Specifying Software Specification & Design
Methods

Motoshi Saeki and Kuo Wenyin

Dept. of Computer Science. Tokyo Institute of Technology
Ookayama 2-12-1, Meguro-ku, Tokyo 152, Japan
E-mail : {saeki, wenyin}Qcs.titech.ac.jp

Abstract. To support customizing and integrating software specifica-
tion & design methods to a suitable method for designers’ problem do-
main and environment, so-called Computer Aided Method Engineering
(CAME), we need a meta model for representing the fragments of meth-
ods formally and for composing them into a method. This paper discusses
a meta modelling technique by using a formal specification language
Object-Z which is an object oriented version of the Z language. The
logical expressions of Object-Z allows us to describe hierarchical struc-
tures and the constraints in the methods and the inheritance mechanism
enables us to integrate method fragments into a new method.

1 Introduction

It is important to design software specifications effectively for developing high
quality software with low cost because specification & design phases are the early
step in the software developnient process. Many specification & design methods
(shortened to methods) such as Structured Analysis & Design [5] and Object-
Oriented Analysis & Design [12] have been developed to guide designers’ work.
However, these methods can work well only in some problem domains and/or
environment, not in all, and it is very difficult to create an universal miethod
which can work well in all the domains and/or environment. It is more feasible
that the designers can select suitable methods, customize, and integrate the
methods to a suitable one for their problem domains and environment.

Recently, there are some methods with multiple viewpoints to develop the
large and complex software systems. For example, Shlaer’s and Mellor’'s Ob-
ject Oriented Analysis[12] can be considered as a multi-view method since its
underlying model is the composition of three models — an information model
(Eutity Relationship Diagram), a state model {State Transition Diagram) and a
process model (Data Flow Diagram). We know that the specifications described
in several methods with the different viewpoints are more useful[4]. However, it
is a problem how to integrate the specifications developed by using the differ-
ent methods into a final specification. To support multi-view specification, we
also need a mechanism for integrating the specifications written in the different
methods.

One of the possible solutions for the above requirements is to use a meta
system or meta model approach(l] for method modelling. The meta model is
a data model or scheme for vepresenting methods, and expresses a common

354

conceptual structure for them. Most of the meta models which have been stud-
ied until recently are based on Entity Relationship model (shortened to ER
model)[7, 14, 15]. ER model allows us to represent the methods comprehen-
sively, but it is difficult to describe the constraints and the hierarchical struc-
tures of the methods. Most of the meta model approaches except for [2] did
not deal with the constraints or the hierarchical structure. Knuth’s attribute
grammer approach[9] could be used to represent the hierarchical structure of
products produced in the methods. However, it should include many evaluation
rules called copy rules to specify any systems and the many occurrences of these
non-essential rules allow us to construct the incomprehensible descriptions. Our
technique is based on the formal specification language Object-Z[6] to specify
the constraints comprehensively. Object-Z is an object oriented extension of a
Z language[16] and its notation is the same as that of Z. Hierarchical structures
can also be represented with mathematical maps or relations in Object-Z. Fur-
thermore the inheritance mechanism of Object-Z allows us to integrate methods
into one. Object oriented paradigm provides the reusability of method fragment
descriptions for constructing new methods.

The organization of this paper is as follows. In the next section, we discuss
two kinds of method modelling techniques — one is based on ER model and
another is on attribute grammers. We introduce our method modelling tech-
nique based on Object-Z language in section 3. The class of data flow diagrams
is also specified in our framework as an example here. Section 4 presents our
meta model application — method integration. We pick up Shlaer and Mellor’s
OOA as an example and its description can be obtained from the four popular
methods ; Data Flow Diagram, Entity Relationship Diagram, Object Communi-
cation Diagram, State Transition Diagram. The constraints for integrating these
diagrams can be represented in our technique. These examples show that our
modelling technique is sufficiently powerful in expression, and suitable to be a
basis for Computer Aided Method Engineering.

2 Method Modelling based on ER Model and Attribute
Grammer

2.1 Method Modelling based on ER model

Many studies on meta models based on ER model have been done, i.e. they
used ER modeling technique to represent methods. As a simple example, let’s
consider the definition of data flow diagrams of Structured Analysis by using ER
model. The definition has the entities for the nodes of data flow diagrams such as
Processes (Bubbles) and Data Flows, and relationships between the entities for
the edges or connections among the nodes, as shown in Figure 1. ER model could
represent the various methods widely and easily. However, this figare does not
express a well-formed data flow diagrams completely. In a well-formed diagram
it is not permitted to directly connect the data stores to the source&sinks with
data flows, but the figure 1 does not contain this constraint.

