
Automated Support for the Development
of Formal Object-Oriented

Requirements Specifications

Robert B. Jackson
David W. Embley

Scott N. Woodfield

Department of Computer Science
Brigham Young University

Provo, UT 84602 USA

Abstract. The creation of a requirements specification document for systems
development has always been a difficult problem and continues to be a
problem in the object-oriented software development paradigm. The problem
persists because there is a paucity of formal, object-oriented specification
models that are seamlessly integrated into the development cycle and that are
supported by automated tools. Here, we present a formal object-oriented
specification model (OSS), which is a seamless extension of an
object-oriented analysis model (OSA), and which is supported by a tool
(IPOST) that automatically generates a prototype from an OSA model
instance, lets the user execute the prototype, and permits the user to refine
the OSA model instance to generate a requirements specification. This
approach leverages the benefits of a formal model, an object-oriented model,
a seamless model, a graphical diagrammatic model, incremental development,
and CASE tool support.

1. Introduction

Perhaps the most critical element in the development of a software system lies
in properly understanding and in properly documenting the requirements for a system
to be developed. A precise, formal, easily understood requirements specification is
one of the most important, yet one of the most elusive components of the entire
software development process. We suggest that the development of a requirements
specification does not have to be elusive, and, indeed, can be a natural and integrated
component of the software life cycle.

This general problem of more easily creating and integrating high quality
requirements specifications into the software development process is exacerbated by
the current major shift in development paradigms from structured to object-oriented.
Although the object-oriented paradigm is proving to be effective, many of the current
methods, models, CASE tools, prototyping languages (4th GLs), and formal
specification languages still contain substantial structured technology. The end result
is a development approach that tries to marry the structured paradigm with the

136

object-oriented paradigm. Unfortunately, this marriage does not work well. Software
engineering principles and tools that support prototyping and the development of
requirements speeifications within the object-oriented paradigm are critically needed.

Our approach to more easily developing high quality object-oriented
requirements specifications is based on a formal, object-oriented model that serves all
phases of the software life cycle. It is our belief that a formal model is a prerequisite
for assimilation of engineering principles into software development, and that a
seamless development cycle requires a pervasive model around which tools and
methods can be built.

The formal, object-oriented model we use in our approach is OSM (the
Object-oriented Systems Model), which is based primarily on an analysis model called
OSA (Object-oriented Systems Analysis) [8]. The formal definition for OSA is
formulated using set theory and first-order predicate calculus (see Appendix A of [8]
and [3]). OSA is an integrated model because it can be used to describe object
structure, object relationships, object behavior, and object interaction, all within the
same formal context. A second component of OSM is OSS (Object-oriented Systems
Specification), which is a formal model that extends OSA and is appropriate for
specification. Our approach to the development of formal specifications is to generate
an OSS model by executing (prototyping) and incrementally extending an OSA model
through the use of a CASE tool, called IPOST (Interactive, Prototyping
Object-oriented Specification Tool).

Our approach is as follows: Using OSA, a systems analyst builds an
object-oriented model instance (generally a partially complete instance) of the problem
domain. Next IPOST reads the OSA model instance from the data repository and
automatically creates a user interface and working prototype. As the user executes
and modifies the prototype, the OSA model instance is enhanced and becomes an OSS
requirements specification. The end result of prototype execution and model
enhancement is a precise, formal specification in a graphical notation with embedded
formal textual descriptions of behavior and interactions. The details of our
approach in the remainder of this paper are as follows. In Section 2 we outline some
of the difficulties of current approaches to specification development, and we show
how our approach builds on some of the best work of others. In Section 3 we
describe OSA and the specification language extensions required for OSS. In Section
4, we describe IPOST and our methodology for developing an OSS model instance.
In Section 5 we discuss the implementation of current support tools. We conclude
in Section 6.

2. The Problems with Specifications

2.1 Informal Specification Techniques

Early attempts at explaining to clients the details of a proposed system were
done with informal, natural-language narratives. The narratives were later enhanced
to include strict guidelines, organization directives, diagrams and informal models.

