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Abs t rac t .  Attacks on double block length hash functions using a block 
cipher are considered in this paper. We present a general free-start attack, 
in which the attacker is free to choose the initial value, and a real attack 
on a large class of hash functions. Recent results on the complexities of 
attacks on double block hash functions are summarized. 

1 I n t r o d u c t i o n  

A hash function is an easily implementable mapping from the set of all binary 
sequences of some specified minimum length or greater to the set of binary 
sequences of some fixed length. In cryptographic applications, hash functions 
are used within digital signature schemes and within schemes to provide data  
integrity (e.g., to detect modification of a message). An iterated hash function 
is a hash function Hash(.) determined by an easily computable function h(., .) 
from two binary sequences of respective lengths m and 1 to a binary sequence 
of length m in the manner that  the message M = (M1, M2, ..., Mn), where Mi 
is of length l, is hashed to the hash value H = Hn of length m by computing 
recursively 

Hi = h(Hi- i ,  Mi) i = 1, 2 , . . . ,  n, (1) 

where H0 is a specified initial value. We will write H = Hash(H0, M) to show 
explicitly the dependence on Ho. The function h will be called the hash round 
function. For message data  whose total length in bits is not a multiple of l, one 
can apply deterministic "padding" [5, 10] to the message to be hashed by (1) to 
increase the total  length to a multiple of I. 

For i terated hash functions, we distinguish the following five attacks: 

1. T a r g e t  a t t a c k :  Given H0 and M, find M'  with M ' ~ M  but Hash(H0, M') = 
Hash(Ho, M).  

2. F r e e - s t a r t  t a r g e t  a t t a c k :  Given Ho and M, find H~ and M ~ such that  
(H~, M' )  ~ (Ho, M) but  Hash(H~, M' )  = Hash(Ho, M).  

3. Co l l i s ion  a t t a c k :  Given Ho, find M and M'  such that  M'  r M but 
Hash(H0, M')  = Hash(H0, M). 

4. S e m i - f r e e - s t a r t  co l l i s ion  a t t ack :  Find H0, M and M'  such that  M '  ~ M 
but Hash(Ho, M' )  = Hash(H0, M).  
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5. F r e e - s t a r t  co l l i s ion  a t t ack :  Find Ho, H~, M and M ~ such that  (H~, M ~) 
(Ho, M) but Hash(H~, M')  = Hash(Ho, M).  

R e m a r k .  Target attacks are also called "preimag" attacks and free-start attacks 
are also referred as "pseudo" attacks [14]. In applications where Ho is specified 
and fixed, attacks 2, 4 and 5 are not "real attacks". This is because the initial 
value H0 is then an integral part  of the hash function so that  a hash value 
computed from a different initial value will not be accepted. However, if the 
sender is free to choose and/or  to change H0, attacks 2, 4 and 5 can be real 
attacks, depending on the manner in which the hash function is used. Note that  
the free-start and semi-free-start attacks are never harder than the attacks where 
H0 is specified in advance. 

For an m-bit  hash function, brute-force target attacks, in which one randomly 
chooses an M ~ until one hits the "target" H = Hash(H0, M),  require about  2 m 
computations of hash values. It follows from the usual "birthday argument" that  
brute-force collision attacks require about 2 m/2 computations of hash values. In 
particular, for hash round functions with l >_ m so that  all 2 m hash values can 
be reached with one-block messages, brute-force target attacks require about 
2 m computations of the round function h while brute-force collision attacks 
require about 2 m/2 computations of the round function h. We will say that  the 
computational security of the hash function is idea l  when there is no at tack 
substantially better  than brute force. 

