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Abstract. The creation of a requirements specification document for systems 
development has always been a difficult problem and continues to be a 
problem in the object-oriented software development paradigm. The problem 
persists because there is a paucity of formal, object-oriented specification 
models that are seamlessly integrated into the development cycle and that are 
supported by automated tools. Here, we present a formal object-oriented 
specification model (OSS), which is a seamless extension of an 
object-oriented analysis model (OSA), and which is supported by a tool 
(IPOST) that automatically generates a prototype from an OSA model 
instance, lets the user execute the prototype, and permits the user to refine 
the OSA model instance to generate a requirements specification. This 
approach leverages the benefits of a formal model, an object-oriented model, 
a seamless model, a graphical diagrammatic model, incremental development, 
and CASE tool support. 

1. Introduction 

Perhaps the most critical element in the development of a software system lies 
in properly understanding and in properly documenting the requirements for a system 
to be developed. A precise, formal, easily understood requirements specification is 
one of the most important, yet one of the most elusive components of the entire 
software development process. We suggest that the development of a requirements 
specification does not have to be elusive, and, indeed, can be a natural and integrated 
component of the software life cycle. 

This general problem of more easily creating and integrating high quality 
requirements specifications into the software development process is exacerbated by 
the current major shift in development paradigms from structured to object-oriented. 
Although the object-oriented paradigm is proving to be effective, many of the current 
methods, models, CASE tools, prototyping languages (4th GLs), and formal 
specification languages still contain substantial structured technology. The end result 
is a development approach that tries to marry the structured paradigm with the 
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object-oriented paradigm. Unfortunately, this marriage does not work well. Software 
engineering principles and tools that support prototyping and the development of 
requirements speeifications within the object-oriented paradigm are critically needed. 

Our approach to more easily developing high quality object-oriented 
requirements specifications is based on a formal, object-oriented model that serves all 
phases of the software life cycle. It is our belief that a formal model is a prerequisite 
for assimilation of engineering principles into software development, and that a 
seamless development cycle requires a pervasive model around which tools and 
methods can be built. 

The formal, object-oriented model we use in our approach is OSM (the 
Object-oriented Systems Model), which is based primarily on an analysis model called 
OSA (Object-oriented Systems Analysis) [8]. The formal definition for OSA is 
formulated using set theory and first-order predicate calculus (see Appendix A of [8] 
and [3]). OSA is an integrated model because it can be used to describe object 
structure, object relationships, object behavior, and object interaction, all within the 
same formal context. A second component of OSM is OSS (Object-oriented Systems 
Specification), which is a formal model that extends OSA and is appropriate for 
specification. Our approach to the development of formal specifications is to generate 
an OSS model by executing (prototyping) and incrementally extending an OSA model 
through the use of a CASE tool, called IPOST (Interactive, Prototyping 
Object-oriented Specification Tool). 

Our approach is as follows: Using OSA, a systems analyst builds an 
object-oriented model instance (generally a partially complete instance) of the problem 
domain. Next IPOST reads the OSA model instance from the data repository and 
automatically creates a user interface and working prototype. As the user executes 
and modifies the prototype, the OSA model instance is enhanced and becomes an OSS 
requirements specification. The end result of prototype execution and model 
enhancement is a precise, formal specification in a graphical notation with embedded 
formal textual descriptions of behavior and interactions. The details of our 
approach in the remainder of this paper are as follows. In Section 2 we outline some 
of the difficulties of current approaches to specification development, and we show 
how our approach builds on some of the best work of others. In Section 3 we 
describe OSA and the specification language extensions required for OSS. In Section 
4, we describe IPOST and our methodology for developing an OSS model instance. 
In Section 5 we discuss the implementation of current support tools. We conclude 
in Section 6. 

2. The Problems with Specifications 

2.1 Informal Specification Techniques 

Early attempts at explaining to clients the details of a proposed system were 
done with informal, natural-language narratives. The narratives were later enhanced 
to include strict guidelines, organization directives, diagrams and informal models. 
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Informal models, which are characterized by the lack of an all-encompassing 
theoretical foundation, are included in techniques such as Modem Structured Analysis 
[20], Data Structured System Development (DSSD) [19,15], Structured Analysis 
Design Technique (SADT) [16], and Object Oriented Analysis (OOA) [4]. Inclusion 
of more stringent directives and informal diagrammatic models have helped informal 
requirements specifications become more precise and understandable, but they still 
suffer from several problems, including problems of organization, redundancy, 
incompleteness and misinterpretation. 

