve B*(p,Pv), resulting either p R*p (&v,Pv) or F Fp-
if p Fp then return xj> Fp.

3. if p Rp then solve aB*(Sag>, /3s).
if Pv > /3V then solve T*(xp,T*) and return ip R*p (fv,min{r*,^}). Otherwise

4. solve B*(6av, Ps), resulting either S R*p (ov<Js, Ps) or f>av Fp.
if 6<jv Fp then return xf) Fp.

5. if 6 Rp (avas,Ps) then solve T*(ip,T*) and return tp Rp (<7vas,min{r*, Pv, Ps}).

To solve B*(p,Pv):

1. if p — true then return true R*p (yes, 1).

2. if p = positive literal q then find the collection C of all expressions E in P such that

(a) E = pi <— ipi and 3cr,- = mgu(q,pi) and B*(xpi&i, P*), or

(b) E = B*(pi,P*) and 3cq = mgu(q,pi).

if C = {} then return q Fp. Otherwise

calculate /?'* = ICciA*} and return q Rp (yes,P'*).
3. if <p = negative ground literal ->g then solve B*(g,Pg)-

if g Fpx then solve T*(->g, rg) and return ->g Rp (yes, rg).
if g Rp* (cg, 1) then return ~>gFp.

if g Rp* (vg,Pg),Pg < 1 then solve t*(->g,Tg) and return ->g R*p (ag,min{rg, 1 - Pg}).

To solve aB*(xp,P):

1. assume that xp = (p,8), where p is a literal and 6 is a query clause.

2. solve B*(<p,Pv), resulting either p R*p (<7V,/?V) or p Fp.
if p Fp then return ij> Fp.

IMPLEMENTATION ISSUES

3. if <p R*p (av,Pv) then solve aB*(6ag>, fis).
if Pv > f3v then solve T*(ip,T*) and return rp Rp (av,min{r*, f3v}). Otherwise

4. solve B*(8ag,,Ps), resulting either 6 R*p (avas,(3s) or 8av F£.
if 6av Fp then return ip Fp.

5. if 6 Rp {avcr$, (3s) then solve T*(rp,r*) and return ip Rp (crvcr$,min{T*, /3V, /3s}).

To solve aB*(<p, Pv):

1. if <p = true then return true R*p (yes, 1).

2. if ip = positive literal q then find one expression E in P such that

(a) E = pi <— ipi and 3a,• = mgu(q,pi) and B*(ipia{, (3*), or

(b) E = B*(pi,/3*) and 3a,- = mgu(q,pi).

if there is no such E then return q Fp. Otherwise return /3*.

3. if <p = negative ground literal -><7 then solve B*(g,f3g).

if g Fp« then return rv — 1.

if g Rp» (ag, 1) then return -'gFp.

if g Rp, (ag,(3g),/3g < 1 then return pv = 1 - Pg.

• Conditional Beliefs:

Given a program P and a query B*(ipi\ip2i P*):

1. solve B*((tpi,ip2),Pl) and B*(ip2,P*)-

2. if f3* = 0 then return p* = 0. Otherwise
8'

3. return /?* =

Given a program P and a query P)•

1. solve B*((ipi,ip2),P'*) and B*(ip2,P*)-

6. IMPLEMENTATION ISSUES

2. if /?. = 0 then return fi* — 0. Otherwise

3. return f3* = .

104

• Probabilities and Conditional Probabilities on the Domain:

as presented in chapter 5.4.

The a — /3 pruning strategy does not reduce the worst-case time complexity of our language, since

it can be totally ineffective depending on the order in which clauses are selected for unification.

It should reduce the average time complexity, however, as the following example illustrates:

Example 6.1 Consider the following program:

Pi(x) <- p2{x),^p3(x).
pfix) «- p3(x).
Ps(x) p4(x), -ipi(x).
p6(x) <- p\(x).
p7(x) *- p5(x).
p6(x) <- p2(x),->p7(x).

%(p2(a),0A).
%(p3(a), 0.2).
%(p3(b), 0.1).

T*(p2(a),0.4).
T*(p3(a), 0.2).
T*(p3(b), 0.1).
And the query:

%(pe(a),T*).