We will consider i terated hash functions based on (m, k) block ciphers, where 
an (m, k) block cipher defines, for each k-bit key, a reversible mapping from the 
set of all m-bit plaintexts onto the set of all m-bit ciphertexts. We write Ez(X)  
to denote the encryption of the m-bit plaintext X under the k-bit key Z, and 
Dz(Y) to deno te the  decryption of the m-bit  ciphertext Y under the k-bit key Z. 
We define the h a s h  r a t e  of such an iterated hash function (or equivalently, of an 
round function) as the number of m-bit message blocks processed per encryption 
or decryption. The c o m p l e x i t y  of an attack is the total  number of encryptions 
or decryptions required for the attack. In our discussion we will always assume 
that  the (m, k) block cipher has no known weaknesses, so the results can be 
applied to any block cipher. For the security of hash functions based on specific 
ciphers, see [1, 14]. 

Because an attack on the m-bit round function implies an attack of the same 
type on the corresponding m-bit i terated hash function with roughly the same 
complexity, the design of computationally secure round functions is a necessary 
(but not sufficient) condition for the design of computationally secure i terated 
hash functions. Moreover, under certain conditions (cf. [3, 6, 10, 13]), a compu- 
tationally secure round function implies a computationally secure i terated hash 
function. To avoid some trivial attacks [8], the Merkle-Damgaard Strengthen- 
ing (MD-strengthening) will always be assumed, in which the last block of the 
message to be hashed represents the binary length of the true message. 
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2 Doub le  block length  hash funct ions  using block ciphers 

A well-known example of an iterated hash function is the Davies-Meyer scheme 
(DM), where the hash round function is given by 

Hi = h(Hi- l ,Mi)  = EM,(Hi-1) | Hi-1. (2) 

Here EK (P) is the encrypted value of plaintext P using key K with block cipher 
E. The DM-scheme with MD-strengthening is generally considered to be secure 
if the underlying block cipher with block size m has no weaknesses. Thus, we 
will assume that, for the single block DM-scheme, the complexity of a free-start 
collision attack is about 2 m/2 and the complexity of a free-start target attack is 
about 2 m. 

Since most block ciphers have a block length of only 64 bits, the hash code 
of the DM-scheme is only 64 bits. A collision attack needs at most about 232 
encryptions, which can be done reasonably fast using today's technology. There- 
fore, much research has been done to construct hash functions with a block 
length of 2m bits based on the concatenation of two variants of the DM-scheme. 
One such scheme, the MDC-2 [9, 11] will be published as an ISO standard [5]. A 
systematic method proposed in [4] to analyze such hash functions is to consider 
the following general form of double length round functions. 

G e n e r a l  fo rm of  the  2m-bit  r o u n d  f u n c t i o n  w i t h  ra te  1: 

{ H i = EA(B) | C 
g 2 = ER(S) | T (3) 

where, for a rate 1 scheme, A, B and C are binary linear combinations of the 
m-bit vectors H~_z, H2_1, M } and M 2, and where R, S and T are some (not 
necessarily binary linear) combinations of the vectors H1_1, H~_I, M 1, M~ and 
He. For a rate 1/2 scheme, A, B and C are binary linear combinations of the 
m-bit vectors H~_z, H~_I, M~ and R, S and T are some combinations of the 
m-bit vectors H~_z, H~_I, M~ and H/1. 

We can write, in case of a rate 1 scheme, A, B and C in matrix-form as 

a4 IHLI I 

= blb2b3b4 [MMM:: J (4) Cl C2 C3 C4 

for some binary values ai, bi and ci (1 < i < 4). For a rate 1/2 scheme, we have 

bl b2 b3 I H2-1 (5) 
cl c2 c3 [ Mi 

for some binary values a~, b~ and ci (1 < i < 3). 

First, we consider the complexity of free-start attacks on such hash func- 
tions [4]. 
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T h e o r e m  1 For the 2m-bit iterated hash function with rate 1/2 or 1 whose 2m- 
bit round function is of type (3), the complexity of a flee-start target attack is 
upper-bounded by about 2 �9 2 m and the complexity of a flee-start collision attack 
is upper-bounded by about 2 �9 2 m/2. 

