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Abstract

Protocols which can tolerate any number of processors failing by ceasing operation
for an unbounded number of steps and resuming operation (with or) without knowing
that they were faulty are called wait-free; if they also work correctly even when the
starting state of the system is arbitrary, they are called wait-free, self-stabilizing. This
work is on the problem of wait-free, self-stabilizing clock synchronization of n processors
in an \in-phase" multiprocessor system and presents a protocol that achieves quadratic
synchronization time, by \re-parameterizing" and improving the best previously known
solution, which had cubic synchronization time. Both the protocol and its analysis are
intuitive and easy to understand.

1 Introduction

Synchronization among the processors of a multi-processor system is commonly obtained
using logical clocks. Since by today's technology multiprocessor systems have large numbers
of processors and since the probability of failure increases with the number of processors in
the system, it is important both to study which multiprocessor models can support protocols
that tolerate faults, as well as to design such fault-tolerant protocols for them.

In the past clock synchronization solutions that can tolerate faults have been proposed
for the case of arbitrary, or Byzantine faults [4, 13, 14, 15, 16, 18]. In those system models it
has been proven that no algorithm can work unless more than one third of the processors are
non-faulty [4]. In the case of authenticated Byzantine faults the situation is not so bad; there
exist algorithms that can tolerate any number of faulty processors [7]. The negative results
in that model are: i) the faulty processors can inuence the clocks of the non-faulty ones by
speeding them up, ii) re-accession of repaired processors is not possible unless more than half
of the processors are non-faulty [7]. Self-stabilizing algorithms for the clock synchronization
problem have also been proposed [1, 2, 6]. An algorithm is called self-stabilizing if it can
tolerate transient faults in the sense that, after a transient fault leaves the system in an
arbitrary state, if no further fault occurs for a su�ciently long period of time then the system

�A preliminary version of this work appeared in the Proceedings of the 4th Scandinavian Workshop on
Algorithm Theory (SWAT'94), Lecture Notes in Computer Science Vol. 824, Springer-Verlag, 1994.
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converges into a consistent global state and can solve the task. For an introduction and a
survey on self-stabilization, see [3, 17].

So, if we want to sum it all up, the \ideal" clock synchronization algorithm that is highly
resilient to failures must have the following features: (i) it must not only tolerate any number
of processors' napping faults like the authenticated Byzantine model but also guarantee that
the non-faulty processors' clocks remain una�ected by the failures, (ii) it must allow processors
which have been faulty to rejoin the system when they resume normal operation and become
synchronized in a number of steps k (synchronization time) independent of the number of the
working processors, and (iii) it must work correctly regardless of the system state in which it
is started.

Recently Dolev and Welch in [5] presented this highly resilient view of the problem as wait-
free, self-stabilizing clock synchronization; the �rst two conditions mentioned above capture
the spirit of the wait-freedom (cf. e.g. [8, 11]) which implies maximum resiliency to processor
halt/napping failures and the third condition captures the spirit of self-stabilization which
implies tolerance to system transient faults, i.e. faults that cause the state of the system
(processes' local states and shared variables) to change arbitrarily. In that paper they present
two wait-free clock synchronization algorithms for n processors which assume a global clock
pulse (\in-phase" systems) and non-global read/modify/write atomicity. Those solutions
guarantee synchronization within O(n3) and O(n2) steps; the �rst solution is also a self-

stabilizing one, while the second depends on the initialization.
In this paper we work on the same problem. By pointing out a simple approach in analyz-

ing its di�culties, we show how to \re-parameterize" the O(n3) algorithm of [5], thus getting a
solution to the clock synchronization problem which is both wait-free and self-stabilizing, and
has synchronization time O(n2). Moreover, its analysis and proof of correctness are simple
and intuitive.

2 The computation model

The system consists of n identical processors. A processor pi is a (possibly in�nite) state
machine. The processors communicate via a set of single-writer, multi-reader atomic shared
variables. Each variable is owned by one processor. The owner of a variable can write it, while
all the other processors can read it. Part of the state of each pi is a pointer to the variables
of some other processors in the system. In each one of its steps, pi (i) reads the variables of
the processor indicated by its current pointer value, (ii) changes state and (iii) updates its
own variables. It must be noted that pi has to read its own variables at each step because,
as proven in [5], there can be no wait-free, self-stabilizing clock synchronization algorithm
with only blind write operations (i.e. updates of shared variables without knowledge of their
previous values).

