
Specifying Software Specification & Design
Methods

Motoshi Saeki and Kuo Wenyin

Dept. of Computer Science, Tokyo Institute of Technology
Ookayama 2-12-1, Meguro-ku, Tokyo 152, Japan

E-mail : {saeki, wenyin}@cs.titech.ac.jp

Abs t r ac t . To support customizing and integrating software specifica-
tion & design methods to a suitable method for designers' problenl do-
main and environment, so-called Computer Aided Method Engineering
(CAME), we need a meta model for representing the fragments of meth-
ods formally and for composing them into a method. This paper discusses
a meta modelling technique by using a formal specification language
Object-Z which is an object oriented version of the Z language. The
logical expressions of Object-Z allows us to describe hierarchical struc-
tures and the constraints in the methods and the inheritance mechanism
enables us to integrate method fragments into a new method.

1 I n t r o d u c t i o n

I t is important to design software specifications effectively for developing high
quality software with low cost because specification & design phases are the early
step in the software development process. Many specification & design methods
(shortened to methods) such as Structured Analysis & Design [5] and Object-
Oriented Analysis & Design [12] have been developed to guide designers' work.
However, these methods can work well only in some problem domains and /o r
environment, not in all, and it is very difficult to create an universal method
which can work well in all the domains and /o r environment. It is more feasible
that the designers can select suitable methods, customize, and integrate the
methods to a suitable one for their problem domains and environment.

Recently, there are some methods with multiple viewpoints to develop the
large and complex software systems. For example, Shlaer's and Mellor's Ob-
ject Oriented Analysis[12] can be considered as a multi-view method since its
underlying model is the composition of three models - - an information model
(Entity Relationship Diagram), a state model (State Transition Diagram) and a
process model (Data Flow Diagram). We know tha t the specifications described
in several methods with the different viewpoints are more useful[4]. However, it
is a problem how to integrate the specifications developed by using the differ-
eat methods into a final specification. To support multi-view specification, we
also need a mechanism for integrating the specifications writ ten in the different
methods.

One of the possible solutions for the above requirements is to use a meta
system or meta model approach[I] for method modelling. The meta model is
a da ta model or scheme for representing methods, and expresses a common

354

conceptual s t ructure for them. Most of the me ta models which have been stud-
ied until recently are based on Enti ty Relationship model (shortened to ER
model)J7, 14, 15]. ER model allows us to represent the methods comprehen-
sively, but it is difficult to describe the constraints and the hierarchical struc~
tures of the methods. Most of the me ta model approaches except for [2] did
not deal with the constraints or the hierarchical structure. Knuth ' s a t t r ibute
g rammer approach[9] could be used to represent the hierarchical s t ructure of
products produced in the methods. However, it should include many evaluation
rules called copy rules to specify any systems and the many occurrences of these
non-essential rules allow us to construct the incomprehensible descriptions. Our
technique is based on the formal specification language Object-Z[6] to specify
the constraints comprehensively. Object-Z is an object oriented extension of a
Z language[16] and its notat ion is the same as tha t of Z. Hierarchical structures
can also be represented with mathematical maps or relations in Object-Z. Fur-
thermore the inheritance mechanism of Objeet-Z allows us to integrate methods
into one. Object oriented paradigm provides the reusability of method fragment
descriptions for constructing new methods.

The organization of this paper is as follows. In the next section, we discuss
two kinds of method modelling techniques - - one is based on ER model and
another is on a t t r ibute grammers. We introduce our method modelling tech-
nique based on Object-Z language in section 3. The class of da ta flow diagrams
is also specified in our framework as an example here. Section 4 presents our
meta model application - method integration. We pick up Shlaer and Mellor's
OOA as an example and its description can be obtained from the four popular
methods ; Da ta Flow Diagram, Enti ty Relationship Diagram, Object Communi-
cation Diagram, State Transition Diagram. The constraints for integrating these
diagrams can be represented in our technique. These examples show that our
modelling technique is sufficiently powerful in expression, and suitable to be a
basis for Computer Aided Method Engineering.