Proof: We show the result for the case of rate 1/2. The proof for rate 1 can then 
be easily derived. 

First consider the flee-start target attack: for a given value of (H~_I, H ~ I  , Mi) 
with output (H~, H2), find a different value for (H/1_1, H2_1, Mi) yielding the 
same value for (H 1, H~). When the linear transformation matrix defined in (5) is 
non-singular, let D be the value of H 1 for the given value of (H~_~, H2_1, Mi). We 
then generate 2 m different values of (H}_z, H2_1, Ms) yielding the same value D 
by first computing C = D @ EA(B) for 2 m randomly chosen values of (A, B) and 
then, for each value of (A, B, C), we can determine the value of (H}_I, H21,  Mi) 
by computing the inverse transformation of (5). When the matrix 1-[ is sin- 
gular, there exist, for the value of (A, B, C) obtained from the given value of 
(H/1 1, H2_1, Mi), at least 2 "~ different values of (H/1_1, H2_1, Ms) yielding the 
same value for (A, B, C), i.e., the same value for H 1. For the given and the 2 m 
newly generated values of (H~_I , / /21 ,M i), we compute the value of H 2 accord- 
ing to (3). Because there are 2 m possible values of the m-bit block H~, it follows 
that one must compute H 2 for about 2 m different values of (H~z , H2_1, Mi) to 
have a probability of 0.63 to find a value of (H~_I, H~_z, Ms) yielding the same 
value for H 2 as the given valuc of (H/l_l,H~_z, Mi). Such an attack requires 
therefore at most 2 �9 2 m encryptions. 

Next we consider the free-start collision attack, i.e., we will find two different 
values of (H1_1, H~_I, Mi) yielding the same value for (H 1, H~) according to 
(3). This attack is similar to the free-start target attack just described, except 
that here, one only generates 2 m/2 values of (H~_z, H2_1, Mi) yielding the same 
value of H i. This follows from the usual "birthday paradox" which says that 
one only needs to try 2 m/2 randomly chosen values of (H}_I, H2_1, Mi) to have 
a probability of 0.63 to find two values of (H1_1, H2_~, M~) yielding the same 
value for H i. [] 

R e m a r k .  The basic idea behind the attacks in the proof of the above theorem 
is to attack the two equations in (3) separately. If one can find many values 
for (H~_I, Hi-])  yielding the same value for H/1, then the attack on the 2m-bit 
round function of type (3) is reduced to an attack on one m-bit round function. 
Thus, similar attacks will also work even if the mapping from (H1_1, H21,  M~) 
to (A, B, C) in (3) is not a binary linear combination. 

Such a method of "separately attack the two equations" can also be used in 
real attacks, namely, the solving-one-half  attacks used in [7], as shown in the 
following results. 

T h e o r e m  2 Consider a double block length hash function of rate 1 with hash 
round function of the form (6), where each h i contains one encryption. 

S H ~ = h l ( H 1  H 2 M 1 M~) 
k i--l, i--l, i , 

I H  2 h2(H 1 H2 M~,M2)" (6) 
\ i - -1 ,  i - - l ,  
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I / /or  a fxed value # Hi (or or Hi �9 ), it takes T computations o/ 
encryption or decryption to find one pair of (M~, M~) for any given value of 
(H~_I,H~ 1), such that the resulting ~-tuple (H~_I,H~ I,M~,M~) yields the 
fixed value for H~ (or H~ or H~ | H~ ), then a target attack on the hash function 
needs at most (T + 3) - 2 m computations of encryption or decryption; and a 
collision attack on the hash/unction needs at most (T + 3) �9 2 m/2 computations 
of encryption or decryption. 

Pro@ The target attack: Let (H01 , Ho 2) be the given initial value and (H 1 , H 2) 
be the hash code of a message M. We proceed as follows: 

1. compute forward the pair (H~, H~) from the initial value and a randomly 
chosen pair of messages (M~, M~). 