There is one more shortcoming. ER model cannot’ express the hierarchical
structures of data flow diagrams and the constraints of the hierarchy used in

355

Structured Analysis. For example, a process in a data flow diagram can be hier-
archically decomposed and refined to another data flow diagram. That is to say,
the inside of the process is a lower-level data flow diagram. In this hierarchical
structure, the inputs and outputs of the process should be equal to the external
inputs and outputs of its lower-level data flow diagram.

It is difficult to represent these kinds of hierarchical structure and constraints
as mentioned above by using ER model, even though ER model is such a simple
vehicle to describe the methods.

Input3 Input2
D : Entity @ : Relationship

Fig. 1. A Definition of Data Flow Diagram in ER Model

2.2 Method Modelling based on Attribute Grammers

Attribute grammer approach can be an alternative to define the hierarchies and
the constraints discussed before. It is an extension of context-free grammers
and was proposed by Knuth to specify the formal semantics of programming
languages. Attribute grammer based language was used to describe software
processes|[8], but unlike this, we apply an attribute grammer approach to speci-
fying products such as data flow diagrams.

An attribute grammer consists of a set of the derivation rules associated with
the evaluation rules and the conditions. The evaluation rules are used to calculate
the attribute values associated with grammatical symbols in the derivation rules.
The condition expresses a constraint that must be satisfied by the attribute
values when the derivation rule is applied. That is to say, we cannot apply the
derivation rules whose conditions do not hold.

Consider the definition of the data flow diagram in attribute grammer ap-
proach. The four entities — Process, DataStore, Source&Sink and DataFlow, and
the six relationships in Figure 1 can correspond to non-terminal symbols which
have the set of entity instances or relationship instances as their attributes. The
first derivation rule specifies that data flow diagrams consists these ten compo-
nents denoted by the non-terminal symbols. We associate a synthesized attribute
“product” with the non-terminal symbols. The value of the attribute “prod-
uct” is a set of the instances of the entities or relationships belonging to the

356

non-terminal symbols, i.e. product itself. For example,* product(<Process>)”
denotes the set of instances of the processes in the data flow diagram. The con-
ditions Condition, and Conditions express that both “Inputl” and “Outputl”
are the relationships between “Process” and “DataFlow”. The attribute value
“process_role(<Inputl>)" denotes the set of processes participating in the re-
lationship “Inputl”. As you can find in the derivation rule of “Inputl”, this
relationship is defined as a pair of a process and a data flow which is an input
to the process. For the other relationships such as “Input2”, “Input3” and so
on, we can define the similar conditions. Condition.3 in the derivation rule of
<DataFlowDiagram> specifies that neither data stores nor source&sinks can
connect directly with each other through any data flows. We can derive a data
flow diagram by this rule if all of the conditions attached with it are satisfied,
i.e. well-formed data flow diagrams should necessarily meet the conditions.

<DataFlowDiagram>::= <Process> <DataFlow> <DataStore> <Source&Sink>
<Input1> <Input2> <Input3> <Outputl> <Output2> <Outputd>
product(<DataFlowDiagram>) « .- -
Condition; : (process_role(<Inputl>) U process_role(<Outputl>))
= product(<Process>)
Condition : (dataflow_role(<Inputl>) U dataflow_role(<Outputl>)
= product(<DataFlow>)

Conditions : (dataflow_role(<Input2>) U dataflow_role(<Input3>)) N
(dataflow_role(<Output2>) U dataflow_role(<Output3>)) = &
<Process>:= €
| <process_instance> <Process>»
product(<Process>) « {id(<process_instance>)} U domain(<Process>;)
<DataFlow>:u= ---
product(<DataFlow>) « .-

<Inputl>:i= ¢
process_role(<Inputl>) «— &
dataflow_role(<Inputl>) «— &
| (<process_instance> , <dataflow_instance>) <Inputl>s
product(<Inputl>) — { (product(<process_instance>, <dataflow-instance>) }
U product(<Input>3)
process.role(<Inputl>)
— { product{<process_instance>) } U product_role(<Inputl:>;}
dataflow_role(<Inputl>)
— { product(<dataflow_instance> } U dataflow.role(<Inputl>3)
<Input2>u= ---

<process;instance>::: <identifier>
product({<process_instance>) « Sring(<identifier>)

We can also express the hierarchical structure of the data flow diagrams by
adding the following derivation rule to the above rules.