2 M e t h o d M o d e l l i n g b a s e d on E R M o d e l a n d A t t r i b u t e
G r a m m e r

2.1 M e t h o d M o d e l l i n g b a s e d o n E R m o d e l

Many studies on meta models based on ER model have been done, i.e. they
used ER modeling technique to represent methods. As a simple example, let 's
consider the definition of da ta flow diagrams of Structured Analysis by using ER
model. The definition has the entities for the nodes of da ta flow diagrams such as
Processes (Bubbles) and Da ta Flows, and relationships between the entities for
the edges or connections among the nodes, as shown in Figure 1. ER model could
represent the various methods widely and easily. However, this figure does not
express a well-formed data flow diagrams completely. In a well-formed diagram
it is not permit ted to directly connect the da ta stores to the source&sinks with
da ta flows, but the figure 1 does not contain this constraint.

There is one more shortcoming. ER model cannot' ex~)ress the hierarchical
structures of da ta flow diagrams and the constraints of the hierarchy used in

355

Structured AnMysis. For example, a process in a da ta flow diagram cai~ be hier-
archically decomposed and refined to another da ta flow diagram. Tha t is to say,
the inside of the process is a lower-level da ta flow diagram. In this hierarchical
structure, the inputs and outputs of the process should be equal to the external
inputs and outputs of its lower-level da ta flow diagram.

It is difficult to represent these kinds of hierarchical s t ructure and constraints
as mentioned above by using ER model, even though ER model is such a simple
vehicle to describe the methods.

Output l ~ Input l

Input3 lnput2

---- ') : Entity �9 ." Relationship

Fig. 1. A Definition of Data Flow Diagram in ER Model

2.2 M e t h o d M o d e l l i n g b a s e d o n A t t r i b u t e G r a m m e r s

Attr ibute g rammer approach can be an alternative to define the hierarchies and
the constraints discussed before. I t is an extension of context-free grammers
and was proposed by Knuth to specify the formal semantics of programming
languages. Att r ibute grammer based language was used to describe software
processes[8], but ~mlike this, we apply an a t t r ibute gralnmer approach to speci-
fying products such as da ta flow diagrams.

An a t t r ibute grammer consists of a set of the derivation rules associated with
the evaluation rules and the conditions. The evaluation rules are used to calculate
the a t t r ibute values associated with grammatical symbols in the derivation rules.
The condition expresses a constraint tha t must be satisfied by the a t t r ibute
values when the derivation rule is applied. Tha t is to say, we cannot apply the
derivation rules whose conditions do not hold.

Consider the definition of the da ta flow diagram in a t t r ibute g rammer ap-
proach. The four entities - Process, DataStore , Source&Sink and DataFlow, and
the six relationships in Figure 1 can correspond to non-terminal syinbols which
have the set of entity instances or relationship instances as their a t t r ibutes . The
first derivation rule specifies tha t da ta flow diagrams consists these ten compo-
nents denoted by the non-terminal symbols. We associate a synthesized a t t r ibute
"product" with the non-terminal symbols. The value of the a t t r ibute "prod-
uct" is a set of the instances of the entities or relationships belonging to the

356

non- terminal symbols, i.e. p roduc t itself. For example," p r o d u c t (< P r o c e s s >) "
denotes the set of instances of the processes in the da t a flow diagram. The con-
ditions Condition1 and Condition2 express tha t bo th " I n p u t l " and " O u t p u t l "
are the relationships between "Process" and "DataFlow". The a t t r ibu te value
"p roces s_ ro l e (< Inpu t l>) " denotes the set of processes par t ic ipa t ing in the re-
lat ionship " I n p u t l ' . As you can find in the derivation rule of " I n p u t l " , this
relationship is defined as a pair of a process and a da t a flow which is an input
to the process. For the o ther relationships such as " Input2" , " Input3" and so
on, we can define the sinlilar conditions. Condition_3 in the derivation rule of
< D a t a F l o w D i a g r a m > specifies tha t nei ther da ta stores nor sources can
connect directly with each other th rough any d a t a flows. We can derive a da t a
flow diagram by this rule if all of the condit ions a t tached with it are satisfied,
i.e. well-formed da t a flow diagrams should necessarily meet the conditions.

