Skip to main content

On greedy tetrahedralization of points in 3D

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 834))

Included in the following conference series:

  • 143 Accesses

Abstract

In this paper, we show that a set of points in 3-D is not always greedy tetrahedralizable if the definition of greedy tetrahedralization is a straight-forward extension of the 2—D counterpart. By generalizing the greedy definition, we show that there always exists such a tetrahedralization, which can be determined by a fast algorithm.

This work is supported by NSERC grant OPG0041629.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aggarwal A., Computational Geometry, MIT Lecture Notes 18.409 (1988).

    Google Scholar 

  2. Gilbert P., New results on planar triangulations, Tech. Rep. ACT-15 (1979), Coord. Sci. Lab., University of Illinois at Urbana.

    Google Scholar 

  3. Goldman S., A space efficient Greedy triangulation algorithm, Information Processing Letters, 31 (1989), pp.191–196.

    Article  Google Scholar 

  4. Lingas, A., A space efficient algorithm for the greedy triangulation, Lecture Notes in Control and Information Sciences, Vol. 113 (1987), pp. 359–364.

    Google Scholar 

  5. Levcopoulos C. and Lingas, A., On approximation behavior of the greedy triangulation for convex polygon, Algorithmica, 2 (1987), pp.175–193.

    Article  Google Scholar 

  6. Levcopoulos C. and Lingas, A., Fast algorithms for greedy triangulation, Lecture Notes on Computer Science Vol. 447 (1990), pp.238–250.

    Google Scholar 

  7. Preparata F. and Shamos M., (1985), Computational Geometry, Springer-Verlag.

    Google Scholar 

  8. Seidel R., Constrained Delaunay triangulations and Voronoi diagrams with obstacles, Rep. 260, IIG-TU Graz, Austria (1988), pp. 178–191.

    Google Scholar 

  9. Wang C. and Schubert L., An optimal algorithm for constructing the Delaunay triangulation of a set of line segments, Proc. of the 3rd ACM Symposium on Computational Geometry (1987), pp.223–232.

    Google Scholar 

  10. Wang C., Efficiently updating the constrained Delaunay triangulations, BIT, 33 (1993), pp. 176–181.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ding-Zhu Du Xiang-Sun Zhang

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chin, F.Y., Wang, C.A. (1994). On greedy tetrahedralization of points in 3D. In: Du, DZ., Zhang, XS. (eds) Algorithms and Computation. ISAAC 1994. Lecture Notes in Computer Science, vol 834. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58325-4_220

Download citation

  • DOI: https://doi.org/10.1007/3-540-58325-4_220

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58325-7

  • Online ISBN: 978-3-540-48653-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics