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ABSTRACT.

In this paper we introduce a new type of nets with distributed resources : resource
transformation nets (RT-nets) . A new calculus based on Horn fragment of Multi-
plicative Linear Logic is proposed for this class of models. Theorem of completness
is proved.

1. INTRODUCTION

The idea of relating the concurrent computations to the linear logic proofs was first
proposed by Girard [3]. A number of authors considered Petri nets and some other
kinds of nets for representing concurrency in connection with linear logic {1,2,4].

In this paper a new class of nets called RT-nets (resource transformation nets)
is proposed. An RT-net consists of an oriented graph and a function that for each
node of graph and for each type of resource returns a maximum number of copies of
a resource that can be initially stored in that node. A resource can be either from a
finite set S = {s;,..5x} (resources of this kind are called supplies) or a construction
(X — Y) from a finite set P, where X and Y are lists of elements of S (these
constructions are called basic converters). Suppose we are given an initial set of
resources A and a final set of resources B where each single resource of B is marked
with a node of the graph. Such pairs (A4, B) will be called further requests. The
problem that is to be solved on RT-nets is : is it possible to distribute resources
A on the graph so that after an execution process each resource from B would be
contained in the node that marks this resource ? An execution of the net is divided
on steps. Steps of execution can be of two different kinds. First kind of step is
resource transformation : if a node contains X and (X — Y) then we can replace
this pair with Y. Second kind of step is resource transmission: if node « contains
resource Y and (a, B) is an edge of the graph then we can transmit Y from a to .
An initial distribution of A on nodes of the graph (it is called initialization) should
be performed with the respect to a restriction function.

Informaly RT-nets can be thought of in the following way. Suppose the graph
represents a factory where nodes are representations of its divisions and edges re-
present the connections between divisions. Supplies can be thought of as materials
on which the factory operates and converters represent technological processes :
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(X — Y) means that a set of resources X can be processed into production (ma-
terials) Y. If a technological process is associated with a division it means the
presence of equipment for this process in this division. A restriction function de-
termines the storage capacities of each division for every type of material and a
number of times each technological process can be run in every division during one
industrial cycle. Now, a pair (A, B) represents an industrial process, where 4 is a
set of initial materials for the process and B is a set of resulting products where
for which single product a division in which it is to be finally stored is given. Now
we investigate which industrial processes can be run on this factory, i.e. for which
pairs (A, B) we can find a distribution of resources from A such that the structure
of the factory would allow to process them in one industrial cycle and produce B.
Finally, adding elements of concurrency to this scheme we can pose a question :
which groups of processes {(A;, B;)} can be run simulteniously (concurrently) on a
given factory 7 Or, transforming it into RT-nets terminology, which groups (sets)
of requests are successful on a given RT-net ?

In order to answer this question we construct for each RT-net 9 a calculus Top.
Elements of such calculi are sequents A + B where (A, B) a request. In this paper
we prove soundness and completeness theorems for Ty with the respect to RT-net
semantics.

RT-nets is a generalization of another type of nets, called BR-nets (bounded
resource nets) introduced in [1]. The main difference between these two kinds of
nets is that in BR-nets it is not allowed to separate the resources obtained as a result
of a transformation, i.e. if Y is a result of transformation X(X — Y) in some node
of a BR-net, then on all further steps all resources of Y should go together. Such
operation, however is possible in RT-net semantics. Syntax of proposed calculus
T also extends the syntax of calculus HTyy from (1] where all sequents of a form
A F B(®) with the only one goal node are considered. In Section 3 we propose a
simple example of a net 9% and a sequent which is provable in Tyr and not provable
in H Tm

Section 2 of the paper contains the formal definitions of RT-nets and their
functioning. Section 3 contains the definition of Tay calculus for an RT-net M
and an example of an RT-netand a provable in Tpn sequent. In Section 4 we
formulate some properties of provable sequents and sequences of sequents and the
theorems of soundness and completness for Ton with the respect to an RT-net I
are proved.

2. RT-NETS

We fix a finite set S. The elements of S will be called supplies. The set Slist of
supply lists is the least satisfying the following conditions: S C Slist; if A/B €
Slist, then (AB) € Slist. Two lists of supplies A, B € Slist are equivalent iff
the multisets of elements of S included in A and B are equal. For example, for
S = {a,b,c}, ((a((bc)a) is equivalent to (a((ba)c)) but is not equivalent to (a(bc)).
We do not distingush a list A € Slist from a multiset of elements of S included in
A. An exponential notation will be used for representing multisets. For example
a?b3c will correspond to a multiset {a,a,b,b,b,c} and to any list constructed of
these and only these letters. Let [A)r denote the number of copies of element r in
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multiset (list) A. For example [((ab)(bc))]b = [ab?c]b = 2.