137

Informal models, which are characterized by the lack of an all-encompassing
theoretical foundation, are included in techniques such as Modem Structured Analysis
[20], Data Structured System Development (DSSD) [19,15], Structured Analysis
Design Technique (SADT) [16], and Object Oriented Analysis (OOA) [4]. Inclusion
of more stringent directives and informal diagrammatic models have helped informal
requirements specifications become more precise and understandable, but they still
suffer from several problems, including problems of organization, redundancy,
incompleteness and misinterpretation.

To ease the problem of misinterpretation, developers frequently build
prototypes to raise the level of understanding between clients and developers. The
addition of a requirements prototype to the development cycle has been beneficial.
"Operational Prototyping" [5] is one of various new prototyping approaches that are
increasing the benefits derived from prototyping. However, prototyping is not
without its own problems. The addition of a prototype to an informal method
requires two paradigm shifts during this first phase of a project. A paradigm shift
occurs between the analysis model and the prototyping language. Then another
paradigm shift occurs in writing the specification. Not only are these shifts time
consuming, but they also raise the potential for information loss.

2.2 Formal Specification Techniques

To increase precise communication between developer and client, researchers
and a small number of practitioners have begun using more formal analysis and
specification techniques. These techniques usually contribute to the development
process by adding principles of engineering discipline. An additional benefit is that
formal languages can frequently be directly executed. These benefits usually come
with a cost, however; namely, the cost of formal, mathematical constructs that are
difficult to understand.

Examples of formal languages used for specification include PLEASE and
SPEC [2, 18], which are algebra based languages. Z and VDM are formal models
based on logic, sets, sequences, lists, relations and functions [7, 11, 17]. SXL (State
Transition Language) [13] and PAISley ([21], which are more operative based, are
oriented towards describing behaviors. All these formal languages provide the
precision required for unambiguous interpretations for contractual needs.

There are two major problems with formal languages. First, formal languages
are difficult to read and write. Second, there is frequently a major paradigm shift
between analysis and specification. Analysis is done using one model or language and
specification is done in another.

2.3 CASE Tool Techniques for Specification

Although the primary focus of CASE tools has not been to create
specifications, they have nevertheless made a substantial contribution to producing

138

precise specifications. CASE tools, especially I-CASE tools, are based on a central
repository of information that helps integrate analysis and prototyping with
specification. Information captured from analysis is stored in a central repository
and can be used to generate forms and reports to assist in the development of a
working prototype. As the prototype is refined, the repository is updated. This
updated repository can thus serve as an information base to generate specifications for
client agreement.

There has been some excellent research in the use of CASE tools for
prototyping and especially in using more formal models in a CASE environment.
MASCOT [9] (Modular Approach to Software Construction, Operation and Test) is
a diagrammatic approach for parallel processes. Execution is effected by translating
MASCOT diagrams to a formal notation. PROTOB is an object-oriented CASE tool
based on high-level Petri Nets and is used to model distributed systems [1]. A
method for transforming between formal languages to develop executable prototypes
using PROLOG has also been developed [10].

2.4 Formal Model with CASE Tool Teehnitpae

Our approach builds on both the formal-model approach and the CASE-tool
approach. The fundamental principle is that there must first exist a formal, seamless
model that integrates all relevant information and that can serve all phases of the
software development cycle. Given that we have a formal, integrated, seamless
model, CASE tools can be built around this model to provide a tool-supported,
seamless development methodology. Because the model is seamless, there are no
paradigm shifts between analysis, specification, design and implementation.

Other benefits also accrue from this approach. Because the model is formal,
it can be precisely interpreted for contractual purposes. Also because it is formal, it
can be executed as a working prototype. Furthermore, the model is graphical which
facilitates understanding. A textual form is also available for situations in which this
may be more suitable.