We consider \in-phase" systems, in which all processors share a common clock pulse. Each
pulse is a (possibly empty) set of processor names, which is the set of processors that make
a step in the pulse. Each processor can make at most one step in one pulse. If a processor
does not make a step in some pulse it will is said that it missed the pulse.

A con�guration is a tuple of the processors' states and of the values of the shared variables.
A system execution E is a sequence c0�1c1�2 : : : of alternating pulses (denoted by �x) and
con�gurations (denoted by cx). Each con�guration ci in a system execution is derived from
its directly preceding one ci�1 by the state transitions and the shared variable updates of the
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processors that make a step in pulse �i. The shared variable reads by all the processors that
make a step in �i return the respective values in ci�1. An execution is initialized if its �rst
con�guration is explicitly speci�ed by the protocol. We will refer to a sub-sequence (starting
and ending with a con�guration) of the sequence which describes a system execution by the
term sub-execution of that execution. We say that a processor pi makes l continuous steps if
it makes steps for l consecutive pulses.

This system model, from the theoretical point of view, can be seen as describing the well-
known theoretical PRAM model (cf. [10, 12]) with faults. In the real world it essentially
describes existing synchronous multiprocessor systems (cf. [9]), in which faults may occur,
or processors are scheduled independently. Pause intervals can be interpreted as faults in the
connections of the pausing processor or as transient faults, or even as processor crashes.

In a solution to the clock synchronization problem, each processor owns a shared variable
which encodes the value of its clock. The requirement from a wait-free clock synchronization
algorithm is that there should be a positive integer k such that in any execution E of the
protocol the following conditions are satis�ed:

�Adjustment: For any l > k and for any processor pi that makes l continuous steps during
a sequence of l consecutive pulses �j+1; : : : ; �j+l, pi's clock in cj+l equals its clock in cj+l�1

incremented by one.

�Agreement: For any two processors pi and pj and any sequence of l � k consecutive pulses
�j+1; : : : ; �j+l, in which both pi and pj have made l continuous steps, pi's and pj 's clocks in
cj+l are equal.

For self-stabilization to be guaranteed by the solution the above two requirements should
be met even in non-initialized executions. This su�ces because a sub-execution that starts
after transient faults have ceased can be viewed as a non-initialized execution.

3 Protocol Sync

The solution to the the clock synchronization problem that we present here|which is
shown in pseudo-code in Figure 1|is based on the following strategy: each processor pi
(which has possibly missed some pulses) tries to catch up with the maximal clock in the
system, by scanning in cyclic order the other processors' clocks and updating its own one to
the maximum value it knows in each step, incremented by one. There is, however, a di�culty:
the maximal clock in the system can remain hidden from pi arbitrarily long, because the
processors which hold and increment this maximal value may miss pulses just before being
checked by pi. Such a \game" may have unbounded duration (cf. [5]); moreover, if at any
time point it stops, pi will be likely to violate the adjustment requirement.

Since the problem is due to processors that misbehave by interchangeably switching be-
tween incrementing the maximal clock during some pulses and stopping operation in sub-
sequent ones, the solution aims at preventing these processors from misleading the others
that correctly and continuously work. Namely, when a processor realizes that it missed some
pulse(s), it suspends its operation by not incrementing its clock for a certain number of its
steps. Each pi can detect whether it had stopped executing for some pulse(s), by counting,
using its local array prev and the CNTj shared variables, the number of steps that each pj
made since that last time pi checked it.

In the approach taken in [5] the idea was that a continuously working processor, in order
to catch up with the maximal clock in the system, needs 2(n � 1) pulses during which no

3



shared var (CLOCK1; CNT1); : : : ; (CLOCKn; CNTn): (int, int) ;

Synch(i)
var j; clock j; cnt j; df; my clock; my cnt; susp: int ;

prev: array [1::n] of int ;
begin

repeat

for j = 1 to n (j 6= i) do
(clock j; cnt j) := read(CLOCKj; CNTj) ;
my cnt ++ ; df := cnt j � prev[j] ; prev[j] := cnt j ;
if susp 6= 0 then susp := susp� 1 end if ;
if df > n � 1 then susp := 2n(n� 1) end if ;
if susp = 0 then my clock :=max(clock j;my clock) + 1 end if ;
write((CLOCKi; CNTi), (my clock;my cnt)) ;

end for

forever

end

Figure 1: Protocol Sync for processor pi

processor which increments its clock (i.e. not suspended) misses a pulse. Taking into account
that in the worst case a processor might need 2n � 3 of its own steps to realize that it had
missed a pulse and that there may be n � 1 processors that try to mislead a correctly and
continuously working one, that approach implied a suspension time of at least 2(n�1)2(2n�3)
steps, and, hence, a synchronization time of roughly 8n3 continuous steps (pulses).