<process_instance>::= <DataFlowDiagram>

357

The constraints which must be satisfied by the refined process instance
<process_instance> and its lower-level data flow diagram <DataFlowDiagram>
can be also specified in this attribute grammer approach. To specify them, we
should add more attributes, evaluation rules, and conditions to the above gram-
mer, and omit them on account of space.

The method model based on attribute grammers can express most of the
methods and solve the problems in ER model. However, one of their shortcomings
is that we need a lot evaluation rules such as value copy rules. As shown in the
example of DataFlowDiagramn above, we must also introduce many conditions
for representing such a scheme of the data flow diagram as Figure 1. Many rules
and conditions might fail down in incomprehensible descriptions of the methods.

3 Method Modelling based on Object-Z

The formal specification language Object-Z is an object oriented extension of the
Z language semantically based on ZF set theory. In object oriented paradigm,
the system to be specified is considered as a collection of individual objects
having internal states. Object-Z defines the objects by using class concepts where
the definition of their states, initial states, and the cperations related to them
are encapsulated. The class schema for the specification of a class may contain
several kinds of schemas as well as the definitions of axioms, predicates, types,
and constants. The typical class schema is be shown in the following:

— Typical_Class_Schema
InheritedClasses

State Variable Declaration

StateInvariants

INIT
rInitialState

__OperationSchema
Signatures (Variable Declarations)

Predicate
(Pre and post condition)

The inherited classes are the names of the super classes whose states and oper-
ations are inherited to the class Typical Class_Schema.

The aim of the methods is the navigation of designers’ activities to develop
specifications. The methods tell the designers what documents they should pro-
duce in a specification process, and what activities they should perform for pro-
ducing the documents. So we can model the methods from two perspectives —
product and activity perspectives. From the product perspective, the structures
or types of the produced products (incl. hierarchical structures) and constraints
on the product parts should be specified to define the method. To specify the
activities in the method, we define permitted manipulations on its products and
their behavioral constraints such as execution ordering. We describe a product

358

specification of the method by a class schema in Object-Z since the instances of
the produced products can be considered as objects in object oriented paradigm.
The product structure and the constraints can be specified by a state schema.
Operation schemas encapsulated in a class schema define the manipulations on
the corresponding product, and the pre- and post-conditions of the defined op-
erations specify the behavioral constraints on them such as possible execution
order.

We begin with a simple example of the specification of the class Product

written in Object-Z. It will be used as a super class to specify the product
classes of the various methods.

___Product

—INIT
title : Identifier designer?, manager? : Person
version : Version_Number
status : Status

version = 0

creation_date : Date status = ‘in_p'rt')g'ress;
last_modification_date : Date producer = designer’
producer : Person responsible_person = manager?

responsible_person : Person
reviewers : P Person

— Notify_Completion_—__________ _ Review
A(status, creation_date) A(status, reviewers)
today? : Date review_team? : P Person

. , review-result! : Review_Report
status = ‘in_progress

status' = ‘completion’ status = ‘completion’
creation_date = today? status' = ‘reviewing’
reviewers' = review_team?

An object of the class Product has several state variables such as title, version,
status and so on.”Assume that the domains of these state variables, e.g. Identi-
fier, Date and Person, would be externally defined as basic types. The operation
Notify_Completion sets up the value of the state creation_date when the devel-
opment of the current version of the product is completed. We must note the
conventions on variables used in the operation schema. The A notation in the
signature part declares the variables whose values may be updated by the oper-
ation. The state variables with the prime (') decoration represent the state after
the operation, while the variables which are not decorated represent the state
before the operation. Inputs and outputs of the operation are denoted by the vari-
ables with “?” and “!” respectively. In the schema Notify_Completion, ‘today?’
is an input to this operation and the status is also changed from ‘in_progress’ to
‘completion’ after this operation

We define the generic schema ConnectedGraph before the next class DataFlow-
Diagram. This schema specifies the constraints on a special class of directed

graphs whose nodes have at least one connected edge, i.e. an input edge or an
output edge.