Assuming that the and/or-tree is generated depth-first, left-to-right and according to the order in

which the program is written, the extract from the complete tree which is generated in order to

evaluate the query is the one underlined in fig. 6.1.

However, if we change the order of the literals in the program, we can loose the advantage of not

having to generate the complete deduction tree for the query. If the initial program is:

6. IMPLEMENTATION ISSUES 105

Pi(x) «- p2(x),^p3(x).
p4(x) <- p3(x).
Ps(x) <- p4(x), -ipi(x).
Pe(x) <- pi(x).
p7(x) <- p5(x).
pe(x) <— ->p7(x),pfix).

T,(p2(a),0.4).
7;O3(a),0.2).
%(p3(b),0.l).

7"*(p2(a),0.4).
T*(p3(a), 0.2).
T*O3(6),0.1).
Then the iree to be generated is the one in fig. 6.2.

6.3 Computational Optimisation II: Caching

When the evaluation of a clause is required in different points of a program, a sub-tree is generated

repeatedly to resolve a query. If the generation of this sub-tree is computationally costly, it can

be worthwhile to store the result of its evaluation the first time it is generated in order to avoid

its recalculation.

Whenever a (sub)query containing only ground terms and starting with V», V*, %, T*, B* or B*

is evaluated, we can store its value and possibly avoid redundant computations.

As in the previous case, the improvements on efficiency achieved by applying this optimisation

depend on the characteristics of specific programs. Storing and recalling values also imply com¬

putational costs, and the trade-off is advantageous only when these costs are smaller than the

costs of generating the sub-trees which evaluation is being stored1.

Example 6.2 Consider the program presented in example 6.1 and the query:

decent results presented in [CG92] suggest that the caching strategy can be applied in a selective way, optimising
the advantages of using it

IMPLEMENTATION ISSUES

Tt(p6(a), 0.4)

T*(p3(a), 0.4)
T.(p3(a), 0.4) T,(->p3(a), 0.8)

T*(p3(a), 0.2)

T«(-ip7(a),0.8)
I

T*(p7(a), 0.2)

T*(pB(a)t 0.2)

T*(p4(a), 0.2) T*(-.pi(a),0.6)
I I

T*(p3(a),0.2) T,(pj (a), 0.4)

7i(p2(a),0.4) T.(-np3(a),0.8)
I

T*(p3(a), 0.2)

Figure 6.1: and/or-tree for P6{a) generated by a - f3 procedure

T*(p3(a), 0.4)

3"*(p3(«)»O-3)
a), 0.2)

T*(p3(a), 0.2) Tt(pl(a), 0.4)

T.(p3(a), 0.4) T.(-ip3(a), 0.8)
I

^""(PsW.o-a)

Figure 6.2: and/or-tree for P6(a) generated by a — /? procedure - ineffective case

6. IMPLEMENTATION ISSUES 107

%(pe(a),T*).

Assuming that the and/or-tree is generated depth-first, left-to-right, the extract from the complete

tree which is generated in order to evaluate the query is underlined in fig. 6.3.

6.4 Combining Optimisations I and II

The optimisations above can be combined in a single procedure. An interesting observation about

this combination is that the optimisations compete with each other, hence the combined increased

efficiency is not a linear function of the improvements obtained from each strategy. This is due

to the fact that caching exploits the use of previously stored evaluations, while a — fi pruning

avoids the generation of these very evaluations to be stored.

The simple programs below illustrate the comparative gains in efficiency given by a — /3 pruning,

by caching and by the combination of both, with respect to the original "non-optimised" version.

A single program is given to which a variable number of unit clauses is added, and the time

efficiency of each version of the language for solving specific queries is plotted as a function of

the number of unit clauses.

Example 6.3 Consider the following programs:

• Pi:

pfix) «- P2(x),~>p3(x).
p4(x) <- p3(x).
p5(x) +- p4(x),->Pi(x).
p6(x) «- Pl(x).
p?(x) Ps(x).
p6(x) <- p2(x),-lp7(x).
%(p3(a1), 0.1).
T*(p3(al),0.4).
£*(p3(al),0.2).
5*(p3(a1),0.3).
V([al],1.0).