To ease the problem of misinterpretation, developers frequently build 
prototypes to raise the level of understanding between clients and developers. The 
addition of a requirements prototype to the development cycle has been beneficial. 
"Operational Prototyping" [5] is one of various new prototyping approaches that are 
increasing the benefits derived from prototyping. However, prototyping is not 
without its own problems. The addition of a prototype to an informal method 
requires two paradigm shifts during this first phase of a project. A paradigm shift 
occurs between the analysis model and the prototyping language. Then another 
paradigm shift occurs in writing the specification. Not only are these shifts time 
consuming, but they also raise the potential for information loss. 

2.2 Formal Specification Techniques 

To increase precise communication between developer and client, researchers 
and a small number of practitioners have begun using more formal analysis and 
specification techniques. These techniques usually contribute to the development 
process by adding principles of engineering discipline. An additional benefit is that 
formal languages can frequently be directly executed. These benefits usually come 
with a cost, however; namely, the cost of formal, mathematical constructs that are 
difficult to understand. 

Examples of formal languages used for specification include PLEASE and 
SPEC [2, 18], which are algebra based languages. Z and VDM are formal models 
based on logic, sets, sequences, lists, relations and functions [7, 11, 17]. SXL (State 
Transition Language) [13] and PAISley ([21], which are more operative based, are 
oriented towards describing behaviors. All these formal languages provide the 
precision required for unambiguous interpretations for contractual needs. 

There are two major problems with formal languages. First, formal languages 
are difficult to read and write. Second, there is frequently a major paradigm shift 
between analysis and specification. Analysis is done using one model or language and 
specification is done in another. 

2.3 CASE Tool Techniques for Specification 

Although the primary focus of CASE tools has not been to create 
specifications, they have nevertheless made a substantial contribution to producing 
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precise specifications. CASE tools, especially I-CASE tools, are based on a central 
repository of information that helps integrate analysis and prototyping with 
specification. Information captured from analysis is stored in a central repository 
and can be used to generate forms and reports to assist in the development of  a 
working prototype. As the prototype is refined, the repository is updated. This 
updated repository can thus serve as an information base to generate specifications for 
client agreement. 

There has been some excellent research in the use of CASE tools for 
prototyping and especially in using more formal models in a CASE environment. 
MASCOT [9] (Modular Approach to Software Construction, Operation and Test) is 
a diagrammatic approach for parallel processes. Execution is effected by translating 
MASCOT diagrams to a formal notation. PROTOB is an object-oriented CASE tool 
based on high-level Petri Nets and is used to model distributed systems [1]. A 
method for transforming between formal languages to develop executable prototypes 
using PROLOG has also been developed [10]. 

2.4 Formal Model with CASE Tool Teehnitpae 

Our approach builds on both the formal-model approach and the CASE-tool 
approach. The fundamental principle is that there must first exist a formal, seamless 
model that integrates all relevant information and that can serve all phases of the 
software development cycle. Given that we have a formal, integrated, seamless 
model, CASE tools can be built around this model to provide a tool-supported, 
seamless development methodology. Because the model is seamless, there are no 
paradigm shifts between analysis, specification, design and implementation. 

Other benefits also accrue from this approach. Because the model is formal, 
it can be precisely interpreted for contractual purposes. Also because it is formal, it 
can be executed as a working prototype. Furthermore, the model is graphical which 
facilitates understanding. A textual form is also available for situations in which this 
may be more suitable. 

3. OSA and OSS Model Components 

3 . 1 0 S A  Model 

An OSA model is comprised of three submodels: an object-relationship model 
(ORM), an object-behavior model (OBM), and an object-interaction model (OIM). 
Figure 1 parts a,b, and c depict the three submodels for a simple library application. 
In our brief tutorial, we have included only those parts of OSA that are germane to 
our discussion. For further details see [8]. 

ORM instances describe object classes, relationship sets, and constraints. 
Boxes in an ORM diagram represent object classes, such as Book, Loan, and 
Librarian in Figure la. Book, for example, represents the set of books in the library. 
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Figure la. Object Relationship Model of Library system classes. 

We show three different types of relationship sets. Borrower has Loan is a binary 
relationship set. Borrower has accrued Fine for  Book is a ternary relationship set. 
Faculty lsA Borrower is a Generalization/Specialization relationship set denoted by 
an open triangle. Participation constraints constrain the possible relationships among 
objects. The Book is checked out on Loan relationship set has a 0:1 participation on 
the Book side, indicating that a book may participate either zero or one times in the 
relationship set. General constraints, such as Faculty do not accrue fines,  are shown 
by italics on an ORM diagram. OSA also permits more abstract constructs such as 
high-level object classes and relationship sets. 