Let X and Y be supply lists. Then an expression (X — Y') is called a converter.
We fix a finite set P of converters. The elements of P will be called basic converters.
Let R = SU P. R is said to be a set of basic resources.

RT-nets (resource transformation nets) are intended to describe resource trans-
missions and transformations in systems with distributed resources.

Definition 2.1.. An RT-net 9 is a pair < G,f >, where G = (V,E) is a
directed graph with a set of nodes V and a set of edges E and f : VX R— N - is
a function called resiriction.

For each & € V and r € R f(a, r) is a maximum number of copies of resource r
that can be stored initialy at the node a.

Definition 2.2.. A request Q is a pair (A, B) where A € Rlist and
B =By ...Bg*

where (Vi € 1...k)(B; € Rlist & o€ V).

Further we will unite all resources with the same mark and put them into one
subformula, which will give us the right to suppose that ai # a; for i # j.

Informally, the first element of a request can be thought of as an initial set of
supplies and converters. The second element of a request is a goal that is to be
obtained from initial set of resources. The nodes of graph which mark parts of this
goal show the places of the net where these parts are to be obtained.

An RT-net functions on a set of requests. Its functioning consists of two stages
: initialization and execution. On the stage of initialization, RT-net resources are
being distributed among the concurrent requests from the set of requests. Execution
consists of steps on which the distributed supplies get transformed by applying
converters to them or get transmitted between the connected nodes.

Let further £ denote a set of requests (Q1...Q).

D. EFINITION 2.3 An initialization of an RT-netl cal M for a sel of requests £
is a function finiy: V X R X Q — N such that the following conditions hold :
(i) sufficiency of resources in each node :

(Va e V)(Vr e R)(E finit(a,r, Qi) < f(a, 7))
i=1

(it} completness of resource reservation for each request :

(VQi € Q)(Vr € R)(Z finit(a,r,Q;) = [A]r

agV

Given any node o € V and request Q; € £Q let R(e,7) at every moment denote a
set of resources associated with Q); in the node o.

Let Rinit(a,i) = {rfinit(2$,:Q)} for every request Q; from £. Initially, we put
R(a,4) = Rinii(a,?). The further transformations on R(c,1) are given in Defini-
tion 2.4. :
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Definition 2.4.. An ezeculion of 9 on a set of requests £ with an initialization
finit 15 a sequence 0 = s1,...,58],..., of steps of ezxecution.

A step of execution can be of two different kinds :

(a) Resource transformation.

Let for some i € 1...n and for some a € VR(a,i) contain {(X — Y)X}.
The step resulls in replacing X(X — Y) in R(a,i) with Y, i.e. new R(a,i) :=
(R(a, )\{X(X — Y)}) U{Y} (i.e. this step consists of applying the converter
(X = Y) to the resource X in the node a ) The step does not affect any other
R(a,1) sets.

(b) Resource transmission.

Let for somei € 1...n and for some a € V R(a,1) contain {X} and let (a,B) €
E, for some B € V. The step results in ezcluding X from R(c,i) and adding it
to R(B,1) (i.e. in transmitting the resource X from node o to node 8). The step
changes the sels :

R(ai) i= R(a, )\(X)

R(B,1) := R(B,7) U {X}
The step does not affect any other R(a,1) sels.

Definition 2.5.. A state C of an RT-nel on a sel of requests £ with an initia-
lization fini: is a set : C = {R(a,i)ja € Vi€ 1...n}.

We write C1sCs, where C; and C3 are states and s is a step of execution iff
step s transforms state C; into C3. We also define ‘and initial state Ci,;; for an
initialization fins: :

Cinit = {Rinit(e, 1)}

Given an execution o = s1,...,s we write C10C, iff starting in state C; after
completing an execution o net will end up in state C.

Definition 2.6.. A set of requests Q = (Q1,...,Qn), @i = (Ai,Bi), Bi =
Bfl“ ;..Bfk'.k is successfull for an RT-net M =< G, f > iff there exists such an
initialization fins: of £ on M and there exists such an execution o of M on O
that Cini1oCfin where C = {R(a,i)la € Vi€ 1...n}, and

Ry = { B =

0, otherwise

3.SYNTAX
For every RT-net M =< G, f >, G = (V, E), we define a calculus Tyn.