3. OSA and OSS Model Components

3 . 1 0 S A Model

An OSA model is comprised of three submodels: an object-relationship model
(ORM), an object-behavior model (OBM), and an object-interaction model (OIM).
Figure 1 parts a,b, and c depict the three submodels for a simple library application.
In our brief tutorial, we have included only those parts of OSA that are germane to
our discussion. For further details see [8].

ORM instances describe object classes, relationship sets, and constraints.
Boxes in an ORM diagram represent object classes, such as Book, Loan, and
Librarian in Figure la. Book, for example, represents the set of books in the library.

139

/ / I . I LibraMan
Loan ~,i I I

. . . .

o . , , I . \ 0 ~ ,, ~jq T,,,o
~orrower] Boo, ~ - ~a.'
I I ~ 0 " 0 " / 0 " \ ' N " ~ ' I

I ~ Fine for Book ~ , I ~ "L

I o., ,\ �9 -

I I I I l ..erva.oo l
Faculty ~o not accrue fines.

Figure la. Object Relationship Model of Library system classes.

We show three different types of relationship sets. Borrower has Loan is a binary
relationship set. Borrower has accrued Fine for Book is a ternary relationship set.
Faculty lsA Borrower is a Generalization/Specialization relationship set denoted by
an open triangle. Participation constraints constrain the possible relationships among
objects. The Book is checked out on Loan relationship set has a 0:1 participation on
the Book side, indicating that a book may participate either zero or one times in the
relationship set. General constraints, such as Faculty do not accrue fines, are shown
by italics on an ORM diagram. OSA also permits more abstract constructs such as
high-level object classes and relationship sets.

The behavior of objects within an object class is described by a state net.
Figure lb shows a state net for the Book object class. This state net serves as a
template for the behavior of all book objects in the set. Each transition (represented
by a box) defines both a trigger (described in the upper part of the box) and a set of
actions (described in the lower part of the box). A set of state nets, one for each
object class, make up the OBM, which thus describes the behavior of all objects.

Figure lb is interpreted as follows: When the AddBook event occurs, the
trigger evaluates to true, transition [1] fires, and a new book object is created. At
the completion of the action in transition [1], the newly created book goes into the
Ready to Loan state. I f a book is in the Ready to Loan state, and the BorrowBook
event occurs, then the action in transition [2] is executed and the book goes into the
On Loan state. The half circle and arrow going to transition [4] indicate the
spawning of a new, concurrent thread of control. The multiple threads indicate that
a book may in both states On Loan and On Reserve at the same time.

Interactions among objects are described in an OIM instance, which is
comprised of various types of interactions and may be organized using various levels
of abstraction. Figure lc shows some possible interactions between a librarian and
a book, and are shown as interactions between the Librarian class and the Book class.

140

Book I l l

Create Book and Ready to ~
related objects Loan

I4] [~1

@CancelReservation [@ReturnBooK
Take book off of Loan and

Delete Reservation check for Reservation
Relationship

Figure lb. State Net for Book from Object Behavior Model.

A librarian can add new books as well as check out and return books for patrons.
One feature of OSM modeling is that more detailed information can be

provided by views which integrate submodels together. Figure 2 is a combination
that contains elements of all three submodels in one view. In this case, the Librarian

Book

J AddBook(Title, Author)

JZ BorrowBook (CataloqueNum h e r) .

I-2 . 1~ Returngoo~,~a~o,~ ~ , , ~ , ~ " ~ " u ~ ' u m ~ e r ~

Librarian

Figure le. Interaction with origin Librarian and destination Book.

class is still the origin of the interactions, but the interaction destinations have been
integrated with the Book state net by denoting destination transitions for each
interaction. The AddBook interaction has transition [1] as its destination, and in fact
the event type trigger of transition [1] becomes true when the interaction is received.

er)

Book [I]
@AddBooK J~
Create Book and I N re,atedobjects J ~

~ o k (T i t l e , Author)

LLoan
I BorrowBook (Cataloguel
.L TO. Book identified b LlbraMan

I @Reserve Book L @BorrowBook F ~
Create ReservatlonJ~ Put Book on Loan
and relate i obJectsl ~

~On Reserve~

[5]

@Cancel Reservatlo]
Delete Reservatlo~
Relationsh b /

[41

[31 1
@ReturnBook

Take book off of Loan and
check for Reservation

141

Figure 2. Interaction Diagram combined with Book State Net.

