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Abs t r ac t .  To support customizing and integrating software specifica- 
tion & design methods to a suitable method for designers' problenl do- 
main and environment, so-called Computer Aided Method Engineering 
(CAME), we need a meta model for representing the fragments of meth- 
ods formally and for composing them into a method. This paper discusses 
a meta modelling technique by using a formal specification language 
Object-Z which is an object oriented version of the Z language. The 
logical expressions of Object-Z allows us to describe hierarchical struc- 
tures and the constraints in the methods and the inheritance mechanism 
enables us to integrate method fragments into a new method. 

1 I n t r o d u c t i o n  

I t  is important  to design software specifications effectively for developing high 
quality software with low cost because specification & design phases are the early 
step in the software development process. Many specification & design methods 
(shortened to methods) such as Structured Analysis & Design [5] and Object-  
Oriented Analysis & Design [12] have been developed to guide designers'  work. 
However, these methods can work well only in some problem domains and /o r  
environment, not in all, and it is very difficult to create an universal method 
which can work well in all the domains and /o r  environment. It  is more feasible 
that  the designers can select suitable methods,  customize, and integrate the 
methods to a suitable one for their problem domains and environment. 

Recently, there are some methods with multiple viewpoints to develop the 
large and complex software systems. For example, Shlaer's and Mellor's Ob- 
ject Oriented Analysis[12] can be considered as a multi-view method since its 
underlying model is the composition of three models - -  an information model 
(Entity Relationship Diagram),  a state model (State Transition Diagram) and a 
process model (Data  Flow Diagram). We know tha t  the specifications described 
in several methods with the different viewpoints are more useful[4]. However, it 
is a problem how to integrate the specifications developed by using the differ- 
eat  methods into a final specification. To support  multi-view specification, we 
also need a mechanism for integrating the specifications writ ten in the different 
methods. 

One of the possible solutions for the above requirements is to use a meta 
system or meta model approach[I] for method modelling. The meta  model is 
a da ta  model or scheme for representing methods,  and expresses a common 
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conceptual s t ructure for them. Most of the me ta  models which have been stud- 
ied until recently are based on Enti ty  Relationship model (shortened to ER 
model)J7, 14, 15]. ER model allows us to represent the methods comprehen- 
sively, but it is difficult to describe the constraints and the hierarchical struc~ 
tures of the methods. Most of the me ta  model approaches except for [2] did 
not deal with the constraints or the hierarchical structure.  Knuth ' s  a t t r ibute  
g rammer  approach[9] could be used to represent the hierarchical s t ructure of 
products produced in the methods. However, it should include many evaluation 
rules called copy rules to specify any systems and the many occurrences of these 
non-essential rules allow us to construct the incomprehensible descriptions. Our 
technique is based on the formal specification language Object-Z[6] to specify 
the constraints comprehensively. Object-Z is an object oriented extension of a 
Z language[16] and its notat ion is the same as tha t  of Z. Hierarchical structures 
can also be represented with mathematical maps or relations in Object-Z. Fur- 
thermore the inheritance mechanism of Objeet-Z allows us to integrate methods 
into one. Object  oriented paradigm provides the reusability of method fragment 
descriptions for constructing new methods. 

The organization of this paper  is as follows. In the next section, we discuss 
two kinds of method modelling techniques - -  one is based on ER model and 
another  is on a t t r ibute  grammers.  We introduce our method modelling tech- 
nique based on Object-Z language in section 3. The class of da ta  flow diagrams 
is also specified in our framework as an example here. Section 4 presents our 
meta  model application - method integration. We pick up Shlaer and Mellor's 
OOA as an example and its description can be obtained from the four popular 
methods ; Da ta  Flow Diagram, Enti ty Relationship Diagram, Object  Communi- 
cation Diagram, State  Transition Diagram. The constraints for integrating these 
diagrams can be represented in our technique. These examples show that  our 
modelling technique is sufficiently powerful in expression, and suitable to be a 
basis for Computer  Aided Method Engineering. 