IMPLEMENTATION ISSUES

Pi:

Pi(x) P2(x),->p3(x).
p4(x) <- p3{x).
Pb{x) <- p4(x),->p4{x).
Pg{X) P\{x).
p7(x) <- pB(x).
p6(x) «- p2(x),-^p7(x).
T.(p3(al),0.1). T,(p3(a2),0.1).
T*(p3(al),0.4). 7~*(p3(a2), 0.4).
£„(p3(al),0.2). £,(p3(a2),0.2).
£*(p3(al),0.3). B*(p3(a2),0.3).
V([a1],0.5). P([a2],0.5).

P3:

Pl(x) p2(x),->p3(x).
p4(x) <- p3(x).
Ps(z) p4(x),^pi(x).
Pe(x) «- pi(x).
p7(x) <- p5(i).
Pe(«) M®), -"M®)-
7;(p3(al),0.1). 7»(p3(a2), 0.1). 7;(p3(a3), 0.1).
T*(p3(al),0.4). T*(p3(a2), 0.4). T*(p3(a3), 0.4).
£*(p3(al),0.2). Bm(p3(a,2), 0.2). £*(p3(a3), 0.2).
B*(p3(al),0.3). B*(p3(a2), 0.3). B*(p3(a3), 0.3).
P([al], 0.3). V([a2], 0.3). 7>([a3], 0.4).

P4:

Pi(x) <- p2(x),-,p3(x).
p4{x) «- p3{x).
Ps(x) <- p4(x), -ip4(x).
p6(x) «- pi(x).
P?(x) *- p5(x).
Pe(x) <- p2(®),->P7(®).
^(p3(al),0.1). 7;(p3(a2),0.1). %(p3(a3), 0.1).
T*(p3(ol),0.4). T*(p3(a2),0.4). T*(p3(a3),0.4).
£*(p3(al),0.2). B*(p3(a2), 0.2). B.(p3(a3), 0.2).
B*(p3(al), 0.3). B*(p3(a2), 0.3). £*(p3(a3), 0.3).

T*(p3(a4),0.1).
T*(p3(a4),0.4).
£,(p3(a4),0.2).
^*(p3(o4), 0.3).

6. IMPLEMENTATION ISSUES 109

V{[a\\, 0.3). V([a2],0.3). V{[a3], 0.2).
7>([a4],0.2).

• P5:

Pl(x) <- p2(x),-^p3(x).
p4(x) V- p3(x).
Ps(x) p4(x),-^lOO-
p6(x) <- Pi(x).
p7(x) <- p5(x).
p6(z) «- p2(x),-.p7(x).
T*(p3(al),0.1). T*(p3(a2), 0.1). %(p3(aS), 0.1).
T*(p3(al),0.4). T*(p3(a2), 0.4). T*(p3(a3), 0.4).
£,(p3(al),0.2). B*(p3(a2), 0.2). S,(p3(a3), 0.2).
£*(p3(al),0.3). £*(p3(a2),0.3). £*(p3(a3), 0.3).

7"„(p3(a4),0.1). %(p3(a5), 0.1).
T*(p3(a4),0.4). 7~*(p3(a5), 0.4).
£,(p3(a4),0.2). B*(p3(a5), 0.2).
£*(p3(a4),0.3). £*(p3(a5),0.3).
P([al], 0.2). P([a2],0.2). 7>([a3], 0.2).
P([o4],0.2). P([a5],0.2).

and the queries:

Qi-(T*(P7(al),u), T*(p7(al),T*),
£,(p7(al),/3,), 0*(p7(al),/T),
S„(p7(al)|p4(al), /?»), £*(p7(al)|p4(al), /3C*)).

Q2 : (T,(p7(xl), tx), r*{p7{x2), r**),
B*(p7(x3), (3*), B*(p7(x4),/3X*),
B*(p7(x5)\p4(x5),PZc), B*(p7(x6)\p4(x6),pxc*)).

Q3 = (T*(>7(al),r*),
£*i>7(al),/3„),
£„(p7(al)|p4(al),#;),
^>.([®7],p7(a;7),p.)>
7>»([x9],p7(x9)|p4(x9),/>S),

<54 :(r*(p7(xl),r,x),
B*(p7(x3), (3X),
B* (p7(x5)\p4(x5), (3XC),
V*([x7],p7(x7),p^),
V*([x9],p7(x9)\p4(x9),p$),

T*(p7(al),r*),
B*(p7(al), (3*),
B*(p7(al)\p4(al),f3c*),
V*([x8],p7(x8),p*),
77*([xl0],p7(xl0)|p4(xl0), pc*)).