<DataFlowDiagram>::= <Process> <DataFlow> <DataStore> <Source&Sink>
<Input1> <Input2> <Input3> <Outpu t1> <Outpu t2> <Outpu t3>

product(<DataFlowDiagram>) +-- . .-
Condition1 : (process_role(<Inputl>) O process ro le (<Output l>))

= product (<Process>)
Condition2 : (dataflow_role(<Inputl>) U dataflow,_role(<Outputl>)

= product (< DataFlow>)

Condition3 : (dataflow.a'ole(<Input2>) U dataflowJ'ole(<Input3 >)) f3
(dataflow.a'ole(<Output2>) t2 dataflow_role(<Output3>)) = O

<Process>: := e
I <process_instance> <Process>2

product(<Process>) ~-- {id(<process_instance>)} U domain(<Process>2)
<DataFlow>: := �9 ..

product(<DataFlow>) *-- �9 ..
o . .

<Inpu t1> : := e
process_role(<Input 1 >) +-- O
dataflow_role(<Input I >) +-- O

I (<process_instance> , <dataflow_instance>) <Input1>2
produc t (<Inpu t l>) +-- { (product(<process_instance>, <dataflow..instance>) }

(3 product(<Input >2)
process_role(<Inputl>)

{ product(<process_instance>) } U product_role(<Inputl >2)
dat aflow_a'ole(<Input 1 >)

{ product(<dataflow_.instance> } U dataflow._role(<Input 1>2)
< Inpu t2> : := �9 �9 �9

<processJnstance>: := <identifier>
product(<process._instance>) ~-- Sring(<identifier>)

We call also express the hierarchical s t ruc ture of the d a t a flow diagrams by
adding the following derivation rule to the above rules.

<process_instance>::= <Dat aFlowDiagram>

357

The constrMnts which must be satisfied by the refined process instance
<process_instance> and its lower-level da ta flow diagram <Da taF lowDiag ram>
can be also specified in this a t t r ibute g rammer approach. To specify them, we
should add more at t r ibutes, evaluation rules, and conditions to the above gram-
lner, and omit them on account of space.

The method model based on a t t r ibute grammers can express most of the
methods and solve the problems in ER inodel. However, one of their shortcomings
is that we need a lot evaluatiml rules such as value copy rules. As shown in the
example of DataFlowDiagraln above, we must also introduce many conditions
for representing such a scheme of the da ta flow diagram as Figure 1. Many rules
and conditions might fail down in incomprehensible descriptions of the methods.

3 M e t h o d M o d e l l i n g based on Objec t -Z

The formal specification language Object-Z is an object oriented extension of the
Z language semantically based on ZF set theory. In object oriented paradigm,
the system to be specified is considered as a collection of individual objects
having internal states. Object-Z defines the objects by using class concepts where
the definition of their states, initial states, and the operations related to them
are encapsulated. The class schema for the specification of a class may contain
several kinds of schemas as well as the definitions of axioms, predicates, types,
and constants. The typical class schema is be shown in the following:

__ Typical_Class_Schema
InheritedClasses

State Variable Declaration

StateInvariants

_ I N I T

F lnitiaIState

i OperationSchema
Signatures (VariableDeclarations)

Predicate
(Pre and post condition)

The inherited classes are the names of the super classes whose s ta tes and oper-
ations are inherited to the class TypicaLClass_Schema.

The aim of the methods is the navigation of designers' activities to develop
specifications. The methods tell the designers what documents they should pro-
duce in a specification process, and what activities they should perform for pro-
ducing the documents. So we can model the methods from two perspectives - -
product and activity perspectives. From the product perspective, the s t ructures
or types of the produced products (incl. hierarchical s tructures) and constraints
on the product par ts should be specified to define the method. To specify the
activities in the method, we define permit ted manipulat ions on its products and
their behavioral constrMnts such as execution ordering. We describe a product

358

specification of the method by a class schema in Objeet-Z since the instances of
the produced products can be considered as objects in object oriented paradigm.
The product s t ructure and the constraints can be specified by a s tate schema.
Operat ion schemas encapsulated in a class schema define the manipulations on
the corresponding product, and the pre- and post-conditions of the defined op-
erations specify the behavioral constraints on them such as possible execution
order.

We begin with a simple example of the specification of the class P r o d u c t
written in Object-Z. It will be used as a super class to specify the product
classes of the various methods.