2 M e t h o d  M o d e l l i n g  b a s e d  on  E R  M o d e l  a n d  A t t r i b u t e  
G r a m m e r  

2.1 M e t h o d  M o d e l l i n g  b a s e d  o n  E R  m o d e l  

Many studies on meta  models based on ER model have been done, i.e. they 
used ER modeling technique to represent methods. As a simple example, let 's 
consider the definition of da ta  flow diagrams of Structured Analysis by using ER 
model. The definition has the entities for the nodes of da ta  flow diagrams such as 
Processes (Bubbles) and Da ta  Flows, and relationships between the entities for 
the edges or connections among the nodes, as shown in Figure 1. ER model could 
represent the various methods widely and easily. However, this figure does not 
express a well-formed data  flow diagrams completely. In a well-formed diagram 
it is not permit ted to directly connect the da ta  stores to the source&sinks with 
da ta  flows, but the figure 1 does not contain this constraint. 

There is one more shortcoming. ER model cannot'  ex~)ress the hierarchical 
structures of da ta  flow diagrams and the constraints of the hierarchy used in 
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Structured AnMysis. For example, a process in a da ta  flow diagram cai~ be hier- 
archically decomposed and refined to another  da ta  flow diagram. Tha t  is to say, 
the inside of the process is a lower-level da ta  flow diagram. In this hierarchical 
structure,  the inputs and outputs  of the process should be equal to the external 
inputs and outputs  of its lower-level da ta  flow diagram. 

It  is difficult to represent these kinds of hierarchical s t ructure and constraints 
as mentioned above by using ER model, even though ER model is such a simple 
vehicle to describe the methods. 

Output l ~ Input l 

Input3 lnput2 

---- ' )  : Entity �9 ." Relationship 

Fig. 1. A Definition of Data Flow Diagram in ER Model 

2.2  M e t h o d  M o d e l l i n g  b a s e d  o n  A t t r i b u t e  G r a m m e r s  

Attr ibute  g rammer  approach can be an alternative to define the hierarchies and 
the constraints discussed before. I t  is an extension of context-free grammers  
and was proposed by Knuth to specify the formal semantics of programming 
languages. Att r ibute  grammer  based language was used to describe software 
processes[8], but ~mlike this, we apply an a t t r ibute  gralnmer approach to speci- 
fying products  such as da ta  flow diagrams. 

An a t t r ibute  grammer  consists of a set of the derivation rules associated with 
the evaluation rules and the conditions. The evaluation rules are used to calculate 
the a t t r ibute  values associated with grammatical  symbols in the derivation rules. 
The  condition expresses a constraint tha t  must be satisfied by the a t t r ibute  
values when the derivation rule is applied. Tha t  is to say, we cannot  apply the 
derivation rules whose conditions do not hold. 

Consider the definition of the da ta  flow diagram in a t t r ibute  g rammer  ap- 
proach. The four entities - Process, DataStore ,  Source&Sink and DataFlow, and 
the six relationships in Figure 1 can correspond to non-terminal syinbols which 
have the set of entity instances or relationship instances as their a t t r ibutes .  The 
first derivation rule specifies tha t  da ta  flow diagrams consists these ten compo- 
nents denoted by the non-terminal symbols. We associate a synthesized a t t r ibute  
"product" with the non-terminal symbols. The value of the a t t r ibute  "prod- 
uct" is a set of the instances of the entities or relationships belonging to the 
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non- terminal  symbols,  i.e. p roduc t  itself. For example,"  p r o d u c t ( < P r o c e s s > ) "  
denotes  the set of instances of the processes in the da t a  flow diagram. The  con- 
ditions Condition1 and Condition2 express tha t  bo th  " I n p u t l "  and " O u t p u t l "  
are the relationships between "Process" and "DataFlow".  The  a t t r ibu te  value 
"p roces s_ ro l e (< Inpu t l> ) "  denotes  the set of processes par t ic ipa t ing  in the re- 
lat ionship " I n p u t l ' .  As you can find in the derivation rule of " I n p u t l " ,  this 
relationship is defined as a pair of a process and a da t a  flow which is an input  
to the process. For the o ther  relationships such as " Input2" ,  " Input3"  and so 
on, we can define the sinlilar conditions. Condition_3 in the derivation rule of 
< D a t a F l o w D i a g r a m >  specifies tha t  nei ther  da ta  stores nor  sources can 
connect  directly with each other  th rough  any d a t a  flows. We can derive a da t a  
flow diagram by this rule if all of the condit ions a t tached  with it are satisfied, 
i.e. well-formed da t a  flow diagrams should necessarily meet  the conditions. 