The behavior of  objects within an object class is described by a state net. 
Figure lb shows a state net for the Book object class. This state net serves as a 
template for the behavior of  all book objects in the set. Each transition (represented 
by a box) defines both a trigger (described in the upper part of  the box) and a set of  
actions (described in the lower part of  the box). A set of  state nets, one for each 
object class, make up the OBM, which thus describes the behavior of  all objects. 

Figure lb is interpreted as follows: When the AddBook event occurs, the 
trigger evaluates to true, transition [1] fires, and a new book object is created. At 
the completion of the action in transition [1], the newly created book goes into the 
Ready to Loan state. I f  a book is in the Ready to Loan state, and the BorrowBook 
event occurs, then the action in transition [2] is executed and the book goes into the 
On Loan state. The half circle and arrow going to transition [4] indicate the 
spawning of a new, concurrent thread of control. The multiple threads indicate that 
a book may in both states On Loan and On Reserve at the same time. 

Interactions among objects are described in an OIM instance, which is 
comprised of various types of  interactions and may be organized using various levels 
of  abstraction. Figure lc shows some possible interactions between a librarian and 
a book, and are shown as interactions between the Librarian class and the Book class. 
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Figure lb. State Net for Book from Object Behavior Model. 

A librarian can add new books as well as check out and return books for patrons. 
One feature of  OSM modeling is that more detailed information can be 

provided by views which integrate submodels together. Figure 2 is a combination 
that contains elements of  all three submodels in one view. In this case, the Librarian 

Book 

J AddBook(Title, Author) 

JZ BorrowBook (CataloqueNum h e r ) .  

I-2 . 1~ Returngoo~,~a~o,~ ~ , ,  ~ , ~ " ~ " u ~ ' u m ~ e r  ~ 

Librarian 

Figure le. Interaction with origin Librarian and destination Book. 

class is still the origin of  the interactions, but the interaction destinations have been 
integrated with the Book state net by denoting destination transitions for each 
interaction. The AddBook interaction has transition [1] as its destination, and in fact 
the event type trigger of  transition [1] becomes true when the interaction is received. 
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Figure 2. Interaction Diagram combined with Book State Net. 

The TO clause on the BorrowBook interaction indicates that the interaction cannot go 
to just any book, but must go to a particular book, in this case to the Book identified 
by CatalogueNumber. 

3 . 2 0 S S  Extensions 

Although, both the syntax and semantics o f  OSA have been formally defined, 
an OSA model instance does allow for some constructs -- namely, triggers, actions, 
interaction descriptions, and general constraints -- to be written in natural language. 
For example, transition [1] in Figure lb has an informal action: Create Book and 
related objects. Components written in an informal language may be subject to 
misinterpretation. Here, for example, what exactly are the related objects? A formal 
OSS language has been defined that can formally express these natural language 
statements. 

Several criteria were considered in the development of  the OSS language. One 
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consideration is that this language should be easy to write and understand by 
non-technical clients. To satisfy this criteria, an English like syntax was chosen. 
Next, it had to support triggers and general constraints which are logic statements, 
and actions, which are procedural statements. Finally it had to be precisely defined. 

In Figure la the general constraint, Faculty do not accrue fines, is informal. 
The OSS language expression for this general constraint is: 

Faculty 0 IsA Borrower(x) IMPLIES NOT Borrower(x) has accrued FineO for BookO. 

This statement illustrates a logic statement in the OSS language, and based on 
the classes and relationship sets in the OSA instance. The terms with parentheses are 
class names which are embedded within relationship set names from the model 
instance. During prototype execution, "x" is unified to those borrowers who are 
members of  the Faculty IsA Borrower relationship set and then tested against the 
Borrower has accrued Fine for Book relationship set. Unspecified variables (empty 
parentheses) are "don't care" variables as in PROLOG. 

The procedural portion of the language has control statements for decision 
making and looping as well as expressions for manipulating objects. In Figure lb, 
the informal English statement in transition [3], for example, says Take book o f fo f  
Loan and check for reservation. In the OSS language this becomes: 

DELETE Book(this) is checked out on LoanO; 
IF Book(this) has Reservation(w) THEN 

SEND_INTERACTION BookAvailable (Book(this)) TO Reservation(w); 
END IF,. 

Here, "this" represents the book object that received the interaction. Prototype 
execution is done by unifying "w" based on the value bound to "this" and existing 
relationships, and then executing the statements. The combination of both procedural 
and logical constructs in the language make it suitable for specifying a wide range of 
constraints, triggers and functions. 

