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ABSTRACT. 

In this paper we introduce a new type of nets with distributed resources : resource 
transformation nets (RT-nets) . A new calculus based on Horn fragment of Multi- 

pllcatlve Linear Logic is proposed for this class of models. Theorem of completness 
is proved. 

1. INTRODUCTION 

The idea of relating the concurrent computa t ions  to the linear logic proofs was first 
proposed by Girard [3]. A number of  authors considered Petri nets and some other 
kinds of nets for representing concurrency in connection with linear logic [1,2,4]. 

In this paper a new class of nets called RT-nets  (resource transformation nets) 
is proposed. An RT-net  consists of an oriented graph and a function that  for each 
node of graph and for each type of resource returns a maximum number  of copies of  
a resource that  can be initially stored in tha t  node. A resource can be either from a 
finite set S = {si, ..sk} (resources of this kind are called supplies) or a construction 
(X --* Y) from a finite set P ,  where X and Y are lists of elements of S (these 
constructions are called basic converters). Suppose we are given an initial set of 
resources A and a final set of resources B where each single resource of B is marked 
with a node of the graph. Such pairs (A, B) will be called further requests. The 
problem that  is to be solved on RT-nets is : is it possible to distribute resources 
A on the graph so that  after an execution process each resource from B would be 
contained in the node that  marks this resource ? An execution of the net is divided 
on steps. Steps of execution can be of two different kinds. First kind of step is 
resource transformation : if a node contains X and (X ---* Y) then we can replace 
this pair with Y. Second kind of step is resource transmission: if node c~ contains 
resource Y and (a,/3) is an edge of the graph then we can transmit  Y from a to ft. 
An initial distribution of  A on nodes of  the graph (it is called initialization) should 
be performed with the respect to a restriction function. 

Informaly RT-nets can be thought  of in the following way. Suppose the graph 
represents a factory where nodes are representations of its divisions and edges re- 
present the connections between divisions. Supplies can be thought  of as materials 
on which the factory operates and converters represent technological processes : 
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(X ~ Y) means that  a set of resources X can be processed into production (ma- 
terials) Y. If  a technological process is associated with a division it means the 
presence of equipment for this process in this division. A restriction function de- 
termines the storage capacities of each division for every type of material  and a 
number of times each technological process can be run in every division during one 
industrial cycle. Now, a pair (A, B) represents an industrial process, where A is a 
set of initial materials for the process and B is a set of resulting products where 
for which single product a division in which it is to be finally stored is given. Now 
we investigate which industrial processes can be run on this factory, i.e. for which 
pairs (A, B) we can find a distribution of resources from A such that  the structure 
of the factory would allow to process them in one industrial cycle and produce B. 
Finally, adding elements of concurrency to this scheme we can pose a question : 
which groups of processes {(Ai, Bi)} can be run simulteniously (concurrently) on a 
given factory ? Or, transforming it into RT-nets terminology, which groups (sets) 
of requests are successful on a given RT-net ? 

In order to answer this question we construct for each RT.-net 9Yt a calculus T ~ .  
Elements of such calculi are sequents A ~- B where (A, B) a request. In this paper 
we prove soundness and completeness theorems for T ~  with the respect to RT-net 
semantics. 

RT-nets is a generalization of another type of nets, called BR-nets (bounded 
resource nets) introduced in [1]. The main difference between these two kinds of 
nets is that in BR-nets it is not allowed to separate the resources obtained as a result 
of a transformation, i.e. if Y is a result of transformation X ( X  ~ Y)  in some node 
of a BR-net, then on all further steps all resources of Y should go together. Such 
operation, however is possible in RT-net semantics. Syntax of proposed calculus 
T ~  also extends the syntax of cMculus H T ~  from [1] where all sequents of a form 
A I-- B(a) with the only one goal node are considered. In S e c t i o n  3 we propose a 
simple example of a net 9~  and a sequent which is provable in T~t and not provable 
in H T ~ .  

Sec t ion  2 of the paper contains the formal definitions of RT-nets and their 
functioning. Sec t ion  3 contains the definition of T ~  calculus for an RT-net M 
and an example of an RT-netand a provable in T~n sequent. In S e c t i o n  4 we 
formulate some properties of provable sequents and sequences of sequents and the 
theorems of soundness and completness for T~n with the respect to an RT-net 
are proved. 