<DataFlowDiagram>::= <Process> <DataFlow> <DataStore> <Source&Sink> 
<Input1> <Input2> <Input3> <Outpu t1>  <Outpu t2>  <Outpu t3>  

product(<DataFlowDiagram>) +-- . .-  
Condition1 : (process_role(<Inputl>) O process ro le (<Output l>) )  

= product (<Process>) 
Condition2 : (dataflow_role(<Inputl>) U dataflow,_role(<Outputl>) 

= product (< DataFlow> ) 

Condition3 : (dataflow.a'ole(<Input2>) U dataflowJ'ole(<Input3 >) ) f3 
(dataflow.a'ole(<Output2>) t2 dataflow_role(<Output3>)) = O 

<Process>: :=  e 
I <process_instance> <Process>2 

product(<Process>) ~-- {id( <process_instance>)} U domain(<Process>2 ) 
<DataFlow>: :=  �9 .. 

product(<DataFlow>) *-- �9 .. 
o . .  

<Inpu t1> : :=  e 
process_role(<Input 1 > ) +-- O 
dataflow_role( <Input I >) +-- O 

I ( <process_instance> , <dataflow_instance> ) <Input1>2 
produc t (<Inpu t l>)  +-- { (product(<process_instance>, <dataflow..instance>) } 

(3 product( <Input >2 ) 
process_role(<Inputl>) 

{ product(<process_instance>) } U product_role(<Inputl >2) 
dat aflow_a'ole(<Input 1 >) 

{ product(<dataflow_.instance> } U dataflow._role(<Input 1>2) 
< Inpu t2> : :=  �9 �9 �9 

<processJnstance>: := <identifier> 
product(<process._instance>) ~-- Sring(<identifier>) 

We call also express the hierarchical s t ruc ture  of the d a t a  flow diagrams by 
adding  the following derivation rule to the above rules. 

<process_instance>::= <Dat  aFlowDiagram> 
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The constrMnts which must  be satisfied by the refined process instance 
<process_instance> and its lower-level da ta  flow diagram <Da taF lowDiag ram> 
can be also specified in this a t t r ibute  g rammer  approach. To specify them, we 
should add more at t r ibutes,  evaluation rules, and conditions to the above gram- 
lner, and omit them on account of space. 

The method model based on a t t r ibute  grammers  can express most  of the 
methods and solve the problems in ER inodel. However, one of their shortcomings 
is that  we need a lot evaluatiml rules such as value copy rules. As shown in the 
example of DataFlowDiagraln above, we must also introduce many conditions 
for representing such a scheme of the da ta  flow diagram as Figure 1. Many rules 
and conditions might fail down in incomprehensible descriptions of the methods. 

3 M e t h o d  M o d e l l i n g  based  on Objec t -Z  

The formal specification language Object-Z is an object oriented extension of the 
Z language semantically based on ZF set theory. In object  oriented paradigm, 
the system to be specified is considered as a collection of individual objects 
having internal states. Object-Z defines the objects by using class concepts where 
the definition of their states, initial states, and the operations related to them 
are encapsulated. The class schema for the specification of a class may contain 
several kinds of schemas as well as the definitions of axioms, predicates, types, 
and constants. The typical class schema is be shown in the following: 

__ Typical_Class_Schema 
InheritedClasses 

State Variable Declaration 

StateInvariants 

_ I N I T  

F lnitiaIState 

i OperationSchema 
Signatures (VariableDeclarations) 

Predicate 
( Pre and post condition) 

The inherited classes are the names of the super classes whose s ta tes  and oper- 
ations are inherited to the class TypicaLClass_Schema. 