T*(P7(x2),Tx*),
B*(P7(x4), (3X*),
B*(p7(xQ)\p4(x6),f3xc*),
V*([x8],p7(x8),p*),
■P*([xl0],p7(xl0)|p4(xl0), pc*)).

6. IMPLEMENTATION ISSUES 110

Qs:(%(p7(al),n),

B«{p7(al)\p4(a\),Pl),

B*(p7(x5)\p4(x5), P*c),
P»([®7],p7(»7),p«),
V*([x9],p7(x9)\p4(x9),pcm),

%(p7(xl),rf),
B*{p7{xZ),PZ),

T*(p7(al),T*),
B*(p7(al),P*),
B*(p7(aT)\p4(aT), P°*),
T*(P7(x2),T**),
B*(p7(x4),p*%
B*(p7(x6)\p4(x6),Pxc*),
V*([x8],p7(x8),p*),
"P*([a:10],p7(a:10)|p4(a:10),/)c*)).

We have the execution times as presented in tables 6.1, 6.2, 6.3, 6.4 and 6.5 and figures 6.4,

6.5, 6.6, 6.7 and 6.8. The experiments were run using an Edinburgh-PROLOG implementation

running on SPARC workstations. V\ corresponds to the non-optimised language, Vi corresponds

to the version including caching, V3 corresponds to a — P pruning and V4 corresponds to the

version combining both strategies. The execution times are presented in seconds.

The number of unit clauses in the program is irrelevant for the solution of query Q\, which is

a ground query. Moreover, in this case both optimisations are effective and their combination

is advantageous over each of them separately, caching is not effective for solution of queries Q2

and Q4, which do not have ground conjuncts. The employment of a — P pruning is effective,

but the combination of a — P pruning and caching decreases the efficiency obtained when using

purely the a — P pruning strategy. For general queries (i.e. containing ground and non-ground

conjuncts) like query Q3, the employment of the combination of both optimisation strategies can

be still advantageous, as both strategies are effective. For general queries like query Q5, however,

the employment of the combination of both strategies may be less effective than the employment

of one of them individually.

Generally speaking, the use of the optimised versions of the language is useful to improve the

time efficiency of execution of programs, as every combination of the explored strategies caused

an improvement over the non-optimised version of the language.

IMPLEMENTATION ISSUES

T*(P6(a), 0.4)

T*(pa(a), 0.4) T„(-ip,(a), 0.8)
1
3~*(P3(«)>O-2)

T*(-ip7(a),o.8)
r

T*(p7(a),0.2)
r

T*(p5(a)»o-2)

1~*(p4(a), 0.3) T*(-ip1 (a), 0.6)
r~ 1

T*(p3(a), 0.2) T.(pi (a), 0.4)

T,(P2(a), 0.4) 7i(-.p3(a),0.8)
I

T*(p3(a),0.2)