The TO clause on the BorrowBook interaction indicates that the interaction cannot go
to just any book, but must go to a particular book, in this case to the Book identified
by CatalogueNumber.

3 . 2 0 S S Extensions

Although, both the syntax and semantics o f OSA have been formally defined,
an OSA model instance does allow for some constructs -- namely, triggers, actions,
interaction descriptions, and general constraints -- to be written in natural language.
For example, transition [1] in Figure lb has an informal action: Create Book and
related objects. Components written in an informal language may be subject to
misinterpretation. Here, for example, what exactly are the related objects? A formal
OSS language has been defined that can formally express these natural language
statements.

Several criteria were considered in the development of the OSS language. One

142

consideration is that this language should be easy to write and understand by
non-technical clients. To satisfy this criteria, an English like syntax was chosen.
Next, it had to support triggers and general constraints which are logic statements,
and actions, which are procedural statements. Finally it had to be precisely defined.

In Figure la the general constraint, Faculty do not accrue fines, is informal.
The OSS language expression for this general constraint is:

Faculty 0 IsA Borrower(x) IMPLIES NOT Borrower(x) has accrued FineO for BookO.

This statement illustrates a logic statement in the OSS language, and based on
the classes and relationship sets in the OSA instance. The terms with parentheses are
class names which are embedded within relationship set names from the model
instance. During prototype execution, "x" is unified to those borrowers who are
members of the Faculty IsA Borrower relationship set and then tested against the
Borrower has accrued Fine for Book relationship set. Unspecified variables (empty
parentheses) are "don't care" variables as in PROLOG.

The procedural portion of the language has control statements for decision
making and looping as well as expressions for manipulating objects. In Figure lb,
the informal English statement in transition [3], for example, says Take book o f fo f
Loan and check for reservation. In the OSS language this becomes:

DELETE Book(this) is checked out on LoanO;
IF Book(this) has Reservation(w) THEN

SEND_INTERACTION BookAvailable (Book(this)) TO Reservation(w);
END IF,.

Here, "this" represents the book object that received the interaction. Prototype
execution is done by unifying "w" based on the value bound to "this" and existing
relationships, and then executing the statements. The combination of both procedural
and logical constructs in the language make it suitable for specifying a wide range of
constraints, triggers and functions.

4.0 Specification Development

Figure 3 illustrates our approach to the incremental development of OSA
model instances and OSS specifications, using IPOST. Initially, a systems analyst
develops an OSA model instance, for example the one in Figures 1 and 2. A
high-level object class which identifies the system boundary is required. IPOST reads
an OSA model instance, with system a boundary and creates an executable prototype.
Prototype generation, including a user interface, is automatic.

There are three types of refinements that can occur. Two of these are directly
supported by IPOST and are illustrated by the feedback paths in Figure 3 labeled OSA
Model Instance Refinements and Logical Interface Refinements. Model-instance
refinements include replacing natural-language descriptions for triggers, actions, and

143

constraints with OSS
l anguage s t a t ement s .
L o g i c a l i n t e r f a c e
refinements allow a user
to formalize interaction
descriptions and refine the
interface. When major
errors or omissions are
observed in the OSA
model instance, the user
can make appropriate
changes to the OSA
instance using the drawing
tool. A new prototype
can be automatically
g e n e r a t e d f rom the
modified OSA model
instance. This process
may continue until a fully-
formalized OSS model is
developed or it may stop
at any point deemed
satisfactory to both client
and developer.