The aim of the methods is the navigation of designers'  activities to develop 
specifications. The methods tell the designers what  documents  they should pro- 
duce in a specification process, and what  activities they should perform for pro- 
ducing the documents.  So we can model the methods from two perspectives - -  
product  and activity perspectives. From the product  perspective, the s t ructures  
or types of the produced products (incl. hierarchical s tructures)  and constraints 
on the product  par ts  should be specified to define the method.  To specify the 
activities in the method,  we define permit ted manipulat ions on its products  and 
their behavioral constrMnts such as execution ordering. We describe a product  
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specification of the method by a class schema in Objeet-Z since the instances of 
the produced products can be considered as objects in object oriented paradigm. 
The product  s t ructure and the constraints can be specified by a s tate  schema. 
Operat ion schemas encapsulated in a class schema define the manipulations on 
the corresponding product,  and the pre- and post-conditions of the defined op- 
erations specify the behavioral constraints on them such as possible execution 
order. 

We begin with a simple example of the specification of the class P r o d u c t  
written in Object-Z. It  will be used as a super class to specify the product  
classes of the various methods. 

__ P r o d u c t  

t i t le  : I d e n t i f i e r  
v e r s i o n  : V e r s i o n _ N u m b e r  
s ta tus  : S t a t u s  
c rea t i on_da te  : Da te  
l a s t _ m o d i f i c a t i o n _ d a t e  : D a t e  
p r o d u c e r  : P e r s o n  
re spons ib l e_per son  : P e r s o n  
r e v i e w e r s  : ]P P e r s o n  

_ N o t i ] y _ C o m p l e t i o n  
A (  s t a t u s ,  c rea t ion_da te  ) 
today?  : D a t e  

s ta tus  = ' in_progress '  
s t a tu s '  = ' c o m p l e t i o n '  
c r ea t i on_da te  = today?  

- f N I T  
des igner? ,  m a n a g e r ?  : P e r s o n  

v e r s i o n  = 0 
s ta tus  = t in_progress '  
p r o d u c e r  = des igner?  
r e spons ib l e_per son  - :  m a n a g e r ?  

_ R e v i e w  
A ( s ta tus  , r ev i ewers )  
r e v i e w _ t e a m ?  : P P e r s o n  
rev iew_resu l t !  : R e v i e w _ R e p o r t  

s ta tus  = ' c o m p l e t i o n '  
s t a tu s '  = ' r e v i e w i n g '  
r e v i e w e r s '  -= r e v i e w _ t e a m ?  

An object of the class P r o d u c t  has several s tate variables such as t i t l e ,  v e r s i o n ,  

s t a t u s  and so on .Assume  tha t  the domains of these state variables, e.g. I d e n t i -  

t i e r ,  D a t e  and P e r s o n ,  would be externally defined as basic types. The operation 
N o t i f y _ C o m p l e t i o n  sets up the value of the state c r e a t i o n _ d a t e  when the devel- 
opment of the current version of the product  is completed. We must  note the 
conventions on variables used in the operation schema. The A notation in the 
signature par t  declares the variables whose values may be updated by the oper- 
ation. The state variables with the prime (') decoration represent the state after 
the operation, while the variables which are not decorated represent the state 
before the operation. Inputs  and outputs  of the operation are denoted by the vari- 
ables with "?" and "!" respectively. In the schema N o t i f y _ C o m p l e t i o n ,  ' today? '  
is an input to this operation and the status is Mso changed from 'in_progress' to 
'complet ion'  af ter  this operation 

We define the generic schema C o n n e c t e d G r a p h  before the next class D a t a F l o w -  
D i a g r a m .  This schema specifies the constraints on a special class of directed 
graphs whose nodes have at least one connected edge, i.e. an input edge or an 
output  edge. 
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ConnectedGraph [Nodes~ Edges, InputEdges, OutputEdges] ~ Nodes = (ran InputEdges U ran OutputEdges ) A 
Edges = dora InputEdges = dora OutputEdges 

Several Object-Z operators on sets and relations occur in the logical fornmlas of 
the schema. The domain and range operators, dora and ran, extract the domain 
and range of a relation or a fnnction respectively, i.e. d o m R  = {x I (x, y) E 
R} and ranR = {y I (x,y) C R} where R is a relation or a function. Nodes 
and Edges are certain sets of nodes and edges respectively, and InputEdges 
and OutputEdges denote relationships between Nodes and Edges. For example, 
InputEdges expresses which nodes the edges are inputs to. Assume that  these 
relationships are defined as finite functions Edges -~ Nodes. Thus the term 
"ranInputEdges" denotes a set of nodes to which there is at least one input 
edge. 