2. RT-NETs 

We fix a finite set S. The elements of S will be called supplies. The set Slist of 
supply lists is the least satisfying the following conditions: S C_ Slist; if A, B E 
Slist, then (AB) E Slist. Two lists of supplies A, B E Slist are equivalent iff 
the multisets of elements of S included in A and B are equal. For example, for 
S = {a, b, c}, ((a((bc)a) is equivalent to (a((ba)c)) but is not equivalent to (a(bc)). 
We do not distingush a list A E Slist from a multiset of elements of S included in 
A. An exponential notation will be used for representing multisets. For example 
a~b3c will correspond to a multiset {a, a, b, b, b, e} and to any list constructed of 
these and only these letters. Let [A]r denote the number of copies of element r in 
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multiset (list) A. For example [((ab)(bc))]b = [ab2c]b = 2. 
Let X and Y be supply lists. Then an expression ( X --* Y) is called a converter. 

We fix a finite set P of converters. The  elements of  P will be called basic converters. 
Let R = S U P .  R is said to be a set of  basic resources. 

RT-nets  (resource t ransformation nets) are intended to describe resource trans- 
missions and transformations in systems with distr ibuted resources. 

D e f i n i t i o n  2.1..  An RT-net ff3I is a pa i r<  G , f  >, where G = (V ,E)  is a 
directed graph with a set of nodes V and a set of edges E and f : V x R--* N - is 
a function called restriction. 

For each a E V and r E R f(oq r) is a max i mum number  of  copies of resource r 
tha t  can be stored initialy at the node c~. 

D e f i n i t i o n  2.2..  A request Q is a pair (A, B) where A E Rlist  and 

B = B ~ ' . . . B ~  ~ 

where (Vi E 1 . . . k ) ( B i  E Rlist & cqE Y).  

Further we will unite all resources with the same mark  and put  them into one 
subformula, which will give us the right to suppose that  c~i r a i for i r j .  

Informally, the first element of a request can be thought  of as an initial set of 
supplies and converters. The second element of a request is a goal tha t  is to be 
obtained from initial set of resources. The nodes of  graph which mark parts  of this 
goal show the places of the net where these parts  are to be obtained. 

An RT-net  functions on a set of requests. Its functioning consists of two stages 
: initialization and execution. On the stage of  initialization, RT-net  resources are 
being distributed among the concurrent requests f rom the set of requests. Execution 
consists of steps on which the distributed supplies get t ransformed by applying 
converters to them or get t ransmit ted between the connected nodes. 

Let further t.~ denote a set of requests (Q1 . . .Qn) .  

D. EFINITION 2.3 An initialization of an RT-net calM for a set of requests s 
is a function fi,~it : V x R • Q ~ N such that the followin 9 conditions hold : 

(i) sufficiency of resources in each node : 

(Vc~ E V)(Vr E R ) ( ~  finit(cx, r, Qi) <_ f(oq r)) 
i = I  

(it) complelness of resource reservation for each request : 

(VQi E Q)(Vr E R ) ( ~  fi,~i,(e~, r, Qi) = [m]r 
aEV 

Given any node (~ E V and request Qi E L.~ let R(cq i) at every momen t  denote a 
set of resources associated with Qi in the node (~. 

Let Ri,~i~(c~,i) = {rY,.~',(~,i,Q,)} for every request Qi f rom 1.~. Initially, we put  
R(c~, i) = Ri,m(c~, i). The further t ransformations on R(c~, i) are given in Def in i -  
t i o n  2.4. 
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D e f i n i t i o n  2.4. .  An execution o f f f~  on a set of requests 1.~ with an initialization 
fini~ is a sequence a = s l , . . .  , s t , . . .  , of steps of execution. 

A step of execution can be of two different kinds : 
(a) Resource transformation. 
Let for some i E 1 . . . n  and for some c~ E VR(c~,i) contain {(X --, Y ) X } .  

The step results in replacing X ( X  ---* Y )  in R(c~,i) with Y ,  i.e. new R(c~,i) :=  
( R ( a , i ) \ { X ( X  ~ Y)}) tO {Y} (i.e. this step consists of applying the converter 
( X  ~ Y )  to the resource X in the node ce ) The step does not affect any other 
R(a ,  i) sets. 