Figure 6.3: and/or-tree for p3{a) generated by caching procedure

Vi v2 v3 Va
Pi 10.9 3.3 2.4 1.6

P2 11.3 3.3 2.5 1.6

p3 11.1 3.4 2.4 1.6

Pa 11.1 3.3 2.6 1.6

P5 11.3 3.4 2.6 1.7

Table 6.1: Experimental Results - Execution Times for Resolving Query Q\

Vi v2 v3 v4
Pi 11.1 11.5 2.5 4.1
P2 17.8 17.8 4.0 6.5

P3 24.8 24.1 5.6 9.2

Pa 31.5 30.4 7.2 12.0

Ps 38.8 37.1 9.0 14.9

Table 6.2: Experimental Results - Execution Times for Resolving Query Q2

6. IMPLEMENTATION ISSUES 112

v2 V3 v4
Pi 17.0 8.7 3.1 2.5

Pi 21.6 11.3 3.8 3.1

Pz 26.2 14.3 4-6 3.7

Pa 30.8 17.1 5.3 4.4
i>5 35.7 20.2 6.1 5.2

Table 6.3: Experimental Results - Execution Times for Resolving Query Qz

Vx v2 v3 v4
Pi 17.6 16.8 3.3 4.7
Pi 28.5 25.6 5.4 7.9

Pz 40.0 34.7 7.6 11.2

Pa 51.6 44.0 10.0 14.7
Pz 63.6 53.6 12.6 18.3

Table 6.4: Experimental Results - Execution Times for Resolving Query qa

Vi v2 v3 v4
Pi 27.9 22.0 5.5 6.3

Pi 39.5 31.4 7.9 9.7

Pz 50.7 40.3 10.1 12.8

Pa 62.6 49.8 12.6 16.3

Pz 76.1 60.5 15.2 19.9

Table 6.5: Experimental Results - Execution Times for Resolving Query Qz

6. IMPLEMENTATION ISSUES

time execution

•-mo

80.0

60.0

m = V1

• = V2

□ = V3

o = V4

40.0

20.0

0.0

pi p2 p3 p4 p5

Figure 6.4: Experimental Results - Execution Times for Resolving Query Q\

IMPLEMENTATION ISSUES

time execution

(Mcoa.o

80.0

60.0

40.0

■ = V1

• = V2

□ = V3

0 = V4

Figure 6.5: Experimental Results - Execution Times for Resolving Query Q2

IMPLEMENTATION ISSUES

Figure 6.6: Experimental Results - Execution Times for Resolving Query Q3

6. IMPLEMENTATION ISSUES 116

Figure 6.7: Experimental Results - Execution Times for Resolving Query Q4

IMPLEMENTATION ISSUES

time execution

("~|S>.0

80.0

60.0

40.0

20.0

0.0

PI P2 P3 P4 P5

Figure 6.8: Experimental Results - Execution Times for Resolving Query Q5

r

Summary and Discussion

There has been a lot of debate on which formalism to measure uncertainty is the most general,

and many researchers have recently defended the view that there is not a most general formalism

but that different formalisms are better to measure different facets of uncertainty.

In the present work we adopted the latter view. We also avoided the simplification that a single

facet of uncertainty should be selected at the end, therefore accepting that multiple measures

could have to be considered within a single representation language.

Assuming this point of view, we explored the feasibility of performing automated reasoning about

a domain containing more than one facet of uncertainty by (i) selecting three of these facets and

their corresponding measures; (ii) incorporating them to a resolution-based, first-order, clausal

theorem prover; and (iii) implementing this theorem prover as a PROLOG meta-interpreter.

The selected measures were:

• fuzzy truth-values, characterising degrees of truth for vague predicates,

• probabilities on the domain, characterising statistical relations among terms of the language,

and

• probabilities on possible worlds, characterising degrees of belief on sentences.

118

7. SUMMARY AND DISCUSSION 119

An important aspect of any knowledge representation scheme for automated reasoning is having

a clearly and rigorously specified semantics for its expressions and operations, so we were careful

about providing a model theory for our language and guaranteeing the soundness of its inference

procedures.

The main expected contribution of this work was the evidential proof that multiple measures of

uncertainty are useful in knowledge representation and inference, and that they can (and should)

be treated conjointly within a single representation language. Nevertheless, we believe that the

language which was constructed and implemented to constitute this proof presents interest in itself

as the prototype of a language to implement knowledge-based systems about domains pervaded

with uncertainty. With this in mind, we explored some possibilities to improve its computational

efficiency in time, with the positive results presented in chapter 6.

One aspect of our language is the variable coarseness of the results it produces. The language

is a proper extension to several simpler theorem provers (e.g. Lee's language [Lee72], Halpern's

logic [Hal90], the logic Lp [Bac88, Bac90a], Nilsson's logic [Nil86]), and when "projected" to one

of these languages it produces results at least as precise as those (i.e. if the result is an interval,

it is going to be at least as tight as the one produced by the simpler language). In those more

complex cases in which the extensions are needed, however, the uncertainty intervals generated

by our language grow rapidly in width. It remains as a topic for further research whether we can

specify particular classes of problems with special structural properties such that more precise

results (i.e. tighter intervals) can be obtained.

Another limitation of the language is the presupposition of a single source of information for a

program (i.e. a single agent to assign belief and truth-degrees to expressions), and the considera¬

tion of only those problems which can be treated monotonically. It remains as an open question

whether a richer language, capable of treating non-monotonicities and multiple agents (which

can be independent, partially dependent or totally dependent), can be constructed in such a way

7. SUMMARY AND DISCUSSION 120

that it has a clear declarative semantics and is computationally tractable.