We can specify a class schema for data  flow diagrams and the operations 
on them by using Product and ConnectedGraph as shown in the next page. 
The class DataFlowDiagram incorporates all the features such as state variables, 
invariants, and operations of the Product class. For example, DataFlowDiagram 
has the state variables title, status, the operations Notify_Completion, Review 
and so on. In addition, the state variables or structural components of the class 
contain four sets (corresponding to entities in ER model) and six finite functions 
(corresponding to relationships in ER model), and this definition comes from 
Figure 1. Process, DataFlow, DataStore, and Source~flSink, which are used for 
defining domains of the states, are considered as basic types which are externally- 
given sets. The operator F stands for the power set. For example, the domain 
of the processes of DataFlowDiagram is a power set of the given set Process. 
The relationshii)s between DataFlow and other entities are defined as flmctions 
because these are one-to-many relationships, i.e. each data flow has just one 
source and just one destination. When the development of a data  flow diagram 
is completed, it should meet the constraint WellFormedDataFlowDiagram which 
is specified in the a~iomatic definition below the state schema. It  consists of two 
logical conjunets -- the first one specifies that processes, source&sinks, and data  
stores in a data flow diagram should have at least one data  flow as their input 
or output.  In addition, source&sinks and data stores can be connected only to 
processes through data flows. It means that  there are no data  flows directly 
between a source&sink and a data  store, or data  stores. The second conjunct 
stands for this constraint. 

The DataFlowDiagram class has several operations on its instances. The op- 
eration IdentifgProcesses corresponds to the designers' activities for identifying 
processes and it adds a newly identified process to the state variable processes. 
The second operation IdentifyInputs, which corresponds to the activities for iden- 
tifying an input data  flow to a certain process, cannot be performed until the 
process has been Mready identified. The first logical formula on the variable 
"process? in the predicate part specifies this behavioral constraints. That  is to 
say, this operation can be performed after at least one execution of the operation 
Identi/yProcesses. By using the predicates in operation' schemas, we can specify 
the behavioral constrMnts such as execution order on the activities. 
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processes : P Process 
dataflows : Y DataFlow 
datastores : ~ DataStore 
source&sinks : ~ Source&Sink 
input 1 : DataFlow -~ Process 
output I : DataFlow -~ Process 
input2 : DataFlow -~ Source&Sink 
output2 : DataFlow -~ Source&Sink 
input3 : DataFlow -~ DataStore 
output3 : DataFlow -~ DataStore 

status = 'completion' ~ WelIFormedDataFlowDiagram 

WelIFormedDataFlowDiagram : 1~ 

WelIFormedDataFlowDiagram = 
ConnectedGraph[processes U source&sinks U datastores, 

input1 U input2 tO input3, output l  U output2 U output3] A 
(dora input2 IJ doln input3)) n (dora output2 to dora output3) = 

__ IdentifyProcess es 
A(process es) 
new_process? : Process 

processes' = processes U {new_process?} 

_ _  Identifylnputs 
A ( dataflows, input 1) 
process? : Process 
new_dflow? : DataFlow 

process? C processes 
dataflows' = dataflows U {new_dflow? } 
input l '  =- input1 U {new_dflow? ~-~ process} 

To define hierarchical data  flow diagrams, we introduce a flmction from pro- 
cesses to lower-level data flow diagrams. This function denotes what data flow 
diagram a process is refined to. The class of hierarchical data flow diagrams can 
be recursively defined by using the inheritance from the class DataFlowDiagram.  