OSAModel Instance l

LogTcal \ ~ A ISA Model

Prototype

Figure 3. Specification Development using IPOST.

4.1 Automatic Generation of an Executable Prototype

Addition of a System Boundary. The system boundary encloses those
components of an OSA model instance that are to be included within the system to
be specified and excludes other components. Technically, in OSA, the enclosed
components constitute a high-level object class that only has interactions crossing its
boundary. All other components of an OSA model instance must move to one side
or the other of a system boundary, or must divide into multiple components, each of
which are placed on one side or the other of the system boundary. In Figure 4, for
example, we define a high-level object class that includes all the ORM components
except the Librarian object class.

Cre~ting an lntotfaeo. The set of interactions that cross a system boundary
become the components that define the logical interface. The interface is logical
because it focuses on the events and the information flows, rather than on actual
physical devices, the look and feel of a user interface, or a particular user interface
implementation. IPOST generates a default user interface and does not require an
additional user interface specification. The information necessary to develop a logical

144

I Librarian I
System

I~ Loan K"
~ ' I ~ checked out On

o - 7 . . \ o . ,, T,t,e 1

I ~ B ~ 1 7 6 , \ \ \ 7 Autho~ t

! I ,\

Faculty do not accrue flnes.

Figure 4. Library ORM with High-Level Object Class "System".

system interface is all contained within an OSA model instance.
Figure 5 shows the interface window for IPOST. The top panel is a menu

panel and provides organization for all interactions crossing the system boundary.
Origin and destination classes are selected from popup windows. Then the
appropriate interaction for the selected origin and destination classes is selected. In
Figure 5, the AddBook interaction has been selected. The middle panel illustrates
how an interaction corresponds to a logical form. Since the AddBook interaction was
chosen, the parameters listed in the middle panel are Author and Title, the object
parameters sent by the interaction. Space is provided for the IPOST user to enter
data for the object parameters and to "execute" the interaction.

4.2 Executing and Refining OSA Model Instances.

Prototype Execution Mode. Prototype execution consists of presenting to the
user the set of menus and forms defined by the interface. The user initiates
interactions through these forms. As prototype execution proceeds, objects are
instantiated and they behave and interact according to the defined OSA model
instance. Thus, prototype execution consists of creating objects, deleting objects,
initiating interactions, evaluating and firing triggers, evaluating constraints, and
performing actions within transitions.

Refer again to Figure 2, which shows the destinations of interactions within
the Book object class. As these interactions are initiated by the IPOST user, the

145

trigger on the appropriate
transition is evaluated. The
bottom panel of Figure 5 shows
transition [1], which is the
destination transition for the
AddBook interaction. When the
AddBook interaction arrives, then
the trigger @AddBook evaluates
to true.

After the user enters the
Title and Author data into the
form and initiates the AddBook
interaction, IPOST attempts to
execute the action for transition
[1]: Create Book and related
objects. However, since the
action is informal, IPOST cannot
execute it, and provides an
execution message to the user, as
shown in Figure 6. At this point
the user can select one of several
possible courses of action. For
triggers and general constraints,
the user can act as an "oracle"
and provide a true or false answer.

Fi l J

I o ~ I L , ~ , ~ I
p"~'**~l ~ ~]
I I"*"'~'i*" I"lx"t~176 I

P W V M

{11
IAt~aOOK

Figure 5. IPOST interface showing Menu Panel,
Input Form Panel, and Execution Panel.

For actions, the user may skip execution of that
component. Of course, just skipping execution may cause the prototype to behave
incorrectly. To achieve the objective of specification development, it is preferable
that the user enter edit mode and replace the informal statements with formal OSS
language statements. At the end of each transition, IPOST verifies the populated
model against all constraints any informs the user of any constraint violations.