The main constraints in the expressive power of the language come from the structural restric¬

tions that had to be imposed on the construction of programs in order to preserve the clarity

of specification of its declarative semantics, namely the conditions that programs should be (i)

normal, (ii) non-cyclical, (Hi) strict with respect to queries, (iv) allowed, and (vi) with the dec¬

laration of truth and belief values restricted to unit clauses. It is well-known from the literature

that some of these constraints can be lifted when not all of the three measures studied here are

used within a single domain, but it is yet another open question whether the constraints could

be relaxed with all measures being present, and under what conditions that would be the case.

Yet, we believe that the results presented here are a positive empirical confirmation that multiple

representations of uncertainty can be incorporated into a single language in a systematic way.

It should be stressed that no previous implementations involving these three uncertainty mea¬

sures could be found in the literature. As we mentioned before, in [Hal90, Bac88, Bac90c] we

have theoretical results proving the computability of specific versions of their languages involv¬

ing probabilities on the domain and on possible worlds, but implementation and computational

efficiency issues are not treated there.

Implementation issues are considered in the works of Dubois and Prade involving measures on

possible worlds and fuzzy predicates (cf. [DP87, DP88]), but those authors use possibilistic rather

than probabilistic measures on possible worlds, which are more amenable to implementation

although not as expressive as probabilistic measures of the form of Dempster-Shafer structures (cf.

chapter 5.1 for a discussion on how Dempster-Shafer structures subsume possibilistic measures).

Finally, although the concept of probability of a fuzzy event was established in [Zad68], its

explicit use in knowledge representation languages to describe the expected truth-degree of a

query containing fuzzy predicates and free variables could not be found in previous references.

7. SUMMARY AND DISCUSSION 121

Future work includes pursuing completeness results for the procedures presented here, and the

construction of more refined implementations of the programming language proposed for multiple

representations of uncertainties.

Bibliography

[AH89] M. Abadi and J. Y. Halpern. Decidability and Expressiveness for First-Order Logics of
Probability. Technical Report RJ-7220, IBM Research Report, 1989.

[Apt87] K. F. Apt. Introduction to Logic Programming. Technical Report CS-R8741, Centre
for Mathematics and Computer Science, 1987.

[Bac88] F. Bacchus. Representing and Reasoning with Probabilistic Knowledge. PhD thesis,
University of Alberta, 1988.

[Bac90a] F. Bacchus. Lp, a Logic for Representing and Reasoning with Statistical Knowledge.
Computational Intelligence, 6:209-231, 1990.

[Bac90b] F. Bacchus. On Probability Distributions over Possible Worlds. In Uncertainty in
Artificial Intelligence 4, 1990.

[Bac90c] F. Bacchus. Representing and Reasoning with Probabilistic Knowledge. MIT Press,
1990.

A. Bundy. Incidence Calculus: a Mechanism for Probabilistic Reasoning. Journal of
Automated Reasoning, l(3):263-284, 1985.
A. Bundy. Correctness Criteria of Some Algorithms for Uncertain Reasoning Using
Incidence Calculus. Journal of Automated Reasoning, 2(1):109-126, 1986.
A. Bundy. Incidence Calculus. Technical Report 497, University of Edinburgh, Depart¬
ment of Artificial Intelligence, 1990.

F. S. Correa da Silva. Automated Reasoning About an Uncertain Domain. Technical
report, University of Edinburgh, Department of Artificial Intelligence (a preliminary
version of this work was presented at the European Conference on Symbolic and Quan¬
titative Aspects of Uncertainty, under the same title, authored by Correa da Silva, F.
S., Robertson, D., and Chung, P.), 1991.

[CdSB90] F. S. Correa da Silva and A. Bundy. On Some Equivalence Relations Between Incidence
Calculus and Dempster-Shafer Theory of Evidence. In 6th Conference on Uncertainty
in Artificial Intelligence, 1990.

[CdSB91] F. S. Correa da Silva and A. Bundy. A Rational Reconstruction of Incidence Calculus.
Technical Report 517, University of Edinburgh, Department of Artificial Intelligence,
1991.