__ P r o d u c t

t i t le : I d e n t i f i e r
v e r s i o n : V e r s i o n _ N u m b e r
s ta tus : S t a t u s
c rea t i on_da te : Da te
l a s t _ m o d i f i c a t i o n _ d a t e : D a t e
p r o d u c e r : P e r s o n
re spons ib l e_per son : P e r s o n
r e v i e w e r s :]P P e r s o n

_ N o t i] y _ C o m p l e t i o n
A (s t a t u s , c rea t ion_da te)
today? : D a t e

s ta tus = ' in_progress '
s t a tu s ' = ' c o m p l e t i o n '
c r ea t i on_da te = today?

- f N I T
des igner? , m a n a g e r ? : P e r s o n

v e r s i o n = 0
s ta tus = t in_progress '
p r o d u c e r = des igner?
r e spons ib l e_per son - : m a n a g e r ?

_ R e v i e w
A (s ta tus , r ev i ewers)
r e v i e w _ t e a m ? : P P e r s o n
rev iew_resu l t ! : R e v i e w _ R e p o r t

s ta tus = ' c o m p l e t i o n '
s t a tu s ' = ' r e v i e w i n g '
r e v i e w e r s ' -= r e v i e w _ t e a m ?

An object of the class P r o d u c t has several s tate variables such as t i t l e , v e r s i o n ,

s t a t u s and so on .Assume tha t the domains of these state variables, e.g. I d e n t i -

t i e r , D a t e and P e r s o n , would be externally defined as basic types. The operation
N o t i f y _ C o m p l e t i o n sets up the value of the state c r e a t i o n _ d a t e when the devel-
opment of the current version of the product is completed. We must note the
conventions on variables used in the operation schema. The A notation in the
signature par t declares the variables whose values may be updated by the oper-
ation. The state variables with the prime (') decoration represent the state after
the operation, while the variables which are not decorated represent the state
before the operation. Inputs and outputs of the operation are denoted by the vari-
ables with "?" and "!" respectively. In the schema N o t i f y _ C o m p l e t i o n , ' today? '
is an input to this operation and the status is Mso changed from 'in_progress' to
'complet ion' af ter this operation

We define the generic schema C o n n e c t e d G r a p h before the next class D a t a F l o w -
D i a g r a m . This schema specifies the constraints on a special class of directed
graphs whose nodes have at least one connected edge, i.e. an input edge or an
output edge.

359

ConnectedGraph [Nodes~ Edges, InputEdges, OutputEdges] ~ Nodes = (ran InputEdges U ran OutputEdges) A
Edges = dora InputEdges = dora OutputEdges

Several Object-Z operators on sets and relations occur in the logical fornmlas of
the schema. The domain and range operators, dora and ran, extract the domain
and range of a relation or a fnnction respectively, i.e. d o m R = {x I (x, y) E
R} and ranR = {y I (x,y) C R} where R is a relation or a function. Nodes
and Edges are certain sets of nodes and edges respectively, and InputEdges
and OutputEdges denote relationships between Nodes and Edges. For example,
InputEdges expresses which nodes the edges are inputs to. Assume that these
relationships are defined as finite functions Edges -~ Nodes. Thus the term
"ranInputEdges" denotes a set of nodes to which there is at least one input
edge.

We can specify a class schema for data flow diagrams and the operations
on them by using Product and ConnectedGraph as shown in the next page.
The class DataFlowDiagram incorporates all the features such as state variables,
invariants, and operations of the Product class. For example, DataFlowDiagram
has the state variables title, status, the operations Notify_Completion, Review
and so on. In addition, the state variables or structural components of the class
contain four sets (corresponding to entities in ER model) and six finite functions
(corresponding to relationships in ER model), and this definition comes from
Figure 1. Process, DataFlow, DataStore, and Source~flSink, which are used for
defining domains of the states, are considered as basic types which are externally-
given sets. The operator F stands for the power set. For example, the domain
of the processes of DataFlowDiagram is a power set of the given set Process.
The relationshii)s between DataFlow and other entities are defined as flmctions
because these are one-to-many relationships, i.e. each data flow has just one
source and just one destination. When the development of a data flow diagram
is completed, it should meet the constraint WellFormedDataFlowDiagram which
is specified in the a~iomatic definition below the state schema. It consists of two
logical conjunets -- the first one specifies that processes, source&sinks, and data
stores in a data flow diagram should have at least one data flow as their input
or output. In addition, source&sinks and data stores can be connected only to
processes through data flows. It means that there are no data flows directly
between a source&sink and a data store, or data stores. The second conjunct
stands for this constraint.