4.0 Specification Development 

Figure 3 illustrates our approach to the incremental development of OSA 
model instances and OSS specifications, using IPOST. Initially, a systems analyst 
develops an OSA model instance, for example the one in Figures 1 and 2. A 
high-level object class which identifies the system boundary is required. IPOST reads 
an OSA model instance, with system a boundary and creates an executable prototype. 
Prototype generation, including a user interface, is automatic. 

There are three types of refinements that can occur. Two of these are directly 
supported by IPOST and are illustrated by the feedback paths in Figure 3 labeled OSA 
Model Instance Refinements and Logical Interface Refinements. Model-instance 
refinements include replacing natural-language descriptions for triggers, actions, and 
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constraints with OSS 
l anguage  s t a t ement s .  
L o g i c a l  i n t e r f a c e  
refinements allow a user 
to formalize interaction 
descriptions and refine the 
interface. When major 
errors or omissions are 
observed in the OSA 
model instance, the user 
can make appropriate 
changes to the OSA 
instance using the drawing 
tool. A new prototype 
can be automatically 
g e n e r a t e d  f rom the 
modified OSA model 
instance. This process 
may continue until a fully- 
formalized OSS model is 
developed or it may stop 
at any point deemed 
satisfactory to both client 
and developer. 

OSAModel Instance l 

LogTcal \ ~ A ISA Model 

Prototype 

Figure 3. Specification Development using IPOST. 

4.1 Automatic Generation of  an Executable Prototype 

Addition of  a System Boundary. The system boundary encloses those 
components of  an OSA model instance that are to be included within the system to 
be specified and excludes other components. Technically, in OSA, the enclosed 
components constitute a high-level object class that only has interactions crossing its 
boundary. All other components of  an OSA model instance must move to one side 
or the other of a system boundary, or must divide into multiple components, each of 
which are placed on one side or the other of  the system boundary. In Figure 4, for 
example, we define a high-level object class that includes all the ORM components 
except the Librarian object class. 

Cre~ting an lntotfaeo. The set of  interactions that cross a system boundary 
become the components that define the logical interface. The interface is logical 
because it focuses on the events and the information flows, rather than on actual 
physical devices, the look and feel of  a user interface, or a particular user interface 
implementation. IPOST generates a default user interface and does not require an 
additional user interface specification. The information necessary to develop a logical 
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Figure 4. Library ORM with High-Level Object Class "System". 

system interface is all contained within an OSA model instance. 
Figure 5 shows the interface window for IPOST. The top panel is a menu 

panel and provides organization for all interactions crossing the system boundary. 
Origin and destination classes are selected from popup windows. Then the 
appropriate interaction for the selected origin and destination classes is selected. In 
Figure 5, the AddBook interaction has been selected. The middle panel illustrates 
how an interaction corresponds to a logical form. Since the AddBook interaction was 
chosen, the parameters listed in the middle panel are Author and Title, the object 
parameters sent by the interaction. Space is provided for the IPOST user to enter 
data for the object parameters and to "execute" the interaction. 

4.2 Executing and Refining OSA Model Instances. 

Prototype Execution Mode. Prototype execution consists of presenting to the 
user the set of menus and forms defined by the interface. The user initiates 
interactions through these forms. As prototype execution proceeds, objects are 
instantiated and they behave and interact according to the defined OSA model 
instance. Thus, prototype execution consists of creating objects, deleting objects, 
initiating interactions, evaluating and firing triggers, evaluating constraints, and 
performing actions within transitions. 

Refer again to Figure 2, which shows the destinations of interactions within 
the Book object class. As these interactions are initiated by the IPOST user, the 
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trigger on the appropriate 
transition is evaluated. The 
bottom panel of  Figure 5 shows 
transition [1], which is the 
destination transition for the 
AddBook interaction. When the 
AddBook interaction arrives, then 
the trigger @AddBook evaluates 
to true. 

After the user enters the 
Title and Author data into the 
form and initiates the AddBook 
interaction, IPOST attempts to 
execute the action for transition 
[1]: Create Book and related 
objects. However, since the 
action is informal, IPOST cannot 
execute it, and provides an 
execution message to the user, as 
shown in Figure 6. At this point 
the user can select one of several 
possible courses of  action. For 
triggers and general constraints, 
the user can act as an "oracle" 
and provide a true or false answer. 
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Figure 5. IPOST interface showing Menu Panel, 
Input Form Panel, and Execution Panel. 

For actions, the user may skip execution of  that 
component. Of course, just skipping execution may cause the prototype to behave 
incorrectly. To achieve the objective of  specification development, it is preferable 
that the user enter edit mode and replace the informal statements with formal OSS 
language statements. At the end of each transition, IPOST verifies the populated 
model against all constraints any informs the user of  any constraint violations. 