Refinement (edit) Mode. Several types of changes to the OSA model instance
are made through IPOST during prototype execution. Figure 7 illustrates the change
of the informal action Create Book and related objects into formal OSS language
statements. The edit mode also supports changes to the interface forms. Since each
logical form is mapped to an interface interaction, changes to a form also modify the
underlying interaction. Changes can be made to the TO clause, the FROM clause,
the interaction description, and the object list.

For example, upon execution of the action statement for transition [1], IPOST
would note that a participation constraint for the Book has CatalogueNumber
relationship set is violated. The participation constraint (see Figure 4) requires that
there be a CatalogueNumber for every book. The user could then edit the input form
by adding another parameter for catalogue number. This change would be reflected
back to the OSA model instance.

146

5. Implementation of Tools

At B Y U w e a r e
developing research versions of
CASE tool support for the OSM
seamless development process.
We are developing these tools so
that they can be integrated
together to demonstrate the
feasibility of a completely
integrated CASE environment.
The following paragraphs briefly
describe several support tools that
are under development.

A prototype version of the
OSA Drawing Tool has been
developed and is being used in
our research environment. It is
written in C + + utilizing
X-Windows. It supports the
drawing of OSA including object
classes, relationship sets, state
nets, and interactions. Other

I F~~ I

I ~ I L ' ~ " I

I ' ~ ' ~ - ~ I ' ~ I

Pwb~e~'J V ~ l

tt~ama~0oK Ill

rtnnttt Book ~ ~ ottloets

Fa'2,

Figure 6. Execution of an AddBook Interaction with
informal action statement.

more complex OSA constructs, such as high-level views are being developed. It is
based on a graphical user interface development tool called ART, which has also been
developed at BYU [14].

The OSA Storage Facility serves as the data repository for OSA and OSS
model instances. This repository has also been written using C+ + under X-
Windows. In addition to providing standard database management facilities for
storing, modifying, and querying the database, it also provides comprehensive validity
checking of OSA model instances. Finally, it also generates database schemas based
on OSA model instances stored under the OSA metamodel schema.

An initial prototype version of IPOST is running, and is in systems test.
IPOST is written in C+ + to run under X-Windows. The user interface is written
using ART and the data manipulation uses the OSA Storage Facility. In Edit mode,
the user can observe and modify those components of an OSA model instance that
contain natural language components. Changes to these components are captured and
saved back in the Storage Facility. In Execute mode, IPOST organizes and presents
to the user the set of interactions that comprise the user interface for an OSA model
instance. As the user "fires" these interactions, the appropriate state net paths are
followed to emulate the behavior of objects moving between states via transitions.
The appropriate triggers and actions within the transitions are read, parsed,
interpreted and executed based on the OSS language. Any applicable constraints are
also read, parsed, interpreted and executed at the appropriate time. As execution
occurs, the user is able to view the results of the execution by querying the storage

147

facility for the presence of
objects, their states of behavior,
and associated relationships.

6. Conclusions and Future
Research

A r e q u i r e m e n t s
specification has always been an
elusive part of software
development--not only its
production, but also its
definition. The objective of this
research has been twofold: (1) to
define a specification model that
is formal, is object based, can be
used to specify all parts of a
proposed software system, and
conceptually integrates well with
the other models and phases of
the software development cycle;
and (2) to demonstrate a method

iiiIfl~ll .

File I

I o , ~ lU~,~ , ,~ I

I ' * - ' * ~ I ' ~176176176 I

[11
@~xx~ooK

CREATE E~DOK~X), TITLI~Tih), AUTHO~/u~or
n O O K ~ ~ ' r I T t E c r ~ ,

~LS AUTNO~Au, e ~) ;

Figure 7. IPOST Window showing the formal action
statements to create a Book.

to develop a specification that naturally integrates with accepted methods of software
development (analysis and prototyping) and can be supported by automation tools.

Specifically this research is of benefit because it demonstrates improvements
in software development through the addition of formalism and principles of
engineering. These benefits include: (1) direct execution of analysis model instances;
(2) generation and refinement of a formal specification through rapid prototyping; (3)
a seamless systems development approach that requires no paradigm shifts between
analysis, specification, and prototyping; and (4) the foundation of a formal
specification that is based on the object-oriented systems development paradigm.

