Abstract
The ILIAS system consists of a sequential language for matrix computations, a compiler translating a source program into target independent ILIAS pseudo code, and a parallel interpreter for this code. In the parallel interpreter, subscription of matrices causes overhead and data-alignment problems. This is solved by using a new data distribution and by using heuristics for run-time redistributions. The feasibility and scalability of ILIAS is demonstrated by timing results for an LU decomposition and a Strassen matrix multiplication, on square torus networks of up to 400 transputers.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
A.V. Aho, R. Sethi and J.D. Ullman, Compilers Principles, Techniques and Tools, Addison-Wesley, 1986.
R.H. Bisseling and J.G.G. van de Vorst, Parallel LU Decomposition on a Transputer Network, Proc. Shell Conf. on Parallel Computing 1988, LNCS 384, Springer-Verlag, Berlin (1989).
R.H. Bisseling and J.G.G. van de Vorst, Parallel Triangular System Solving on a Mesh Network of Transputers, SIAM J. Sci. Stat. Comput., 12 (1991).
S. Chatterjee, J.R. Gilbert, R. Schreiber and S. Teng, Optimal Evaluation of Array Expressions on Massively Parallel Machines, ACM Sigplan Notices, 1 (1993).
S.L. Edgar, FORTRAN for the '90s: Problem Solving for Scientists and Engineers, Computer Science Press, Oxford, 1992.
G.C. Fox, M.A. Johnson, G.A. Lyzenga, S.W. Otto, J.K. Salmon and D.W. Walker, Solving Problems on Concurrent Processors, Vol. 1, Prentice-Hall, Englewood Cliffs, NJ, 1988.
G.H. Golub and C.F. van Loan, Matrix Computations, second edition, Johns Hopkins University Press, Baltimore, 1989.
High Performance Fortran Forum, DRAFT High Performance Fortran Language Specification, January 25 (1993), Version 1.0 DRAFT.
S.L. Johnsson, Communication Efficient Basic Linear Algebra Computations on Hypercube Architectures, J. Parallel Dist. Comput., 4 (1987).
K. Knobe, J.D. Lucas and G.L. Steele Jr., Data Optimization: Allocation of Arrays to Reduce Communication on SIMD Machines, J. Parallel Dist. Comput., 8 (1990).
S.P. Kumar and I.R. Philips, Portable tools for Fortran parallel programming, Concurrency: Practice and Experience, 6 (1991).
L.D.J.C. Loyens, A Design Method for Parallel Programs, Ph.D. Thesis, Eindhoven University of Technology, The Netherlands, 1992.
J.R. Moonen, ILIAS, A Sequential Language for Parallel Matrix Computations, M.Sc. Thesis, Eindhoven University of Technology, The Netherlands, 1993.
V. Strassen, Gaussian Elimination is Not Optimal, Numer. Math., 13 (1969).
J.G.G. van de Vorst, The Formal Development of a Parallel Program Performing LU Decomposition, Acta Inf., 26 (1988).
J.G.G. van de Vorst, Solving the Least Squares Problem Using a Parallel Linear Algebra Library, Fut. Gen. Comput. Syst., 4 (1989).
H.P. Zima, H.-J. Bast and M. Gerndt, SUPERB: A tool for semi-automatic MIMD/SIMD parallelization, Parallel Comput., 6 (1988).
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1994 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Loyens, L.D.J.C., Moonen, J.R. (1994). ILIAS, a sequential language for parallel matrix computations. In: Halatsis, C., Maritsas, D., Philokyprou, G., Theodoridis, S. (eds) PARLE'94 Parallel Architectures and Languages Europe. PARLE 1994. Lecture Notes in Computer Science, vol 817. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58184-7_106
Download citation
DOI: https://doi.org/10.1007/3-540-58184-7_106
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-58184-0
Online ISBN: 978-3-540-48477-6
eBook Packages: Springer Book Archive