Refinement (edit) Mode. Several types of  changes to the OSA model instance 
are made through IPOST during prototype execution. Figure 7 illustrates the change 
of the informal action Create Book and related objects into formal OSS language 
statements. The edit mode also supports changes to the interface forms. Since each 
logical form is mapped to an interface interaction, changes to a form also modify the 
underlying interaction. Changes can be made to the TO clause, the FROM clause, 
the interaction description, and the object list. 

For example, upon execution of the action statement for transition [1], IPOST 
would note that a participation constraint for the Book has CatalogueNumber 
relationship set is violated. The participation constraint (see Figure 4) requires that 
there be a CatalogueNumber for every book. The user could then edit the input form 
by adding another parameter for catalogue number. This change would be reflected 
back to the OSA model instance. 
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5. Implementation of Tools 

At  B Y U  w e  a r e  
developing research versions of  
CASE tool support for the OSM 
seamless development process. 
We are developing these tools so 
that they can be integrated 
together to demonstrate the 
feasibility of a completely 
integrated CASE environment. 
The following paragraphs briefly 
describe several support tools that 
are under development. 

A prototype version of the 
OSA Drawing Tool has been 
developed and is being used in 
our research environment. It is 
written in C + + utilizing 
X-Windows. It supports the 
drawing of  OSA including object 
classes, relationship sets, state 
nets, and interactions. Other 
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Figure 6. Execution of an AddBook Interaction with 
informal action statement. 

more complex OSA constructs, such as high-level views are being developed. It is 
based on a graphical user interface development tool called ART, which has also been 
developed at BYU [14]. 

The OSA Storage Facility serves as the data repository for OSA and OSS 
model instances. This repository has also been written using C+ + under X- 
Windows. In addition to providing standard database management facilities for 
storing, modifying, and querying the database, it also provides comprehensive validity 
checking of  OSA model instances. Finally, it also generates database schemas based 
on OSA model instances stored under the OSA metamodel schema. 

An initial prototype version of  IPOST is running, and is in systems test. 
IPOST is written in C+ + to run under X-Windows. The user interface is written 
using ART and the data manipulation uses the OSA Storage Facility. In Edit mode, 
the user can observe and modify those components of an OSA model instance that 
contain natural language components. Changes to these components are captured and 
saved back in the Storage Facility. In Execute mode, IPOST organizes and presents 
to the user the set of  interactions that comprise the user interface for an OSA model 
instance. As the user "fires" these interactions, the appropriate state net paths are 
followed to emulate the behavior of objects moving between states via transitions. 
The appropriate triggers and actions within the transitions are read, parsed, 
interpreted and executed based on the OSS language. Any applicable constraints are 
also read, parsed, interpreted and executed at the appropriate time. As execution 
occurs, the user is able to view the results of  the execution by querying the storage 
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facility for the presence of 
objects, their states of behavior, 
and associated relationships. 

6. Conclusions and Future 
Research 

A r e q u i r e m e n t s  
specification has always been an 
elusive part of  software 
development--not only its 
production,  but also its 
definition. The objective of this 
research has been twofold: (1) to 
define a specification model that 
is formal, is object based, can be 
used to specify all parts of a 
proposed software system, and 
conceptually integrates well with 
the other models and phases of 
the software development cycle; 
and (2) to demonstrate a method 
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Figure 7. IPOST Window showing the formal action 
statements to create a Book. 

to develop a specification that naturally integrates with accepted methods of software 
development (analysis and prototyping) and can be supported by automation tools. 

Specifically this research is of benefit because it demonstrates improvements 
in software development through the addition of formalism and principles of 
engineering. These benefits include: (1) direct execution of analysis model instances; 
(2) generation and refinement of a formal specification through rapid prototyping; (3) 
a seamless systems development approach that requires no paradigm shifts between 
analysis, specification, and prototyping; and (4) the foundation of a formal 
specification that is based on the object-oriented systems development paradigm. 

The OSM Research Group at BYU is currently engaged in long term model 
development and software engineering research. Although the research agenda is 
broad, its focused purpose is to provide a systems development paradigm that includes 
analysis, specification, design, implementation, evolution, re-engineering, and 
management, all based on a single conceptual model. Research in all areas is 
proceeding in parallel. 

Further research in the area of specification, beyond the project described in 
this paper, has two major thrusts. The first is to expand the capabilities of IPOST 
to include expert system capabilities, enhanced model modification capabilities and 
user interface "look and feel". The second thrust is to integrate the OSS CASE tools 
with the other phases of software development, such as design and code generation. 

Acknowledgments: To Steve Clyde and Jeff Pinkston who helped with this research. 
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