The DataFlowDiagram class has several operations on its instances. The op-
eration IdentifgProcesses corresponds to the designers' activities for identifying
processes and it adds a newly identified process to the state variable processes.
The second operation IdentifyInputs, which corresponds to the activities for iden-
tifying an input data flow to a certain process, cannot be performed until the
process has been Mready identified. The first logical formula on the variable
"process? in the predicate part specifies this behavioral constraints. That is to
say, this operation can be performed after at least one execution of the operation
Identi/yProcesses. By using the predicates in operation' schemas, we can specify
the behavioral constrMnts such as execution order on the activities.

_ _ D ata Flow Diagram
Product

360

processes : P Process
dataflows : Y DataFlow
datastores : ~ DataStore
source&sinks : ~ Source&Sink
input 1 : DataFlow -~ Process
output I : DataFlow -~ Process
input2 : DataFlow -~ Source&Sink
output2 : DataFlow -~ Source&Sink
input3 : DataFlow -~ DataStore
output3 : DataFlow -~ DataStore

status = 'completion' ~ WelIFormedDataFlowDiagram

WelIFormedDataFlowDiagram : 1~

WelIFormedDataFlowDiagram =
ConnectedGraph[processes U source&sinks U datastores,

input1 U input2 tO input3, output l U output2 U output3] A
(dora input2 IJ doln input3)) n (dora output2 to dora output3) =

__ IdentifyProcess es
A(process es)
new_process? : Process

processes' = processes U {new_process?}

_ _ Identifylnputs
A (dataflows, input 1)
process? : Process
new_dflow? : DataFlow

process? C processes
dataflows' = dataflows U {new_dflow? }
input l ' =- input1 U {new_dflow? ~-~ process}

To define hierarchical data flow diagrams, we introduce a flmction from pro-
cesses to lower-level data flow diagrams. This function denotes what data flow
diagram a process is refined to. The class of hierarchical data flow diagrams can
be recursively defined by using the inheritance from the class DataFlowDiagram.

The class schema Hierarch icaIDataFlowDiagram has the axiomatic definition
Wel lFormedHierarch ica lDa taF lowDiagram which defines a constraint for pre-
serving consistency on input-output data flows between a refined process and
its lower level data flow diagram. In other words, the input flows and output
ones of the refined process should be equal to inputs and outputs between the
lower-level data flow diagram and the external environment. In the definition of
WelIFormedHierarch ica lDataFlowDiagram, you will find the operator t> called
range restriction. It reduces a relation or fimction to one which has a given range,
e.g. we have i npu t1 t> {p} = {dfd ~ p [i n p u t l (d f d) = p} where p �9 Process ,

did �9 D a t a F l o w , and inpu t1 is a state variable of D a t a F l o w D i a g r a m class.

__ HierarchicaIDataFlowDiagram
DataFlowDiagram

361

refine : Process -~ HierarchicaIDataFlowDiagram

status = 'completion r
WellFormedHierarchicaIDataFlowDiagram

WelIFormedHierarchicaIDataFlowDiagram :

WellForraedHierarchieaIDataFlowDiagram =
dora refine C_ processes A
Vp :dora refine �9 (dora(input1 t> {p}) = InputFlows(refine(p)) A

dom(output l t> {p}) = OutputFlows(refine(p)))

InputFlows : HierarehicaIDataFlo~vDiagram ---* DataFlow

V hd/d : HierarchicalDataFlowDiagram �9 InputFlows (hdfd) =
dom(input l.hdfd U input 2.hdfd U input3.hdfd)

\ dom(outputl.hdfd U output2.hdfd U output3.hdfd)

OutputFlows : HierarchicalDataFlowDiagram -+ DataFlow

V hdfd :HierarchicalDataFlowDiagram �9 OutputFlows(hdfd) =
dom(input l.hdfd U input2.hdfd U input3.hdfd)

\ dom(outputl .hdfd U output2.hd/d U output3.hdfd)