(b) Resource transmission. 
Let for some i E 1 . . . n  and for some c~ E V R(c~, i) contain {X} and let (a,/3) E 

E, for some/3 E V. The step results in excluding X from R(a , i )  and adding it 
to R(/3, i) (i.e. in transmitting the resource X from node c~ to node/3). The step 
changes the sets : 

R(ot, i) :=  R(a,  i ) \ {X}  

RO, i) := R(/3, i) u {X) 

The step does not affect any other R (a , i )  sets. 

D e f i n i t i o n  2.5..  A state C of an RT-net  on a set of requests ~ with an initia- 
lization limit is a set : C = { R ( a , i ) l a  e Y, i  E 1 . . . n } .  

We write ClsC2, where Ca and C~ are states and s is a step of execution iff 
step s transforms state C1 into C2. We also define and initial state Cini~ for an 
initialization flni~ : 

Cini, = { Rini,(e~, i)} 

Given an execution cr = s l , . . .  ,st we write CI~rC2 iff s tar t ing in state C1 after 
completing an execution a net will end up in state C2. 

D e f i n i t i o n  2.6. .  A set of requests 1.~ = ( Q 1 , . . - , Q n ) ,  Qi = (Ai, Bi), Bi = 
B~ iI B #ik . "  ik is successfull for an RT-net  ff3I = <  G , f  > iff there exists such an 
initialization finlt of 1.~ on 931 and there exists such an execution a of 93I on 
that G,,,~rCfi,, where C = {R(c~,i)lcr E V,i E 1 . . . n } ,  and 

S Bi~, iff,~ =/3~ R(o~, i) 
l 0, otherwise 

3.SYNTAX 

For every RT-net  93I = <  G, f >,  G = (V, E),  we define a calculus T ~ .  

D e f i n i t i o n  3.1. 
1. Alphabet of T ~  is S U  {I-,(,),---*} 
2. The set of formulas of T~a is Rlist .  
3. For any r E R and for any o~ E V r(a) is a marked formula. I f  A and B 

are marked formulas then (AB) is a marked formula. Marked formula x(C~)y(a) can 
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be wri t ten  as (xy) (alpha). Note also tha t  x(~)x(~), (x2)(a) and (x2) (t~) are different 
marked  formulas.  

4. A sequent is a construction A t- B where A is a formula and B is a marked 
formula. 

5. A set of axioms of Twl contains f (a ,  r) copies of a sequent r t- r(~). for each 
resource r E R. 

6. Inference rules : 

(1)(impl) 
A F- B(~)D C F- (B -~ F)(~')H 

AC k- F(~)DH 

A ~ - B  C ~ - D  
(2)(con j )  (AC) b (BD) 

A ~ - B  
(3)(equ) C ~- D 

if A is equivalent to C and B is equivalent to D; 

A ~- B(~)D 
(4)(trans) "A t- B(Z) D 

if (a, fl) E E, and B E Slist. 

We will consider the proofs of sequences of sequents from T . 

D e f i n i t i o n  3.2. .  A proof in T ~  is a sequence of sequences of sequents. All the 
sequenis from the first sequence of sequents are distinct axioms of Two. The next 
sequence of sequents is obtained from previous one by applying one of the proof rules 
to one or two sequents. 

D e f i n i t i o n  3.3. .  A sequence of sequents is called provable in T~:a if there exists 
such a proof in Tw~ that has the given sequence as its last sequence of sequents. 

E x a i n p l e  
Consider  the following example  of an RT-net  M - - <  G, f >.  Let S = {a ,b ,c},  
F = {(a --~ b2), (ab ---* c)}. Let the graph G be as it is shown on the Figure 1. Let 
the function f be de te rmined  by the following table:  

a b c (a---+b 2) (ab---+c) e~ fl 
a I 2 0 0 2 1 o ~ o 

f :  ~[ 1 o o o 1 G: t 
7] 0 1 0 0 1 o ~ o 
6 1 1 0 0  0 1 6 7 

F i g u r e  1. 

f de termines  the set of axioms of T and restr ic t ions on an ini t ia l  d is t r ibut ion  of 
resources. 

Let us consider a request  Q = (a3(ab ---* c)2(a ---* b2), (c2) ('~) and put  Q = (Q). 
We fix Ri~i , (a ,  1) = { a , ( a  ~ b2)}, Ri~i,([3, 1) = Ri~it(6, 1) = {a , (ab  --+ c)}, 
Ri~i,(7, 1) = 0. Then the execution which begins with the t r ans format ion  in c~ 
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and then transmits  one b to ~ and one b to ~ and uses them to obtain c in each of 
these two nodes and then transmits each c to 7 is successful for ID on ff)I. It is not 
possible to construct such an execution in BR-net  semantics [1]. 