122

[Bun85]

[Bun86]

[Bun90]

[CdS91]

BIBLIOGRAPHY 123

[CG92] M. D. Chaudri and R. Greiner. A Formal Analysis of Solution Caching. In Proceedings
of the 9th Canadian Conference on Artificial Intelligence, 1992.

[Che88] P. Cheeseman. An Inquiry into Computer Understanding. Computational Intelligence,
4:58-66, 1988.

[CL89] L. Cavedon and J. W. Lloyd. A Completeness Theorem for SLDNF Resolution. Journal
of Logic Programming, 7:177-191, 1989.

[Cla88] D. A. Clark. Responses to 'An AI View of the Treatment of Uncertainty' by Alessandro
Saffiotti. The Knowledge Engineering Review, 3:59-86, 1988.

[Cla90] D. A. Clark. Numerical and Symbolic Approaches to Uncertainty Management in AI.
Artificial Intelligence Review, 4:109-146, 1990.

[DP87] D. Dubois and H. Prade. Necessity Measures and the Resolution Principle. Technical
Report 267, LSI - Universite Paul Sabatier, 1987.

[DP88] D. Dubois and H. Prade. An Introduction to Possibilistic and Fuzzy Logics. In P. Smets,
A. Mamdani, D. Dubois, and H. Prade, editors, Non-standard Logics for Automated
Reasoning. Academic Press, 1988.

[DP89] D. Dubois and H. Prade. Fuzzy Sets, Probability and Measurement. European Journal
of Operational Research, 40:135-154, 1989.

[Dud89] R. M. Dudley. Real Analysis and Probability. Wadsworth & Brooks/Cole, 1989.

[FH89a] R. Fagin and J. Y. Halpern. A New Approach to Updating Beliefs. Technical Report
RJ-7222, IBM Research Report, 1989.

[FII89b] R. Fagin and J. Y. Halpern. Uncertainty, Belief, and Probability. Technical Report
RJ-6191, IBM Research Report, 1989.

[FIIM90] R. Fagin, J. Y. Halpern, and N. Megiddo. A Logic for Reasoning about Probabilities.
Information and Computation, 87:78-128, 1990.

[Fit85] M. Fitting. A Kripke-Kleene Semantics for Logic Programs. Journal of Logic Program¬
ming, 4:295-312, 1985.

[Fit88] M. Fitting. Logic Programming on a Topological Bilattice. Fundamenta Informaticae,
XL209-218, 1988.

[Fit90] M. Fitting. Bilattices in Logic Programming. In Proceedings of the 20th International
Symposium on Multiple-valued Logic, 1990.

[GS82] G. R. Grimmett and D. R. Stirzaker. Probability and Random Processes. Oxford Sci.
Publ, 1982.

[Hal90] J. Y. Halpern. An Analysis of First-Order Logics of Probability. Artificial Intelligence,
46:311-350,1990.

[Hin86] C. J. Hinde. Fuzzy Prolog. International Journal of Man-Machine Studies, 24:569-595,
1986.

BIBLIOGRAPHY 124

[Hog90] C. J. Hogger. Essentials of Logic Programming. Oxford Univ. Press, 1990.

[IK77] S. Iyanaga and Y. (eds) Kawada. Encyclopedic Dictionary of Mathematics. MIT Press,
1977.

[IK85] M. Ishizuka and K. Kanai. Prolog-ELF Incorporating Fuzzy Logic. In IJCAI'85 -

Proceedings of the 9th International Joint Conference on Artificial Intelligence, 1985.

[KJ87] H. E. Kyburg Jr. Bayesian and non-Bayesian Evidential Updating. Artificial Intelligence,
31:271-293,1987.

[KJ90] H. E. Kyburg Jr. Uncertainty Logics. Technical Report TR 337, University of Rochester,
Dept. of Computer Science, 1990.

[Kle82] E. P. Element. Construction of Fuzzy <r-algebras Using Triangular Norms. Journal of
Mathematical Analysis and Applications, 85:543-565, 1982.

[KS91] M. Kifer and V. S. Subrahmanian. Theory of Generalized Annotated Logic Programs
and its Applications. Journal of Logic Programming (forthcoming), 1991.