Here we take a new approach, which improves the synchronization time by a factor of n.
Consider a processor pi that has taken some pause and its clock needs adjustment. After the
end of its suspension period, if it correctly keeps making continuous steps, it is guaranteed
that after it has performed a complete scan of the other processors' variables (n� 1 steps) its
own clock value will be no less than n� 1 units smaller than the maximal clock value of the
system at that time. During the 2n(n�1) pulses following that point, if the suspension period
is 2n(n � 1) steps long for each processor, there will be either (i) n � 1 consecutive pulses
in which a processor with the maximal clock value continuously makes steps, or (ii) (by
the pigeon-hole principle) n � 1 pulses, not necessarily consecutive, in which the maximal
clock value is not incremented. Both these cases are convenient for pi because it will either
(i) actually read the maximal clock value in one of those steps, or (ii) have enough time to
catch up with that value, respectively. Once it has the maximal clock value, pi will continue
holding the maximal clock value for as long as it keeps making continuous steps, since it will
increment its clock by one at each step.

4 Analysis of the protocol

First we introduce some auxiliary terminology to simplify the presentation of the arguments.

� A processor pi is suspended in a con�guration c if its local variable susp 6= 0 in c.
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� If c denotes a system con�guration then

(i) CLOCKi(c) denotes the value of the respective shared variable (CLOCKi) in c,

(ii) MAX CLOCK(c) = maxfCLOCKi(c) : 1 � i � ng, and

(iii) di(c) = MAX CLOCK(c)� CLOCKi(c).

� A processor pi performs a forwarding step in a pulse �j if

(i) pi makes a step in �j and

(ii) CLOCKi(cj) = MAX CLOCK(cj) and

(iii) MAX CLOCK(cj) = MAX CLOCK(cj�1) + 1.

A pulse �j is called forwarding if there exists some pi which makes a forwarding step
in �j ; otherwise it is called non-forwarding (in which case it is MAX CLOCK(cj) =
MAX CLOCK(cj�1)).

>From now on, let E be a system execution (arbitrarily initialized) and let Es be a sub-
execution of E of length at least k = (4n + 1)(n � 1) pulses and pi be some processor that
takes a step at each one of its pulses. We will prove that pi, at most by the k-th of these
steps, will hold the maximal clock value in the system. Let c0 and c4 denote the �rst and
the last con�gurations of Es, respectively; let also c1 be the con�guration after the (n� 1)-th
pulse of Es, c2 be the con�guration after the 2n(n+ 1)-th pulse of Es after c1 and, �nally, c3
be the con�guration of Es after the (n� 1)-th pulse after c2.

Lemma 4.1 In any con�guration c of Es after con�guration c1 it will be df � n � 1, where
df is pi's local variable.

Proof. In its �rst n � 1 steps in Es, pi will load its array prev with the value of the CNTx
shared variable of every other processor px. >From that time on, since pi is not missing pulses,
it is going to calculate in df the number of steps that each px has done during the last period
of n � 1 pulses, during which pi is taking continuous steps. 2

Lemma 4.2 In any con�guration c of Es after con�guration c2, pi's local variable susp will
equal 0.

Proof. >From the previous lemma we have that after c1, pi will be �nding df � n� 1, and,
consequently, it will be decrementing the value of susp by one at each pulse|if susp 6= 0|and
will never increment it. Therefore, by the 2n(n� 1)-th pulse following c1, pi's local variable
susp will equal 0. 2

Lemma 4.3 In con�guration c3 of Es it will be di(c3) � n�1. Moreover, for any two con�gu-

rations cj and cj+l (l � 2n(n�1)) of Es that occur after c3 it will hold that di(cj) � di(cj+l) + lnf ,
where lnf is the number of non-forwarding pulses in the sub-execution speci�ed by cj and cj+l.