The class schema Hierarch icaIDataFlowDiagram has the axiomatic definition 
Wel lFormedHierarch ica lDa taF lowDiagram which defines a constraint for pre- 
serving consistency on input-output data  flows between a refined process and 
its lower level data flow diagram. In other words, the input flows and output  
ones of the refined process should be equal to inputs and outputs between the 
lower-level data flow diagram and the external environment. In the definition of 
WelIFormedHierarch ica lDataFlowDiagram,  you will find the operator t> called 
range restriction. It reduces a relation or fimction to one which has a given range, 
e.g. we have i npu t1  t> {p} = {dfd ~ p [ i n p u t l ( d f d )  = p} where p �9 Process ,  

did �9 D a t a F l o w ,  and inpu t1  is a state variable of D a t a F l o w D i a g r a m  class. 
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refine : Process -~ HierarchicaIDataFlowDiagram 

status = 'completion r 
WellFormedHierarchicaIDataFlowDiagram 

WelIFormedHierarchicaIDataFlowDiagram : 

WellForraedHierarchieaIDataFlowDiagram = 
dora refine C_ processes A 
Vp :dora refine �9 (dora(input1 t> {p}) = InputFlows(refine( p ) ) A 

dom( output l t> {p}) = OutputFlows(refine(p ) ) ) 

InputFlows : HierarehicaIDataFlo~vDiagram ---* DataFlow 

V hd/d : HierarchicalDataFlowDiagram �9 InputFlows (hdfd) = 
dom( input l.hdfd U input 2.hdfd U input3.hdfd ) 

\ dom(outputl.hdfd U output2.hdfd U output3.hdfd) 

OutputFlows : HierarchicalDataFlowDiagram -+ DataFlow 

V hdfd :HierarchicalDataFlowDiagram �9 OutputFlows(hdfd) = 
dom( input l.hdfd U input2.hdfd U input3.hdfd) 

\ dom(outputl .hdfd U output2.hd/d U output3.hdfd) 

__ Refine Processes 
z~( refine ) 
refined_process? : Process 
lowerdflt! : HierarchicalDataFlowDiagram 

refined_process? E processes 
refined_process? ~ dora refine 
title.lowerdfd! = refined_process? 
refine' = refine U {refined_process? ~-~ lowerdfd!} 

The functions InputFlows and OutputFlows,  which are used in WelIFormed- 
HierarchicaIDataFlowDiagram, calculate a set of the input data flows from the 
external environment and a set of the output  data  flows to the external re- 
spectively. The term inpu t l .hd fd  occurring in the definitions InputFlows  and 
OutputFlows denotes the value of the state variable input1 of the data  flow di- 
agram hd/d, i.e. the relationship between processes and their input data flows 
in hdfd. The operator \ ,  appearing in the definitions stands for set difference, 
i.e. {a,b,c}\{b,d} is equal to {a,c}. This operator in the definition "InputFlows" 
calculates the data flows which are inputs to some processes, data  stores or 
source&sinks (dora(input1 U input2 U input3) )  but which has no relation to any- 
thing as outputs (dom(  ou tpu t l  U output2 U output3)) .  
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The operation "RefineProcess" is newly added and it denotes the activities 
for constructing a data  flow diagram (lowerdfd!) of a process (refined_process?). 
All of the operations defined in DataFlowDiagram can be applied to the instances 
of HierarchicaIDataFlowDiagram. 

As shown in this section, Object-Z language has powerful constructs for defin- 
ing hierarchical data  structures and for specifying constraints comprehensively. 
It can be considered as one of suitable techniques for specifying not only software 
specifications but  also specification and design methods. 

4 M e t h o d  I n t e g r a t i o n  - A n  E x a m p l e  

The previous section have presented the advantages of Object-Z language to use 
method descriptions. In this section, we will show another aspect of our tech- 
nique - -  application to method integration. The method integration plays an 
important  role on constructing a new method from the fl'agments of existing 
methods[10, 13, 3]. In the specification development following Shlaer and Mel- 
lor's OOA, we should have four types of the diagrams - -  Enti ty Relationship 
Diagram, Object Communication Diagram, State Transition Diagram and Data  
Flow Diagram. They are meaningfully connected to each other to express a con- 
sistent specification. This meaningful connections can be formally specified in 
our framework as semantic constraints for the diagrams. In this modeling, the 
four diagrams can be considered as the basic fragments or parts of the methods 
for constructing another method Shlaer and Mellor's OOA, i.e. the method can 
be newly obtained as the result of the integration of the four existing methods. 