__ Refine Processes
z~(refine)
refined_process? : Process
lowerdflt! : HierarchicalDataFlowDiagram

refined_process? E processes
refined_process? ~ dora refine
title.lowerdfd! = refined_process?
refine' = refine U {refined_process? ~-~ lowerdfd!}

The functions InputFlows and OutputFlows, which are used in WelIFormed-
HierarchicaIDataFlowDiagram, calculate a set of the input data flows from the
external environment and a set of the output data flows to the external re-
spectively. The term inpu t l .hd fd occurring in the definitions InputFlows and
OutputFlows denotes the value of the state variable input1 of the data flow di-
agram hd/d, i.e. the relationship between processes and their input data flows
in hdfd. The operator \ , appearing in the definitions stands for set difference,
i.e. {a,b,c}\{b,d} is equal to {a,c}. This operator in the definition "InputFlows"
calculates the data flows which are inputs to some processes, data stores or
source&sinks (dora(input1 U input2 U input3)) but which has no relation to any-
thing as outputs (dom(ou tpu t l U output2 U output3)) .

362

The operation "RefineProcess" is newly added and it denotes the activities
for constructing a data flow diagram (lowerdfd!) of a process (refined_process?).
All of the operations defined in DataFlowDiagram can be applied to the instances
of HierarchicaIDataFlowDiagram.

As shown in this section, Object-Z language has powerful constructs for defin-
ing hierarchical data structures and for specifying constraints comprehensively.
It can be considered as one of suitable techniques for specifying not only software
specifications but also specification and design methods.

4 M e t h o d I n t e g r a t i o n - A n E x a m p l e

The previous section have presented the advantages of Object-Z language to use
method descriptions. In this section, we will show another aspect of our tech-
nique - - application to method integration. The method integration plays an
important role on constructing a new method from the fl'agments of existing
methods[10, 13, 3]. In the specification development following Shlaer and Mel-
lor's OOA, we should have four types of the diagrams - - Enti ty Relationship
Diagram, Object Communication Diagram, State Transition Diagram and Data
Flow Diagram. They are meaningfully connected to each other to express a con-
sistent specification. This meaningful connections can be formally specified in
our framework as semantic constraints for the diagrams. In this modeling, the
four diagrams can be considered as the basic fragments or parts of the methods
for constructing another method Shlaer and Mellor's OOA, i.e. the method can
be newly obtained as the result of the integration of the four existing methods.

Enti ty Relationship Diagram, Object Communication Diagram, and State
Transition Diagram can be defined in Object-Z language in the same way as
Data Flow Diagram. Figure 2 shows graphical representations, i.e. ER Diagrams
of these diagrams, and it is useful to understand the following textual repre-
sentations written in Object-Z notation, which are shown in the next page.

domain of

A w r a n g e _ o f ~

lCa~ainaliJr / ~ r ~ , ~ 'p

(a) Entity Relationship Diagram

receive

(b) Object Communication Diagram

nextto output_event
(c) State Transition Diagram

Fig. 2. ER Model Based Graphical Notation for Diagrams

363

Ent i t yRe la t ionsh ip Diagram
Product

ent i t ies : F E n t i t y
relat ionships : F Relat ionship
ent i ty_at tr ibutes : F A t t r ibu te
relat ionship_at tr ibutes : F A t t r ibu te
cardinali t ies : N • 5I
d o m a i n _ o f : Rela t ionship -~ E n t i t y
range_of : Rela t ionship -~ E n t i t y
has l : A t t r ibu te -~ E n t i t y
has2 : A t t r ibu te -~ Relat ionship
has3 : Re la t ionship -~ N x N

s tatus = 'comple t ion '
We l lFormedEn t i t yRe la t ionsh ip Diagram

Wel lFormedEn t i t yRe la t ionsh ipDiagram :

We l lFormedEnt i t yRe la t ionsh ip Diagram =
r a n d o m a i n _ o f C ent i t ies A r a n range_of C ent i t ies A
d o r a d o m a i n _ o f -= relat ionships A d o r a range_of = relat ionships A
d o r a h a s l = ent i ty_at t r ibutes A r a n has l C ent i t ies A
d o r a has 2 -= relat ionship_at tr ibutes A r a n has2 C re lat ionship_at tr ibutes A
d o r a has3 = relat ionships