2. find the pair (M~, M~) from the pair (H~,/-/12) obtained above so that the 
4-tuple (HI 1 ,//12, M~, M~) yields the fixed value for H I . 

3. compute the value for H 2 from the 4-tuple (H 1, H21, M12, M~). 

Repeat the above procedure 2 m times. Note that H 2 is m bits long, so after 
obtaining 2 m values of H 2, with a high probability we hit the given value of H 2. 

The collision attack: Let (Ho ~ , H~) be the given initial value. We shall find 
two different messages M and M I, such that both messages yield the same hash 
code (H 1, H2). 

Choose a value for H 1 and fix it, then proceed as follows: 

1. compute forward the pair (//11,//12) from the initial value and a randomly 
chosen pair of messages (M11, M2). 

2. find the pair (M~, M~) from the pair (H~, g~) obtained above so that the 
4-tuple (H~,H 2, 1 2 M~, M~ ) yields the fixed value for H 1 . 

3. compute the value for H 2 from the 4-tuple (H~H2,M1,M2).  

Repeat this procedure 2 m/2 times. Because H 2 is m bits long, the "birthday 
argument" implies that some two values of the H ~ will be the same with high 
probability. [] 

Theorem 1 showed that for the class of hash-functions of the form (3) the 
complexities of free-start target and free-start collision attacks are upper bounded 
by 2 m and 2 m/2, respectively. Hash functions achieving these upper bounds for 
the free-start attacks are said to be optimum against a free-start attack [4]. The 
Parallel-DM scheme was shown in [4] to be optimum. The idea is that given 
a specific initial value of the hash function one hopes that the complexity of 
usual collision and target attacks are higher than the proven lower bounds for 
free-start attacks. However, using the solving-one-half attack, the complexity of 
usual collision and target attacks are shown to be the same as the complexities 
for free-start attacks. 

The  Para l le l -DM scheme. This scheme is a 2m-bit hash function based on 
an m-bit block cipher with an m-bit key and is defined as follows 

H~ = EM:.M:(H~_ 1 @ M 1) @ H~_ 1 @ M: (7) 

H 2=EM~(H2 I@M?)  @ H~_ l e M : .  (8) 
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A t t a c k s  on  t h e  P a r a l l e l - D M  s c h e me  by applying Theorem 2. 
Let A and B be two fixed (given or chosen) values such that  H~ = EB(A)@A. 

For any given value of (H}_z, H~_I) , one can obtain one pair of (M~, M 2) where 

M} = A @ H~_ 1 and M2 = B | M~ 

such that  the 4-tuple (H~_I, H~_I, M~, M~) will yield the fixed value for H~ 
in (7). Theorem 2 then implies that  the complexity of a target attack is about 
3 - 2 m (with T = 0) and the complexity of a collision attack is about 3 �9 2 "~/2. 
Note that  the single block hash function DM-scheme has roughly the same com- 
plexities. More details can be found in [7]. 

A t t a c k s  on  t h e  P B G V  scheme  by applying Theorem 2. 
This scheme was proposed in [15] and its round function is defined as follows. 

H 1 = EM~@M2(H}_I@H2_l)@M1@H:_l| (9) 

g 2 = EM~@H:_ ~ (M?@H?_I)@M2@H~_I@H?_z . (10) 

Fix a value for H 1. Chose a fixed value K as the key input in (9). For any given 
value of (H~_I, H2_1), let d = ///1_ 1 | H2_1, then one can obtain one pair of 
(M::  M~) where 

M 1 = EK(d) @ d @ H~ and M 2 = K @/1///1 

such that  the 4-tuple (H~_I,H~_I,M~,M~) will yield the fixed value for H} 
in (9). Theorem 2 then implies that  the complexity of target attack is about 
4 �9 2 m and the complexity of collision attack is about 4 - 2 m/2. Note that  the 
similar attacks have been reported before in [6, 14], but the above attack has a 
simpler form. 