Proof. We �rst prove the �rst part of the lemma. Since at each step the maximal clock of
the system can be incremented by at most one, it follows that:

MAX CLOCK(c3)�MAX CLOCK(c2) � n� 1
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But MAX CLOCK(c2) is the value of CLOCKx of some px in c2, which pi reads in one of
these n� 1 steps. Since CLOCK variables are never decremented it follows that:

CLOCKi(c3) � MAX CLOCK(c2))

MAX CLOCK(c3)� CLOCKi(c3) � MAX CLOCK(c3)�MAX CLOCK(c2)

which, combined with the �rst inequality, implies that:

MAX CLOCK(c3)� CLOCKi(c3) � n � 1

The second part of the lemma can be derived by combining of the following two relations:

CLOCKi(cj+l) � CLOCKi(cj) + l

MAX CLOCK(cj+l) = MAX CLOCK(cj) + l� lnf

The former holds because pi is not suspended (from lemma 4.2) and, thus, it increments its
clock by at least one in each step. The latter holds because the system's maximal clock is
incremented by one in each pulse, unless the pulse is non-forwarding. 2

Lemma 4.4 If during Es and between con�gurations c3 and c4 there are n� 1 or more non-
forwarding pulses, then it will be di(c4) = 0.

Proof. It follows from Lemma 4.3 and from the following fact: if pi at some step reads the
maximal clock value of the respective con�guration, then, as long as it works continuously it
will keep holding the maximal clock value in the system and incrementing it (by incrementing
its own clock) by one at each pulse. 2

Lemma 4.5 In con�guration c4 of Es it will be CLOCKi(c4) = MAX CLOCK(c4).

Proof. Assume, towards a contradiction, that CLOCKi(c4) < MAX CLOCK(c4). Let EA
denote the sub-execution speci�ed by c2 and c4. Also, consider any processor px (x 6= i) which
makes steps during EA. We make two crucial remarks:
(i) Under our assumption, px cannot perform n � 1 continuous forwarding steps during EA.
Otherwise, we already have a contradiction: Since CLOCKx is read by pi every n � 1 steps
and because pi's steps in the speci�ed interval are continuous by de�nition, pi would have
adjusted its own clock to CLOCKx and, hence to the maximal clock of the system during
one of these n� 1 steps of px.
(ii) Once px performs its �rst n � 1 steps (not necessarily continuous) in EA, it will load its
local variable prev[i] with a correct value of CNTi written by pi during EA; thus, px will have
a consistent reference time-point for detecting its pauses thereafter. After that point, due to
our assumption, px cannot make more than n� 1 forwarding steps in EA: if it does, we know
from (i) that these steps will not be continuous. But then, by at most the (n � 1)-th such
step it will detect its pause, and, as a result it will become suspended. Since the length of a
sub-execution in which a processor is continuously suspended is at least equal to the length
of EA (2n(n� 1) pulses), px will not increment its clock again during EA.

What (ii) essentially implies is that the number of forwarding steps of each processor px
(x 6= i) in EA is at most 2(n� 1), which makes a total of at most 2(n� 1)2 forwarding pulses
in EA. The latter implies the existence of at least 2(n� 1) non-forwarding pulses during EA,
hence at least 2(n� 1) ones after c3. But then, by Lemma 4.4, pi should hold the maximal
clock value at c4, which contradicts our assumption. 2
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Theorem 4.1 Protocol Sync is a self-stabilizing wait-free clock synchronization solution with

k = (4n+ 1)(n� 1).

Proof. After a processor pi has worked continuously for k = (4n + 1)(n � 1) steps, it is
guaranteed by Lemma 4.5 that it will hold the maximal clock value in the system. After
that, as long as it continues working correctly it will still hold the maximal clock value in the
system and it will increment its clock by one at each pulse, thus satisfying the adjustment
requirement. The same will hold with any other processor that has been working continuously
and correctly for at least k pulses concurrently with pi. This implies that its clock value will
agree with the clock value of pi, thus, the agreement requirement is satis�ed, as well. The
self-stabilizing property of the protocol is due to the fact that no initialization conditions were
assumed for the analysis. 2

Conclusions

In this work we show a wait-free and self-stabilizing protocol which achieves clock synchro-
nization among n processors in at most 4n2 steps, and which improves the previously known
solution which had synchronization time O(n3) steps. The best known non-stabilizing solution
to the same problem has synchronization time O(n2), as well. Given these two facts, what
deserves consideration is to study if the problem can be solved with a linear time algorithm
or if the requirement for self-stabilization imposes some inherent overhead on the complexity
of the problem; for a negative answer to the latter question, it su�ces to prove that O(n2) is
a lower bound for a wait-free even non-stabilizing solution to the problem.
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