__ Ob jec tCommunica t ionDiagram
Product

objects : ~ Object
messages : F E v e n t
send : Even t -~ Object
receive : Even t -~ Object

status = 'comple t ion ' ~ ConnectedGraph[objects , messages , send, receive]

State Trans i t ionDiagram
Product

s tates : ~ S t a t e
t rans i t ions : ~ Transi t ion
events : P Even t
previous_to : Transi t ion -~ State
next_to : Transi t ion -~ State
inpu t_even t : Transi t ion -~ E v e n t
ou tpu t_even t : Transi t ion -~ E v e n t

s tatus = 'comple t ion '
ConnectedGraph[s ta tes , transit ions~ previous_to, next_to] A
t rans i t ions = d o r a i npu t_even t

364

Class Schema ~ __. ~0nnectedGraph I Generic Scherna

(DataFlowOiagram-)(EntityReZation:hipOiagram)(,,ateTransitiortDiagram)(Obje;tCommunecationDiagram)
1 QierarchicalDataFl~ ~N~ / ~ ~ referred

f , , , . . : . e" .r , OOA) .er,e,

Fig. 3. Hierarchical Relationships among Schemas

nnect2 connect4

Fig. 4. Relation among Four Diagrams

To define these four diagrams, we have used the other schemas by schema
reference and inheritance mechanisms. Figure 3 shows the hierarchical relation-
ships among them. Method integration into Shlaer and Mellor's OOA will be
done based on inheritance of these four diagrams.

Before defining Shlaer and Mellor's OOA, we will specify some constraints
to integrate these four diagrams. Figure 4 shows the relationships among them.
Connect l , connect2, connect3, and connect4 in the figure stand for mathemat -
ical constructs such as relation and functions which meaningfldly connect the
diagrams to each other. An entity relationship diagram is related to an object
conmmnication diagram which depicts the message flow among objects. An en-
t i ty should occur as an object in the object conmmnication diagram. For each
entity occurring in an entity relationship diagram or each object in an object
communication diagram, we have a s tate transition diagram which expresses its
internal s tate change. Thus connect2 and connect3 have a set of functions which
are from entities or objects to s tate transit ion diagrams.

Receive-: occurring in the schema connection_between_CD_and_STD stands
for the inverse map of the function receive. The formula in the predicate par t
of eonneetion_between_ERD_and_CD specifies tha t the entities in Enti ty Rela-
tionship Diagram (erd.entities) are the same as the objects in Communicat ion
Diagram (cd.objects). The second formula in connection_between_CD_and_STD
expresses tha t input messages to and output messages from an object should
appear as input events and output events respectively in its s ta te transit ion
diagram.

365

~ . connect ion_between_ERD_and_CD
connect l : EntityRelationshipDia.qram +-* ObjectCommunicat ionDiagram

V erd : dora conneetl; V cd : ran couneet l �9 erd.entities = cd.object~

~_ connection_between_E R D_and_S TD
con___~nect2 : Relatio,tship Diagra,n ~ (Ent i ty -~ State Tr~nsit ionDiagrum)

g erd : dora connect2 �9 erd.entities = dom(ran connect2)

connec t ion-be tween-CD-and-STD
con_....._nect3 : Communicat ionDiagram +-* (Object -~ State Transit ionDiagram)

cd : dom connect3 �9 cd.objeets = dora(ran connect3)
cd : dora connect3; obj : dora(ran connect3); objtostd : ran connect3

�9 input_event.objtostd(obj) = receive -1 (cd. objects)
A output_event.objtostd(obj) = send-1 (cd.objects)

connect-between-S T D - a n d - D FD
conT___~tect4 State Transit ionDiagram ~-~ (Event -~ DataFlowDiagram)

std : dom connect4 �9 s t&output_event D dom(ran connect4)

Fina l ly we can have the speci f ica t ion of O O A m e t h o d s in the following :

_ _ Shlaer_and_Mellor 's_OOA
DataFlowDiagram
Communieat ionDiagram
Enti tyRelationship Diagram
State Transit ionDiagram

connect_between_ERD_and_CD
connect_between_ERD_and_STD
connect_between_ C D_and_S T D
connect_between_S TD_and_D FD