Now consider the sequent 

a3(ab c)2(a b 2) e 

The following proof in T ~  shows that  the given sequent is provable : 

al.-a(o,) (a~b2)l-(a~b2)(~) al...a(B) (ab-..:c)l'-(ab~c)(~) a~-a(~) (ab....-*c)i-'(ab~c)('s)(1) 

~(~--b~)~(bb)(~) ~.(~) (~b--~)~-(~b--~)(~) ~ ( ~ ' " ~ )  (~b--~)~-(~b--~)(~)(4) 

a(a~b2)l-.b(~ (5) al-a(~) (ab~c)l..-(ab~c)(~) al-a ('t~ta) (ab~c)l-(ab~c)(6)(4) 

a(a~b2)l.-b(B)b ('~) al-a(t ~) (ab~c)l..-(ab~c)(~) al-a(ael*a)(ab~c)b(ab~c)('~)(2) 

a~(a.--,b2)t-.(ab)(~)b ('~) (ab~c)l-.(ab~c)('~) al-a (aez*a) (ab~c)i-.(ab~c)(6)(1) 

a2(a~b2)(ab~c)l-c(~)b (,~) ab.a ('~l~a) (ab-.,c)b-(ab~c)(~)(2) 

a3(a~br~)(ab~c)l-c(~)(ab) (6) (ab~c)l-(ab~c)(6)(1) 

aa(a'"*b2)(ab~c)2bc(~)c('~) (4) 

a3(a~b~)(ab~c):~c (~) c('r ) 

aa(a~b2)(ab~c)2}-(cc)("y) 

4. PROVABILITY 

In this section we establish some properties of proofs in T ~  and prove soundness 
and completeness theorems. 

L e m m a  4.1. .  (i) I f  a sequent A ~- B is provable then A is not empty (ii) I f  a 
sequent (B ~ C) F- D is provable then D is equivalent lo (B --~ C) (~) for some 

~ V.  (iii) I f  a sequence of sequents is provable in T~a then any its subsequence 
is provable. 

L e m m a  4.2..  I f  a sequent has a proof in Twl then it has a proof in Twl where in 
every appearance of rule (1) 

A ~- B ( " ) D  C ~- (B ~ F ) ( " ) H  

A C  ~- F ( " ) D H  

the sequent C ~" (B - -  E) (a)H is equivalent to the axiom (B --* E) t- (B ~ F)  (~). 

L e m m a  4.3..  I f  a sequent of the form A ~- B ( C  --* D)(") is provable in Twt 
then it has the proof where on the last step the rule (2) is applied to an axiom 
((5' - -  D) }- (C --~ D)("). 
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T h e o r e m  4.4.  ( s o u n d n e s s ) .  Let ff~ = <  G , f  >; G = (V,E).  I f  a sequence 
of sequents 21 : A1 t- B1 , . . .  ,An ~- Bn is provable in T ~  then a set of requests 
L~ = ((Aa, B1) , . . .  , (An, Bn)) is successful for ~Jl. 

Proof(sketch) The theorem is proved by induction on the length of  proof. If  the 
length of proof is 0 then all Ai t- Bi, i = 1 . . .  n are axioms and it is easy to define 
an initialization for which an empty  executionis successful for ~ on ff~. 

Now let the theorem hold for all provable sequences of  sequents with the lengths 
of proofs less than m. Let the p r o o f o f a  sequence of sequents 21 : A1 ~" B x , . .  �9 A~ ~- 
B ,  have length m. Consider the last rule applied. (a). The last rule applied is rule 
(1). In this case, for some i E 1 . . . n  the sequent Ai b- Bi is A~A~' }- F(a)CH,  for 
some c~ E V and there exists such B~ E Slist tha t  the proof  of  21 has a form 

A, ~ Ba...A~ h Bs A~' h (B~--,F)(")H...A, b B~ 
A1 F B1 ...A[A~ ~ b F ( " ) C H . . . A ~  h B ,  

The sequence of sequents 

21' : A1 I- B 1 . . .  A~ 

is provable and its proof has 

(1) 

F- BI(a)C A~' I- (B~ ---* F ) ( a ) H . . .  An F- Bn 

length m - 1. Then a set of requests .  