359

— ConnectedGraph [Nodes, Edges, InputEdges, OutputEdges)

Nodes = (ran InputEdges U ran OutputEdges) A
Edges = dom InputEdges = dom OutputEdges

Several Object-Z operators on sets and relations occur in the logical formulas of
the schema. The domain and range operators, dom and ran, extract the domain
and range of a relation or a function respectively, i.e. domR = {z | (z,y) €
R} and ranR = {y | (z,y) € R} where R is a relation or a function. Nodes
and Edges are certain sets of nodes and edges respectively, and InputEdges
and OutputEdges denote relationships between Nodes and Edges. For example,
InputEdges expresses which nodes the edges are inputs to. Assume that these
relationships are defined as finite functions Edges -+ Nodes. Thus the term
“ran InputEdges” denotes a set of nodes to which there is at least one input
edge.

We can specify a class schema for data flow diagrams and the operations
on them by using Product and ConnectedGraph as shown in the next page.
The class DataFlowDiagram incorporates all the features such as state variables,
invariants, and operations of the Product class. For example, DataFlowDiagram
has the state variables title, status, the operations Notify_Completion, Review
and so on. In addition, the state variables or structural components of the class
contain four sets (corresponding to entities in ER model) and six finite functions
(corresponding to relationships in ER model), and this definition comes from
Figure 1. Process, DataFlow, DataStore, and SourceéSink, which are used for
defining domains of the states, are considered as basic types which are externally-
given sets. The operator P stands for the power set. For example, the domain
of the processes of DataFlowDiagram is a power set of the given set Process.
The relationships between DataFlow and other entities are defined as functions
because these are one-to-many relationships, i.e. each data flow has just one
source and just one destination. When the development of a data flow diagram
is completed, it should meet the constraint WellFormedDataFlowDiagram which
is specified in the axiomatic definition below the state schema. It consists of two
logical conjuncts — the first one specifies that processes, source&sinks, and data
stores in a data flow diagram should have at least one data flow as their input
or output. In addition, source&sinks and data stores can be connected only to
processes through data flows. It means that there are no data flows directly
between a source&sink and a data store, or data stores. The second conjunct
stands for this constraint.

The DataFlowDiagram class has several operations on its instances. The op-
eration IdentifyProcesses corresponds to the designers’ activities for identifying
processes and it adds a newly identified process to the state variable processes.
The second operation IdentifyInputs, which corresponds to the activities for iden-
tifying an input data flow to a certain process, cannot be performed until the
process has been already identified. The first logical formula on the variable
“process? in the predicate part specifies this behavioral constraints. That is to
say, this operation can be performed after at least one execution of the operation
IdentifyProcesses. By using the predicates in operation schemas, we can specify
the behavioral constraints such as execution order on the activities.

360

— DataFlowDiagram
Product

processes : P Process

dataflows : P DataFlow

datastores : P DataStore
source&sinks : PP Source& Sink
mputl : DataFlow +w Process
outputl : DataFlow -+ Process
input2 : DataFlow + Source& Sink
output2 : DataFlow + Source& Sink
mput3 : DataFlow +» DataStore
output3 : DataFlow + DataStore

status = ‘completion’ = WellFormedDataFlowDiagram

WellFormedDataFlowDiagram : B

WellFormedDataFlowDiagram =
Connected Graph[processes U source&sinks U datastores,
inputl U input2 U input3, outputl U output2 U output3] A
(dom znput2 U dom input3)) N (dom output2 U dom output3) = &

__IdentifyProcesses
A(processes)
new._process? : Process

processes’ = processes U {new_process?}

IdentifyInputs

rA(dataﬂows. inputl)
process? : Process
new_dflow? : DataFlow

process? € processes
dataflows’ = dataflows U {new_dflow?}
inputl’ = inputl U {new-dflow? — process}

To define hierarchical data flow diagrams, we introduce a function from pro-
cesses to lower-level data flow diagrams. This function denotes what data flow
diagram a process is refined to. The class of hierarchical data flow diagrams can
be recursively defined by using the inheritance from the class DataFlowDiagram.

