Abstract
In this paper, we show that a set of points in 3-D is not always greedy tetrahedralizable if the definition of greedy tetrahedralization is a straight-forward extension of the 2—D counterpart. By generalizing the greedy definition, we show that there always exists such a tetrahedralization, which can be determined by a fast algorithm.
This work is supported by NSERC grant OPG0041629.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aggarwal A., Computational Geometry, MIT Lecture Notes 18.409 (1988).
Gilbert P., New results on planar triangulations, Tech. Rep. ACT-15 (1979), Coord. Sci. Lab., University of Illinois at Urbana.
Goldman S., A space efficient Greedy triangulation algorithm, Information Processing Letters, 31 (1989), pp.191–196.
Lingas, A., A space efficient algorithm for the greedy triangulation, Lecture Notes in Control and Information Sciences, Vol. 113 (1987), pp. 359–364.
Levcopoulos C. and Lingas, A., On approximation behavior of the greedy triangulation for convex polygon, Algorithmica, 2 (1987), pp.175–193.
Levcopoulos C. and Lingas, A., Fast algorithms for greedy triangulation, Lecture Notes on Computer Science Vol. 447 (1990), pp.238–250.
Preparata F. and Shamos M., (1985), Computational Geometry, Springer-Verlag.
Seidel R., Constrained Delaunay triangulations and Voronoi diagrams with obstacles, Rep. 260, IIG-TU Graz, Austria (1988), pp. 178–191.
Wang C. and Schubert L., An optimal algorithm for constructing the Delaunay triangulation of a set of line segments, Proc. of the 3rd ACM Symposium on Computational Geometry (1987), pp.223–232.
Wang C., Efficiently updating the constrained Delaunay triangulations, BIT, 33 (1993), pp. 176–181.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1994 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chin, F.Y., Wang, C.A. (1994). On greedy tetrahedralization of points in 3D. In: Du, DZ., Zhang, XS. (eds) Algorithms and Computation. ISAAC 1994. Lecture Notes in Computer Science, vol 834. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58325-4_220
Download citation
DOI: https://doi.org/10.1007/3-540-58325-4_220
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-58325-7
Online ISBN: 978-3-540-48653-4
eBook Packages: Springer Book Archive