The result of Theorem 2 is for the "parallel" form of the round function in 
which the two encryptions work side-by-side. Similar attack can also be applied 
to the "serial" form in which one encryption is computed after the other. 

T h e o r e m  3 Consider a double-block hash ]unction of rate 1 with round function 
of the form (11), where each h i contains one encryption. 

h 1 (H 1 H 2 M .1 M?~ S H~ = ~ i - 1 ,  i - 1 ,  ~, ~ ,  

h (H4_ , ,H i_ I ,Mi ,Mi ,H i ) .  "[H~ 2 1 2 1 2 1 (11) 

If ]or a fixed value of H~, it takes T computations of encryption or decryption 
to find one pair of (M~,M 2) for any given value of (H~_l,H2_l), such that 
the resulting 4-tuple (H~_I, H~_I, M~, M~) yields the/~xed value for S~, then a 
target attack on the hash function needs at most (T + 3) - 2 TM computations of 
encryption or decryption; and a collision attack on the hash function needs at 
most (T + 3) - 2 m/2 computations of encryption or decryption. 
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h(.,.) PBGV a GQ-I b LOKI c P-DM d MK ~ r ~ optim g 

(m,k)~ 1 (64,64) (64,64) (64,64) (64,64)(64,56)(64,56) (64,64) 

2112 281 212s targ 2e~ 4 2 2e~ 4 5 2e~4 5 2e~ 4 9 ~ 14 

2112 54 264 f-s targ o(1).,., 3 2 ~  6 2~,~ 6 26"~4 10 2.,, 15 

264 264 32 256 254 264 colli 2~,~ 3 2",z 9 

sem-f-s co 2 ~  3 2~.~ 7 2 ~  8 2 ~  11 256 254 264 

256 27 232 f-s coll. o(1),,~ 4 o(1).,~ 7 o(1).,z 8 2 ~  10 2 ~  16 

rate 1 1 1 1 1/18 1/2 ?-,~ 17 

a: Proposed in [15]. 
b: Proposed in [16]. 
c: Proposed in [2]. 
d: Proposed in [4]. 
e: Merkle's scheme [10] with hash-code length 112 bits. This scheme appears to have 
ideal security. However, each round can "digest" only 7 bits of message. 
f :  See [9, 11]. 
g: Upper bounds on the complexities [4, 6]. 
-,~ 1: m: block-length, k: key-length of the underlying cipher. 
-,~ 2: See [6] and last section. 
--~ 3: See [14]. 

4: A free-start collision attack is no harder than a free-start target attack. 
-,z 5: New attack [7], needs a memory of size 264. 
-,~ 6: See [6, 8]. 

7: See [12]. 
~-* 8: See [4]. 
-,z 9: See last section. 

10: Provable lower bound, see [4]. 
-,~ 11: A semi free-start collision attack is no harder than a "usual" collision attack. 
-,-* 14,15: The MDC-2 has a 128-bit hash code, but round output has length 108 bits. 
A free-start target attack on one (54-bit) block takes about 254 computations, then use 
the meet-in-middle attack [8]. See also [11]. 

16: Collision is achieved on one (54-bit) block. 
17: It is an open question whether there exist schemes of rate 1 and of the form (3) 

achieving these upper bounds. Our guess is no. See [7]. 

Tab le  1. Complexity of known attacks on double block hash functions. 
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3. C o m p l e x i t y  o f  k n o w n  a t t a c k s  on  2 m - b i t  h a s h  f u n c t i o n s  

We consider here some known 128-bit iterated hash functions based on two uses 
of an m -- 64-bit block cipher with key length k -- 64 or k -- 56 in each round. 
All these schemes can be considered as slight modifications of the 64-bit DM- 
scheme hash round function. The complexities of known attacks on these hash 
functions are listed in Table 1. We assume that  all the iterated hash functions 
are used with MD-strengthening and that the underlying block cipher has no 
known weakness (such as weak keys). 
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