The class schema HierarchicalDataFlowDiagram has the axiomatic definition
WellFormedHierarchicalDataFlowDiagram which defines a constraint for pre-
serving consistency on input-output data flows between a refined process and
its lower level data flow diagram. In other words, the input flows and output
ones of the refined process should be equal to inputs and outputs between the
lower-level data flow diagram and the external environment. In the definition of
WellFormedHierarchicalDataFlowDiagram, you will find the operator > called
range restriction. It reduces a relation or function to one which has a given range,
e.g. we have inputl > {p} = {dfd — p | inputl(dfd) = p} where p € Process,
dfd € DataFlow, and inputl is a state variable of DataFlowDiagram class.

361

HierarchicalDataFlowDiagram
rDataFlowDiagram

refine : Process + HierarchicalDataFlowDiagram

status = ‘completion’
= WellFormedHierarchicalDataFlowDiagram

WellFormedHierarchicalDataFlowDiagram : B

WellFormedHierarchicalData FlowDiagram =
dom refine C processes A
Vp : dom refine o (dom(inputl > {p}) = InputFlows(refine(p)) A
dom(outputl > {p}) = OutputFlows(refine(p)))

InputFlows : HierarchicalDataFlowDiagram — DataFlow

V hdfd : HierarchicalDataFlowDiagram e InputFlows(hdfd) =
dom(tnputl.hdfd U input2.hdfd U input3.hdfd)
\ dom(outputl.hdfd U output2.hdfd U output3.hdfd)

OutputFlows : HierarchicalDataFlowDiagram — DataFlow

Y hdfd : HierarchicalDataFlowDiagram e OutputFlows(hdfd) =
dom(inputl.hdfd U input2.hdfd U input3.hdfd)
\ dom(outputl.hdfd U output2.hdfd U output3.hdfd)

__ RefineProcesses
A(refine)
refined_process? : Process

lowerdfd! : HierarchicelDataFlowDiagram

refined_process? € processes

refined_process? € dom refine

title.lowerdfd! = refined_process?

refine’ = refine U {refined_process? + lowerdfd!}

The functions InputFlows and OutputFlows, which are used in WellFormed-
HierarchicalDataFlowDiagram, calculate a set of the input data flows from the
external environment and a set of the output data flows to the external re-
spectively. The term inputl.hdfd occurring in the definitions InputFlows and
OutputFlows denotes the value of the state variable input! of the data flow di-
agram hdfd, i.e. the relationship between processes and their input data flows
in hdfd. The operator \, appearing in the definitions stands for set difference,
i.e. {a,b,c}\{b.d} is equal to {a.c}. This operator in the definition “InputFlows”
calculates the data flows which are inputs to some processes, data stores or
source&sinks (dom(inputl U input2 U input3)) but which has no relation to any-
thing as outputs (dom{outputl U output2 U output3d)).

362

The operation “RefineProcess” is newly added and it denotes the activities
for constructing a data flow diagram (lowerdfd!) of a process (refined_process?).
All of the operations defined in DataFlowDiagram can be applied to the instances
of HierarchicalDataFlowDiagram.

As shown in this section, Object-Z language has powerful constructs for defin-
ing hierarchical data structures and for specifying constraints comprehensively.
It can be considered as one of suitable techniques for specifying not only software
specifications but also specification and design methods.

4 Method Integration — An Example

The previous section have presented the advantages of Object-Z language to use
method descriptions. In this section, we will show another aspect of our tech-
nique — application to method integration. The method integration plays an
important role on constructing a new method from the fragments of existing
methods[10, 13, 3]. In the specification development following Shlaer and Mel-
lor’'s OOA, we should have four types of the diagrams — Entity Relationship
Diagram, Object Communication Diagram, State Transition Diagram and Data
Flow Diagram. They are meaningfully connected to each other to express a con-
sistent specification. This meaningful connections can be formally specified in
our framework as semantic constraints for the diagrams. In this modeling, the
four diagrams can be considered as the basic fragments or parts of the methods
for constructing another method Shlaer and Mellor’s OOA, i.e. the method can
be newly obtained as the result of the integration of the four existing methods.
Entity Relationship Diagram, Object Communication Diagram, and State
Transition Diagram can be defined in Object-Z language in the same way as
Data Flow Diagram. Figure 2 shows graphical representations, i.e. ER Diagrams
of these diagrams, and it is useful to understand the following textual repre-
sentations written in Object-Z notation, which are shown in the next page.