I t consis ts of the speci f ica t ions of the four d i a g r a m s and cons t ra in t s for the i r in-
t eg ra t ion , and holds the in fo rma t ion a b o u t r e l a t ionsh ips among these d i a g r a m s
in i ts s t a t e var iables such as connect1 , connect2 , connec t& and connectS. Opera -
t ions on S h l a e r _ a n d _ M e l l o r ' s _ O O A are inhe r i t ed f rom the four d i a g r a m classes.
For example , " Iden t i fyProcesses" of D a t a F l o w D i a g r a m is also an o p e r a t i o n Oll
Sh laer_and_Mel lo r ' s _ O O A.

5 C o n c l u s i o n

This p a p e r has i n t roduced a n o t h e r m e t h o d mode l l ing technique based on O b je c t -
Z to represent var ious m e t h o d s for s u p p o r t i n g speci f ica t ion deve lopment . I t has

366

been shown tha t our technique is applicable to method integrat ion by using an
example. The examples including method integrat ion might be so simple tha t we
could use a Z language instead of Object-Z. However, object-orientedness plays
an impor tan t role on reuse of method fragments to construct new methods.
Both Z and Object-Z are not executable, so we should combine our technique
~nd other executable devices to enact the specified methods. The predicate logic
underlying Z and Object-Z can provide the theoret ical foundation for method
integrat ion and method synthesis. For example, we can check the consistency of
the in tegrated method and the correctness of the integrat ion process if the rele-
vant methods are described in Object-Z. The logical formulas might be difficult
for untrained persons to read and write. A l ibrary of method fragments, c~lled
method base[13, 11], are needed to specify and to integrate the methods.

R e f e r e n c e s

1. A. Alderson. Meta-CASE Technology. In Lecture Notes in Computer Science 509,
pages 81 91, 1992.

2. S. Brinkkemper. Formalisation of Information Systems Modelling. Thesis Pub-
lisher, 1990.

3. S. Brinkkemper. Integrating Diagrams in CASE Tools through Modelling Trans-
parency. Information and Software Technology, 35(2):101--105, 1993.

4. M. Brough. Methods for CASE : a Generic Framework. In Proc. of 4th Interna-
tional Conference CAiSE92, LNCS 593, pages 525-545, 1992.

5. T. DeMarco. Structured Analysis and System Specification. Yourdon Press, 1978.
6. R. Duke, P. King, R. Rose, and G. Smith. The Object-Z Specification Language.

Technical Report 91-1, Software Verification Center, University of Queensland,
1991.

7. A.K. Jordan and A.M. Davis. Requirements Engineering Metamodel : An Inte-
grated View of Requirements. In Proc. of 15th COMPSAC, pages 472-478, 1991.

8. T. Katayama. A Hierarchical and Functional Software Process Description and its
Enaction. In Proc. of the 11th ICSE, pages 343-352, 1989.

9. D.E. Knuth. Semantics of Context-free Languages. Mathematical Systems Theory,
2:127-145, 1968.

10. K. KronlSf, editor. Method Integration - Concepts and Case Studies. Wiley, 1993.
11. M. Saeki, K. Iguchi, K. Wen-yin, and M. Shinohara. A Meta-Model for Represent-

ing Software Specification & Design Methods. In Information System Development
Process, pages 149-166. North-Holland, 1993.

12. S. Shlaer and S.J. Mellor. An Object-Oriented Approach to Domain Analysis.
ACM SIGSOFT Software Engineering Notes, 14(5):66-77, 1989.

13. K. Slooten and S. Brinkkemper. A Method Engineering Approach to Information
Systems Development. In Information System Development Process, pages 167-
186. North-Holland, 1993.

14. K. Smolander, K. Lyytinem V.P. Tahvanainen, and P. Marttiin. MetaEdit - - A
Flexible Graphical Environment for Methodology Modelling. In Proc. of 3rd In-
ternational Conference CAiSE91, LNCS 498, pages 168 193, 1991.

15. P. Sorensom J. Tremblay, and A. McAllister. The Metaview System for Many
Specification Environments. IEEE Software, 2(5):30 38, 1988.

16. J.M. Spivey. The Z Notation A Reference Manual. Prentice Hall, 1987.