Enti ty Relationship Diagram, Object Communication Diagram, and State 
Transition Diagram can be defined in Object-Z language in the same way as 
Data  Flow Diagram. Figure 2 shows graphical representations, i.e. ER Diagrams 
of these diagrams, and it is useful to understand the following textual repre- 
sentations written in Object-Z notation, which are shown in the next page. 

domain of 

A w r a n g e _ o f ~  

lCa~ainaliJr / ~ r ~ , ~  'p 

(a) Entity Relationship Diagram 

receive 

(b) Object Communication Diagram 

nextto output_event 
(c) State Transition Diagram 

Fig. 2. ER Model Based Graphical Notation for Diagrams 
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Ent i t yRe la t ionsh ip  Diagram 
Product  

ent i t ies  : F E n t i t y  
relat ionships : F Relat ionship  
ent i ty_at tr ibutes  : F A t t r ibu te  
relat ionship_at tr ibutes  : F A t t r ibu te  
cardinali t ies : N • 5I 
d o m a i n _ o f  : Rela t ionship  -~ E n t i t y  
range_of  : Rela t ionship  -~ E n t i t y  
has l  : A t t r ibu te  -~ E n t i t y  
has2 : A t t r ibu te  -~ Relat ionship  
has3 : Re la t ionship  -~ N x N 

s tatus  = 'comple t ion '  
We l lFormedEn t i t yRe la t ionsh ip  Diagram 

Wel lFormedEn t i t yRe la t ionsh ipDiagram : 

We l lFormedEnt i t yRe la t ionsh ip  Diagram = 
r a n  d o m a i n _ o f  C ent i t ies  A r a n  range_of  C ent i t ies  A 
d o r a  d o m a i n _ o f  -= relat ionships A d o r a  range_of  = relat ionships A 
d o r a  h a s l  = ent i ty_at t r ibutes  A r a n  has l  C ent i t ies  A 
d o r a  has 2 -= relat ionship_at tr ibutes  A r a n  has2 C re lat ionship_at tr ibutes  A 
d o r a  has3 = relat ionships 

__  Ob jec tCommunica t ionDiagram 
Product  

objects : ~ Object 
messages  : F E v e n t  
send : Even t  -~ Object 
receive : Even t  -~ Object 

status = 'comple t ion '  ~ ConnectedGraph[objects ,  messages ,  send,  receive] 

State  Trans i t ionDiagram 
Product  

s tates  : ~ S t a t e  
t rans i t ions  : ~ Transi t ion 
events  : P Even t  
previous_to : Transi t ion -~ State  
next_to : Transi t ion -~ State  
inpu t_even t  : Transi t ion -~ E v e n t  
ou tpu t_even t  : Transi t ion -~ E v e n t  

s tatus  = 'comple t ion '  
ConnectedGraph[s ta tes ,  transit ions~ previous_to,  next_to] A 
t rans i t ions  = d o r a  i npu t_even t  
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Class Schema ~ __. ~0nnectedGraph I Generic Scherna 

(DataFlowOiagram-)(EntityReZation:hipOiagram )(,,ateTransitiortDiagram)(Obje;tCommunecationDiagram ) 
1 QierarchicalDataFl~ ~N~  / ~  ~ referred 

f , , , . . : . e" .r ,  OOA ) .er,e, 

Fig. 3. Hierarchical Relationships among Schemas 

nnect2 connect4 

Fig. 4. Relation among Four Diagrams 

To define these four diagrams, we have used the other schemas by schema 
reference and inheritance mechanisms. Figure 3 shows the hierarchical relation- 
ships among them. Method integration into Shlaer and Mellor's OOA will be 
done based on inheritance of these four diagrams. 

Before defining Shlaer and Mellor's OOA, we will specify some constraints 
to integrate these four diagrams. Figure 4 shows the relationships among them. 
Connect l ,  connect2, connect3, and connect4 in the figure stand for mathemat -  
ical constructs such as relation and functions which meaningfldly connect the 
diagrams to each other. An entity relationship diagram is related to an object 
conmmnication diagram which depicts the message flow among objects. An en- 
t i ty should occur as an object in the object conmmnication diagram. For each 
entity occurring in an entity relationship diagram or each object in an object 
communication diagram, we have a s tate  transition diagram which expresses its 
internal s tate  change. Thus connect2 and connect3 have a set of functions which 
are from entities or objects to s tate  transit ion diagrams. 