The OSM Research Group at BYU is currently engaged in long term model
development and software engineering research. Although the research agenda is
broad, its focused purpose is to provide a systems development paradigm that includes
analysis, specification, design, implementation, evolution, re-engineering, and
management, all based on a single conceptual model. Research in all areas is
proceeding in parallel.

Further research in the area of specification, beyond the project described in
this paper, has two major thrusts. The first is to expand the capabilities of IPOST
to include expert system capabilities, enhanced model modification capabilities and
user interface "look and feel". The second thrust is to integrate the OSS CASE tools
with the other phases of software development, such as design and code generation.

Acknowledgments: To Steve Clyde and Jeff Pinkston who helped with this research.

148

References

1. Baldassari, Marco, Giorgio Bruno and Andrea Castella: PROTOB: and Object-
oriented CASE Tool for Modelling and Prototyping Distributed Systems.
Software-Practice and Experience. 21 No 8, 822-844 (August 1991)

2. Berzins, Valdix and Luqi: An Introduction to the Specification Language Spec.
IEEE Software. SE-11 No 8, 74-84 (Mar 1990)

3. Clyde, Stephen W., David W. Embley, and Scott N. Woodfield: The Complete
Formal Definition for the Syntax and Semantics of OSA. Brigham Young
University Technical Document #BYU-CS-92-2. (February 1992)

4. Coad, Peter, and Edward Yourdon: Object Oriented Analysis. Yourdon Press,
1990.

5. Davis, Alan M.: Operational Prototyping: A New Development Approach. IEEE
Software. 70-78 (September 1992)

6. Davis, Alan M.: SOFTWARE REQUIREMENTS: Analysis and Specification.
Prentice-Hall, 1993.

7. Duce, D.A. and E.V.C. Fielding: Formal Specification of Two Techniques: The
Computer Journal. 30 No 4, 316-327 (1987)

8. Embley, David, Barry Kurtz and Scott Woodfield: Object-oriented Systems
Analysis: A Model-Driven Approach. Prentice-Hall, 1992.

9. Friel, G. and D. Budgen: Design Transformation and abstract design prototyping.
Information and Software Technology. 33 No 9, 707-719 (November 1991)

10. Habra N.: Computer-aided prototyping: transformational approach. Information
and Software Technology. 33 No 9, 685-697 (November 1991)

11. Hekmatpour, Sharam, and Darrel Ince: Software Prototyping, Formal Methods
and VDM. Addison-Wesley, 1988.

12. Lantz, Kenneth E.: The Prototyping Methodology, Prentice-Hall, 1989.
13. Lee, Stanley and Suzarme Sluizer: An Executable Language For Modeling Simple

Behavior. IEEE Transactions on Software Engineering. 17 No 6,527-543 (June
1991)

14. Olsen, Dan R.: The ART Users Manual, Brigham Young University, 1992.
15. Orr, Kenneth T." Structured Requirements Definition, Kenn Orr & Associates,

1981.
16. Ross, Douglas T.: Applications and Extensions of SADT. Computer. 18, 25-34

(April 1985)
17. Spivey, J.M.: The Z Notation: A Reference Manual, Prentice-Hall, (1992).
18. Terwilliger, Robert B. and Roy H. Campbell: PLEASE: Executable

Specifications for Incremental Software Development. The Journal of Systems
and Software. 10, 97-112 (Oct 1989)
Warnier, Jean Dominique: Logical Design of Systems, Van Norstrand Reinhold,
1981.
Yourdon, Edward: Modern Structured Analysis, Prentice-Hall, 1989.
Zave, P.: An Operational Approach to Requirements Specification for Embedded
Systems. IEEE Transactions on Software Engineering. SE-8 No 8, 250-269
(1982)

19.

20.
21.