Let f i , i ~ ( a , r , j ) =  { 
f[ni t(a,r , j );  j < i 

f [ ~ i , ( a , r , j ) + f [ ~ i t ( a , r , j +  1); j = i 
f [n i , ( a , r , j+  1); j > i 

Then the execution ~ = s l , . . . , s t ,  st+l where 81+ 1 is  a resource t ransformat ion 
from B~ and (B~ ---* F)  into F in node a is successful for ~ on 9Y~ with finit. 

The other three cases are considered in a similar way. Thus  by induction the 
theorem is proved. 

T H E O R E M  4.5. ( c o m p l e t e n e s s ) .  Let 928 = <  G , f  >; G = (V,E) .  I f  a set 
of requests ~ = (Qa, . . .  ,Q~) is successful on 9y~ then a sequence of sequents 
21 : A1 t- B1 . . .  An b B,~ is provable in T ~ .  

PROOF(ske tch )  The proof  is made by induction on the length l of a succesful 
execution ~r = s a , . . . , s z  for l.~ on 9"ft. I f l  = 0 then for every i E 1 . . . n ,  Qi is 

(At1 . . .  Ai~,  A(~'l)il . . . . .  A(~)i~, and an initial state Cini* determined by initialization 
fi,~it is a final state CIin. Let Aij = r l i j . . . r t i l i j .  Then, for every i E 1 . . . n ,  
for every j E 1 . . . k i  and for every h E 1 . . . t i j  there exists a distinctive axiom 

rmj ~" "(~'J) in T ~ .  By applying rules of type (2)(conj) to these axioms we can 
" h i j  

obtain the sequence of sequents PA. 

is successful for ffYL Let f[nit be an initialization and or' = sa . . .  st be a successful 
execution for 2 '  on 93I. Then we construct a successful functioning for L~. 

1.-~ t ( ( A 1 , B 1 ) , . . .  , ( A ~ , B I ( a ) C ) ,  t t  t . .  = (Ai,  (B i --~ F)(~)H), . ,  (A,~, B , ) )  
= (Q'I , Q~, ' , .  . . . . .  Q'+O Qi+l, 
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Suppose now that  for all sets of requests successful on YJ/with successful execu- 
tions of length less than l the theorem is true. Consider a set of  requests t.~ tha t  
has a successful execution a = s l , . . .  , st for some initialization finit. Consider sz - 
the last step of  execution. 
Case I. st is t ransformation.  Let Cini~(sl, . . .  , s t -1)C'  and C'stCIin. Since sz 
is t ransformation,  for some i E 1 . . . n  and a E V in state C ~ { X , ( X  --* Y)} C 
R ' ( a ,  i) and in state Clin. R(c~,i) = (R ' (c~, i )U {Y}) \{X,  ( Z  --* Y)) .  An exe- 
cution a t = s l , . . .  , s t -1  has length I - 1 and it is successful for a set of re- 
quests Q '  = ((A1, B O , . . .  ,(Ai,  X ( a ) ( X  --* Y ) ( " ) D ) , . . . ,  (An, Bn)), where Bi is 
equa l  to Y(a)D. By induction supposit ion a sequence of sequents 21~ : A1 F 
B 1 . . . A I  F ( X ( X  ---* Y ) ) ( a ) D . . . A n  F Bn is provable. By l e m m a  4.1 the se- 
quent Ai F ( X ( X  - LY) ) (a )D is also provable. By l e m m a  4.3 there exists a proof 
of  this sequent which ends in the following way : 

A~ F X('~)D ( X  ---* Y )  t-- (X  ~ Y)(") (2)  
Ai I-- ( X ( X  --~ Y) (a)D 

where Ai is equal to A~(X --* Y) .  
Now we construct the proof  of  Ai t- Bi : 

A~ I- X('~)D (X  -* Y )  t- ( X  --* y) (a) (1)  
A~(X --~ Y )  I- Y(a)D 

Since in t h e ' p r o o f  of  Ai [- Bi we used the same axioms as in the proof of  
Ai F ( X ( X  - LY)) (a)D , the sequence of  sequents 21 : A1 t- B 1 . . . A n  F Bn is 
provable. 
Case 2. sl is transmission. In this case rule (4) (trans) may be used to continue 
the proof. 
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