[Kun87] K. Kunen. Negation in Logic Programming. Journal of Logic Programming, 4:289-308,
1987.

[Kun89] K. Kunen. Signed Data Dependencies in Logic Programs. Journal of Logic Programming,
7:231-245, 1989.

[Kun90] K. Kunen. Some Remarks on the Completed Database. Fundamenta Informaticae,
XIIL35-49, 1990.

[Lee72] R. C. T. Lee. Fuzzy Logic and the Resolution Principle. Journal of the ACM, 19:109-119,
1972.

[Mel85] C. S. Mellish. Generalised Alpha-Beta Pruning as a Guide to Expert Systems Question
Selection. In Expert Systems '85 - Proceedings of the 5th Technical Conference of the
British Computer Society, Specialist Group on Expert Systems, 1985.

[Men87] E. Mendelson. Introduction to Mathematical Logic (3rd. ed). Wadsworth & Brooks/Cole,
1987.

[Nil86] N. J. Nilsson. Probabilistic Logic. Artificial Intelligence, 28:71-87, 1986.

[NS92] R. Ng and V. S. Subrahmanian. Probabilistic Logic Programming. Information and
Computation (forthcoming), 1992.

[Orc89] I. P. Orci. Programming in Possibilistic Logic. International Journal of Expert Systems,
2:79-96, 1989.

[Pea88] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, 1988.

[Pia88] K. Piasecki. Fuzzy p-Measures and their Application in Decision Making. In J. Kacprzyk
and M. Fedrizzi, editors, Combining Fuzzy Imprecision with Probabilistic Uncertainty in
Decision Making. Springer Verlag, 1988.

BIBLIOGRAPHY 125

[Rus87] E. H. Ruspini. The Logical Foundations of Evidential Reasoning. Technical Report 408,
SRI International, 1987.

[Rus89] E. H. Ruspini. On the Semantics of Fuzzy Logic. Technical Report 475, SRI Interna¬
tional, 1989.

[Rus90a] E. H. Ruspini. Approximate Reasoning: Past, Present, Future. Technical Report 492,
SRI International, 1990.

[Rus90b] E. H. Ruspini. Possibility as Similarity: The Semantics of Fuzzy Logic. In 6th Confer¬
ence on Uncertainty in Artificial Intelligence, 1990.

[Saf87] A. SafRotti. An AI View of the Treatment of Uncertainty. The Knowledge Engineering
Review, 2(2):75-97, 1987.

[Sha76] G. Shafer. A Mathematical Theory of Evidence. Princeton Univ. Press, 1976.

[Sha83] E. Y. Shapiro. Logic Programming with Uncertainties - a Tool for Implementing Rule-
based Systems. In IJCAI'83 - Proceedings of the 8th International Joint Conference on

Artificial Intelligence, 1983.

[Sha87] G. Shafer. Belief Functions and Possibility Measures. In J. C. Bezdek, editor, Analysis
of Fuzzy Information. CRC Press, 1987.

[Sho67] J. R. Shoenfield. Mathematical Logic. Addison-Wesley, 1967.

[Sme82] P. Smets. Probability of a Fuzzy Event: An Axiomatic Approach. Fuzzy Sets and
Systems, 7:153-164, 1982.

[Som90] Lea Sombe. Reasoning under incomplete information in artificial intelligence: a compar¬
ison of formalisms using a single example. International Journal of Intelligent Systems,
5, 1990.

[Tur88] I. B. Turksen. Stochastic Fuzzy Sets: a Survey. In J. Kacprzyk and M. Fedrizzi,
editors, Combining Fuzzy Imprecision with Probabilistic Uncertainty in Decision Making.
Springer Verlag, 1988.

[Tur89] D. Turi. Logic Programs with Negation: Classes, Models, Interpreters. Technical Report
CS-R8943, Centre for Mathematics and Computer Science, 1989.

[vE86] M. H. van Emden. Quantitative Deduction and its Fixpoint Theory. Journal of Logic
Programming, 1:37-53, 1986.

[Zad68] L. Zadeh. Probability Measures of Fuzzy Events. Journal of Mathematical Analysis and
Applications, 23:421-427, 1968.

[Zad88] L. Zadeh. Fuzzy Logic. Technical Report CSLI-88-116, Center for the Study of Language
and Information, 1988.