Receive-: occurring in the schema connection_between_CD_and_STD stands 
for the inverse map of the function receive. The formula in the predicate par t  
of eonneetion_between_ERD_and_CD specifies tha t  the entities in Enti ty Rela- 
tionship Diagram (erd.entities) are the same as the objects in Communicat ion 
Diagram (cd.objects). The second formula in connection_between_CD_and_STD 
expresses tha t  input messages to and output  messages from an object should 
appear  as input events and output  events respectively in its s ta te  transit ion 
diagram. 
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~ .  connect ion_between_ERD_and_CD 
connect l  : EntityRelationshipDia.qram +-* ObjectCommunicat ionDiagram 

V erd : dora conneetl;  V cd : ran couneet l  �9 erd.entities = cd.object~ 

~_  connection_between_E R D_and_S TD 
con___~nect2 : Relatio,tship Diagra,n ~ (Ent i ty  -~ State Tr~nsit ionDiagrum) 

g erd : dora connect2 �9 erd.entities = dom(ran connect2) 

connec t ion-be tween-CD-and-STD 
con_....._nect3 : Communicat ionDiagram +-* (Object -~ State Transit ionDiagram) 

cd : dom connect3 �9 cd.objeets = dora(ran connect3) 
cd : dora connect3; obj : dora(ran connect3); objtostd : ran connect3 

�9 input_event.objtostd(obj)  = receive -1 ( cd. objects ) 
A output_event.objtostd(obj)  = send-1 (cd.objects) 

connect-between-S T D - a n d - D  FD 
conT___~tect4 State Transit ionDiagram ~-~ (Event  -~ DataFlowDiagram ) 

std : dom connect4 �9 s t&output_event  D dom(ran connect4) 

Fina l ly  we can have the  speci f ica t ion  of O O A  m e t h o d s  in the  following : 

_ _  Shlaer_and_Mellor 's_OOA 
DataFlowDiagram 
Communieat ionDiagram 
Enti tyRelationship Diagram 
State Transit ionDiagram 

connect_between_ERD_and_CD 
connect_between_ERD_and_STD 
connect_between_ C D_and_S T D 
connect_between_S TD_and_D FD 

I t  consis ts  of the  speci f ica t ions  of the  four d i a g r a m s  and  cons t ra in t s  for the i r  in- 
t eg ra t ion ,  and  holds  the  in fo rma t ion  a b o u t  r e l a t ionsh ips  among  these  d i a g r a m s  
in i ts  s t a t e  var iables  such as connect1 ,  connect2 ,  connec t& and  connectS.  Opera -  
t ions  on S h l a e r _ a n d _ M e l l o r ' s _ O O A  are  inhe r i t ed  f rom the  four d i a g r a m  classes.  
For  example ,  " Iden t i fyProcesses"  of D a t a F l o w D i a g r a m  is also an o p e r a t i o n  Oll 
Sh laer_and_Mel lo r '  s _ O O  A.  

5 C o n c l u s i o n  

This  p a p e r  has  i n t roduced  a n o t h e r  m e t h o d  mode l l ing  technique  based  on O b je c t -  
Z to  represent  var ious  m e t h o d s  for s u p p o r t i n g  speci f ica t ion  deve lopment .  I t  has  
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been shown tha t  our technique is applicable to method integrat ion by using an 
example. The examples including method integrat ion might be so simple tha t  we 
could use a Z language instead of Object-Z.  However, object-orientedness plays 
an impor tan t  role on reuse of method fragments to construct  new methods.  
Both Z and Object-Z are not executable,  so we should combine our technique 
~nd other executable devices to enact the specified methods.  The predicate logic 
underlying Z and Object-Z can provide the theoret ical  foundation for method 
integrat ion and method synthesis. For example, we can check the consistency of 
the in tegrated method and the correctness of the integrat ion process if the rele- 
vant methods are described in Object-Z.  The logical formulas might be difficult 
for untrained persons to read and write. A l ibrary of method fragments, c~lled 
method base[13, 11], are needed to specify and to integrate  the methods. 
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