Definition 3.1.

1. Alphabet of Tyn is SU{F,(,),—}

2. The set of formulas of Ton is Rlist,

3. Forany r € R and for any o € V #{? is a marked formula. If A and B
are marked formulas then (AB) is a marked formula. Marked formula z(®)y(®) can
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be written as (zy)(2?*®). Note also that z(®)z(F) (z2)(®) and (£2)(#) are different
marked formulas.

4. A sequent is a construction A+ B where A is a formula and B is a marked
formula.

5. A set of azioms of Ton contains f(«,r) copies of a sequent r+ (%), for each
resource r € R.

6. Inference rules :

A+ B@®D CF(B— F)®H

()imph ACF F@DH
. . AFB CFD
@eond) Tacyr 0y

ArB

(3)(equ) CFD

if A is equivalent to C and B is equivalent to D;

AF B@D

(4)(t7‘ans) m

if (o, 8) € E, and B € Slist.
We will consider the proofs of sequences of sequents from T .

Definition 3.2.. A proof in Ton is e sequence of sequences of sequents. All the
sequents from the first sequence of sequents are distinct axioms of Ton. The nezt
sequence of sequents ts obtained from previous one by applying one of the proof rules
to one or two sequents.

Definition 3.3.. A sequence of sequents is called provable in Ton if there exists
such a proof in Ton that has the given sequence as its last sequence of sequents.

Example
Consider the following example of an RT-net M =< G,f >. Let S = {a,b,c},
P = {(a — b?),(ab — ¢)}. Let the graph G be as it is shown on the Figure 1. Let
the function f be determined by the following table:

a b ¢ (a—b) (ab—c) o Jé;

ol 2 0 0 2 1 o — o

f: B 1 00 0 1 G 1 1
¥y 0 1 0 0 1 o — o

5l 100 0 1 5 ¥

Figure 1.

f determines the set of axioms of T and restrictions on an initial distribution of
resources.

Let us consider a request Q = (a®(ab — ¢)%(a — 4?),(c?)™ and put Q = (Q).
We fix Rm,-t(a,l) = {a,(a — bz)}, R,’n“(ﬁ,l) = Rinit(6,1) = {a,(ab — c)},
Rinit(v,1) = 0. Then the execution which begins with the transformation in «
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and then transmits one b to 3 and one b to § and uses them to obtain ¢ in each of
these two nodes and then transmits each ¢ to v is successful for £ on 1. It is not
possible to construct such an execution in BR-net semantics {1}.

Now consider the sequent

a(ab — ¢)%(a — b)) + ().
The following proof in Tyn shows that the given sequent is provable :
akal@) (a—b2)(a—b2)(=) ata(® (ab—c)-(ab—c)(8) akald) (ab—»c)l—(ab—w)(‘)(l)

a(a—b*)-(b0)(*) aka® (ab—c)F(ab—c)®) akalist*®) (ab—e)r(ab—e)l®)y
a(a—ob2)}-b(°)b(6) aFa® (ab—c)F(ab—c)(®) argldette) (ab—»c)!—(ab—»c)(")(4)
a(a=b?)Fb@b(®) akal® (ab—e)r(ab—e)) aral®e*)(ab—c)k(ab—c)(®) 5y
a?(a—b2)-(ab)Bb(®) (ab—c)(ab—rc)(®) arqldcite) (db—~c)f-(ab—>c)(5)(1)
a?(a=b?)(ab—c)r (Db akaltelt®) (abmrc)k(abmre)® gy
a®(a—b*)(ab—c)c(PH{ab)(®) (ab—»c)}—(ab_..c)(5)(1)
a®(a—b?)(ab—c)?c(F (O (4)
aa(a-»ﬂ)(ab—.c)?t-c(ﬂ)cﬁ)m
a?(a—b?)(ab—c)2(cc)(M
4. PROVABILITY

In this section we establish some properties of proofs in Tyn and prove soundness
and completeness theorems.

Lemma 4.1.. (i) If a sequent A & B is provable then A is not emply (ii) If a
sequent (B — C) F D is provable then D is equivalent to (B — C)(®) for some
o € V. (i) If a sequence of sequents is provable in Ton then any its subsequence
s provable.

Lemma 4.2.. If a sequent has a proof in Ton then it has a proof in Tony where in
every appearance of rule (1)

AFB®D CF(B— F)®H
ACF F@DH

the sequent C & (B — F)(H is equivalent to the aziom (B — F)+ (B — F)(®).