send

Object [Messaee
domain_of
i P

receive

(b) Object Communication Diagram
hasl

has2
Iz;irtltt;xl uteJ [Cardinal@ Relatit())ns ip previous_to input_event
[Attributg .
“late iransmon * Event '

(a) Entity Relationship Diagram next_to output_event
(c) State Transition Diagram

Fig. 2. ER Model Based Graphical Notation for Diagrams

363

EntityRelationship Diagram
Product

entities : P Entity

relationships : P Relationship
entity_attributes : P Attribute
relationship_attributes : P Attribute
cardinalities : N x N

domain_of : Relationship -+ Entity
range_of : Relationship +» Entity
hasl : Attribute 4 Entity

has2 : Attribute + Relationship
has3 : Relationship +» N x N

status = ‘completion’
= WellFormedEntityRelationship Diagram

WellFormedEntityRelationship Diagram : B

WellFormedEntityRelationship Diagram =
ran domain_of C entities A ran range_of C entilies A
dom domain_of = relationships A dom range_of = relationships A
dom hasl = entity_attributes A ran hasl C entities A
dom has2 = relationship_atiributes A ran has2 C relationship_attributes A
dom has3 = relationships

— ObjectCommaunicationDiagram
Product

objects : P Object
messages : P Event

send : Event 4 Object
recetve : Event + Object

status = ‘completion’ = Connected Graph[objects, messages. send, recesve)

— State TransttionDiagram
Product

states : P State

transitions : P Transition

events : P Event

previous_to : Transition + State
next_to : Transition + State
input_event : Transition +» Event
output._event : Transition + Event

status = ‘completion’
= ConnectedGraph|states, transitions, previous_to, next_to] A
transitions = dom input_event

364

Class Schema

onnectedGraph | Generic Schema

-

- -
= - ’ ~

-] -
_—- - ~

L

DataF, Iotzagram EntltyRelanonsthDcagmm)(StateTranmwnDtagram)(ObjectConwnumcatwnDtagmm)

@rarchtcalDataF IOWZN // —— referred

Shlaer and Mellor's 00A === inherited

Fig. 3. Hierarchical Relationships among Schemas

connectd

=

Fig. 4. Relation among Four Diagrams

To define these four diagrams, we have used the other schemas by schema
reference and inheritance mechanisms. Figure 3 shows the hierarchical relation-
ships among them. Method integration into Shlaer and Mellor’s OOA will be
done based on inheritance of these four diagrams.

Before defining Shlaer and Mellor’'s OOA, we will specify some constraints
to integrate these four diagrams. Figure 4 shows the relationships among them.
Connectl, connect2, connect3, and connect4 in the figure stand for mathemat-
ical constructs such as relation and functions which meaningfully connect the
diagrams to each other. An entity relationship diagram is related to an object
communication diagram which depicts the message flow among objects. An en-
tity should occur as an object in the object communication diagram. For each
entity occurring in an entity relationship diagram or each object in an object
communication diagram, we have a state transition diagram which expresses its
internal state change. Thus connect2 and connect3 have a set of functions which
are from entities or objects to state transition diagrams.

Receive ™ occurring in the schema connection_between_CD_and_STD stands
for the inverse map of the function receive. The formula in the predicate part
of connection_between_ERD_and_CD specifies that the entities in Entity Rela-
tionship Diagram (erd.entities) are the same as the objects in Communication
Diagram (cd.objects). The second formula in connection_between_CD_and _STD
expresses that input messages to and output messages from an object should
appear as input events and output events respectively in its state transition
diagram.

365

___connection_between_ERD_and_CD
connectl : EntityRelationship Diagram — ObjectCommunicationDiagram

Y erd : dom connectl; ¥V cd : ran connectl o erd.entities = cd.objects

___connection_between_ERD_and _STD
connect2 : EntityRelationship Diagram — (Entity + State TransitionDiagram.)

Verd : dom connect2 o erd.entities = dom(ran connect2)

___connection_between_CD_and_STD
connect3d : CommaunicationDiagram — (Object + State TransitionDiagram)

Y ¢d : dom connect3 o cd.objects = dom(ran connect3)
Y cd : dom connect3; obj : dom(ran connect3); objtostd : ran connect3
o input_event.objtostd (obj) = receive ™' (cd.objects)
A output_event.objtostd(obj) = send ' (cd.objects)