Lemma 4.3.. If a sequent of the form A = B(C — D)% is provable in Ton
then it has the proof where on the last step the rule (2) is applied lo an aziom
(C — D)+ (C — D).
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Theorem 4.4. (soundness). Let I =< G,f >; G = (V,E). If a sequence
of sequents U : Ay & By,...,Ay F By is provable in Ton then a sel of requests
0 = ((A1,B1),...,(Ay, By)) is successful for M.

Proof(sketch) The theorem is proved by induction on the length of proof. If the
length of proof is 0 then all A; F B;,i =1...n are axioms and it is easy to define
an initialization for which an empty executionis successful for £ on M.

Now let the theorem hold for all provable sequences of sequents with the lengths
of proofs less than m. Let the proof of a sequence of sequents % : A; - B;y,..., A, F
B, have length m. Consider the last rule applied. (a). The last rule applied is rule
(1). In this case, for some i € 1...n the sequent A; & B; is ALAY + F(®)CH, for
some & € V and there exists such B} € Slist that the proof of 2 has a form

Ak By AL F B{C AV - (B! — F)Y®H ... A, B,

AL F By ... AlA7 + F(CH ... A, F B, )

The sequence of sequents
A A FB .. AFBSC AVF (Bl = F)®H .. A, + B,
is provable and its proof has length m — 1. Then a set of requests ,

Q' = (A1, Br), ..., (AL, BAC), (AY, (Bl — F)®H), ... (An, By))
:(Qll) aQ:’: §+1a"' ’Q:H—l)

is successful for M. Let f/,;, be an initialization and ¢’ = s; ...s; be a successful
execution for £’ on M. Then we construct a successful functioning for £3.

finit(a, 7, 5); J<i
Let finit(a>7';.7) = fz!nit(a’ra])+fz!nit(a»r>-7+ 1); J=1
fi/nit(a)rvj+ l); J> i

Then the execution ¢ = sy,...,s;, 5141 where 5147 is a resource transformation

from B! and (B} — F) into F' in node « is successful for 2 on 9T with finis.
The other three cases are considered in a similar way. Thus by induction the
theorem is proved.

THEOREM 4.5. (completeness). Let M =< G,f >; G = (V,E). If a set
of requests 2 = (Q,...,Qn) is successful on T then a sequence of sequents
A: A - By...A, F By, is provable in Toy.

PROOF (sketch) The proof is made by induction on the length I of a succesful
execution ¢ = sy,...,s for Q on M. If | = 0 then forevery i € 1...n, Q; is
(As1 - . Ak, Agf“) .. .Ag:__““') and an initial state Cj,;; determined by initialization
finit is a final state Cyin. Let Aj; = ry55...7,,5. Then, for every i € 1...n,
for every j € 1...k; and for every h € 1...t;; there exists a distinctive axiom

rhij F rg':]fj) in Ton. By applying rules of type (2)(conj) to these axioms we can

obtain the sequence of sequents 2A.
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Suppose now that for all sets of requests successful on 9 with successful execu-
tions of length less than [ the theorem is true. Consider a set of requests £ that

has a successful execution ¢ = s4,...,s; for some initialization f;,;;. Consider s; —
the last step of execution.
Case 1. s is transformation. Let Cini(s1,...,81-1)C’ and C’'s;Cy;n. Since s

is transformation, for some i € 1...n and a € V in state C’ {X,(X — Y)} C
R'(a,i) and in state Cyin. R(a,i) = (R'(a,)) U{Y})\{X,(X — Y)}. An exe-
cution ¢/ = s1,...,5;-1 has length | — 1 and it is successful for a set of re-
quests £’ = ((41,B1),...,(4i, X(O(X — Y)®D),...,(An, B,)), where B; is
equal to Y(®)D. By induction supposition a sequence of sequents ' : A;
By... A F (X(X - Y))®D...A, F B, is provable. By lemma 4.1 the se-
quent A; F (X(X — LY))(®)D is also provable. By lemma 4.3 there exists a proof
of this sequent which ends in the following way :

AFX@D (X -Y)H(X -Y)® @
A (X(X = Y)@D :

where A; is equal to A{(X —Y).
Now we construct the proof of A; F B; :

AFX@OD (X V) F(X = 7)® )
A(X S Y)FY@D

Since in the proof of A; + B; we used the same axioms as in the proof of
A; B (X(X = LY))®)D | the sequence of sequents 2 : A; F By...A, F By is
provable. '

Case 2. s; is transmission. In this case rule (4) ({rans) may be used to continue
the proof.
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