__connect_between_STD_and_DFD

connectd : State TransitionDiagram — (Event 4 DataFlowDiagram)

V std : dom connectd e std.output_event O dom(ran connect4)

Finally we can have the specification of OOA methods in the following :

. Shlaer_and_Mellor's_OOA
DataFlowDiagram
CommunicationDiagram
EntityRelationship Diagram
State TransitionDiagram

connect_between_ERD_and_CD

connect_between_ERD_and _STD

connect_between_CD_and_STD
connect_between_STD_and_DFD

It consists of the specifications of the four diagrams and constraints for their in-
tegration, and holds the information about relationships among these diagrams
in its state variables such as connectl, connect2, connectd, and connect4. Opera-
tions on Shlaer_and_Mellor's_OOA are inherited from the four diagram classes.
For example, “IdentifyProcesses” of DataFlowDiagram is also an operation on
Shlaer _and_Mellor’ s_OOA.

5 Conclusion

This paper has introduced another method modelling technique based on Object-
Z to represent various methods for supporting specification development. It has

366

been shown that our technique is applicable to method integration by using an
example. The examples including method integration might be so simple that we
could use a Z language instead of Object-Z. However, object-orientedness plays
an important role on reuse of method fragments to counstruct new methods.
Both Z and Object-Z are not executable, so we should combine our technique
and other executable devices to enact the specified methods. The predicate logic
underlying Z and Object-Z can provide the theoretical foundation for method
integration and method synthesis. For example, we can check the consistency of
the integrated method and the correctness of the integration process if the rele-
vant methods are described in Object-Z. The logical formulas might be difficult
for untrained persons to read and write. A library of method fragments, called
method base[13, 11}, are needed to specify and to integrate the methods.

References

1. A. Alderson. Meta-CASE Technology. In Lecture Notes in Computer Science 509,
pages 81-91, 1992.

2. S. Brinkkemper. Formalisation of Information Systems Modelling. Thesis Pub-
lisher, 1990.

3. S. Brinkkemper. Integrating Diagrams in CASE Tools through Modelling Trans-
parency. Information and Software Technology, 35(2):101-105, 1993.

4. M. Brough. Methods for CASE : a Generic Framework. In Proc. of 4th Interna-
tional Conference CAiSE92, LNCS 593, pages 525-545, 1992.

5. T. DeMarco. Structured Analysis and System Specification. Yourdon Press, 1978.

6. R. Duke, P. King, R. Rose. and G. Smith. The Object-Z Specification Language.
Technical Report 91-1, Software Verification Center, University of Queensland,
1991.

7. AK. Jordan and A.M. Davis. Requirements Engineering Metamodel : An Inte-
grated View of Requirements. In Proc. of 15th COMPSAC, pages 472-478, 1991.

8. T. Katayama. A Hierarchical and Functional Software Process Description and its
Enaction. In Proc. of the 11th ICSE, pages 343-352, 1989.

9. D.E. Knuth. Semantics of Context-free Languages. Mathematical Systems Theory,
2:127-145, 1968.

10. K. Kronlof, editor. Method Integration — Concepts and Case Studies. Wiley, 1993.

11. M. Saeki, K. Iguchi, K. Wen-yin, and M. Shinohara. A Meta-Model for Represent-
ing Software Specification & Design Methods. In Information System Development
Process, pages 149-166. North-Holland, 1993.

12. S. Shlaer and S.J. Mellor. An Object-Oriented Approach to Domain Analysis.
ACM SIGSOFT Software Engineering Notes, 14(5):66-77, 1989.

13. K. Slooten and S. Brinkkemper. A Method Engineering Approach to Information
Systems Development. In Information System Development Process, pages 167—
186. North-Holland, 1993.

14. K. Smolander, K. Lyytinen. V.P. Tahvanainen, and P. Marttiin. MetaEdit — A
Flexible Graphical Environment for Methodology Modelling. In Proc. of 3rd In-
ternational Conference CAiSE91, LNCS 498, pages 168-193, 1991.

15. P. Sorenson, J. Tremblay, and A. McAllister. The Metaview System for Many
Specification Environments. IEEE Software, 2(5):30-38, 1988.

16. J.M. Spivey. The Z Notation — A Reference Manual. Prentice Hall, 1987,

