Skip to main content

Intuitive counterexamples for constructive fallacies

  • Invited Papers
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1994 (MFCS 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 841))

  • 146 Accesses

Abstract

Formal countermodels may be used to justify the unprovability of formulae in the Heyting calculus (the best accepted formal system for constructive reasoning), on the grounds that unprovable formulae are not constructively valid. We argue that the intuitive impact of such countermodels becomes more transparent and convincing as we move from Kripke/Beth models based on possible worlds, to Läuchli realizability models. We introduce a new semantics for constructive reasoning, called relational realizability, which strengthens further the intuitive impact of Läuchli realizability. But, none of these model theories provides countermodels with the compelling impact of classical truth-table countermodels for classically unprovable formulae.

We outline a proof that the Heyting calculus is sound for relational realizability, and conjecture that there is a constructive choice-free proof of completeness. In this respect, relational realizability improves the metamathematical constructivity of Läuchli realizability (which uses choice in two crucial ways to prove completeness) in the same sort of way Beth semantics improves Kripke semantics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan Ross Anderson and Nuel D. Belnap, Entailment: the Logic of Relevance and Necessity, volume I, Princeton University Press, Princeton, NJ, 1975.

    Google Scholar 

  2. E. W. Beth, The Foundations of Mathematics, A Study in the Philosophy of Science, Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Company, Amsterdam, 1959.

    Google Scholar 

  3. H. B. Curry and R. Feys, Combinatory Logic Volume I, Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Company, Amsterdam, 1958.

    Google Scholar 

  4. H. C. M. de Swart, “Another Intuitionistic Completeness Proof”, Journal of Symbolic Logic 41 (1976) 644–662.

    Google Scholar 

  5. M. A. E. Dummett, Elements of Intuitionism, Oxford University Press, 1977.

    Google Scholar 

  6. M. C. Fitting, Intuitionistic Logic, Model Theory, and Forcing, Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Company, Amsterdam, London, 1969.

    Google Scholar 

  7. J.-Y. Girard, Y. Lafont, and P. Taylor, Proofs and Types, Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, 1989.

    Google Scholar 

  8. R. Grayson, “Forcing in Intuitionistic Set Theory Without Power Set”, Journal of Symbolic Logic 48 (1983) 670–682.

    Google Scholar 

  9. A. Heyting, “Die Formalen Regeln der Intuitionistischen Logik”, Sitzungsberichte der Preussischen Academie der Wissenschaften, Physikalisch-Matematische Klasse (1930) 42–56.

    Google Scholar 

  10. W. A. Howard, “The Formulae-As-Types Notion of Construction”, in: To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism (J. P. Seldin and J. R. Hindley, eds.), pp. 479–490, Academic Press, 1980.

    Google Scholar 

  11. S. C. Kleene, “On the Interpretation of Intuitionistic Number Theory”, The Journal of Symbolic Logic 10(4) (1945) 109–124.

    Google Scholar 

  12. S. C. Kleene, “Realizability”, in: Constructivity in Mathematics (A. Heyting, ed.) pp. 285–289, North-Holland Publishing Company, Amsterdam, 1959. Proceedings of the Colloquium Held in Amsterdam, August 26–31, 1957.

    Google Scholar 

  13. S. C. Kleene and R. E. Vesley, The Foundations of Intuitionistic Mathematics, Especially in Relation to Recursive Functions, Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Company, Amsterdam, London, 1965.

    Google Scholar 

  14. S. A. Kripke, “Semantical Analysis of Modal Logic I: Normal Modal Propositional Calculi”, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 9 (1963) 67–96.

    Google Scholar 

  15. S. A. Kripke, “Semantical Analysis of Intuitionistic Logic, I”, in: Formal Systems and Recursive Functions (J. N. Crossley and M. A. E. Dummett, eds.), pp. 92–130, North-Holland Publishing Company, Amsterdam, 1965. Proceedings of the Eighth Logic Colloquium, Oxford, July 1963.

    Google Scholar 

  16. Stuart A. Kurtz, John C. Mitchell, and Michael J. O'Donnell, “Connecting Formal Semantics to Constructive Intuitions”, in: Constructivity in Computer Science (J. P. Myers and M. J. O'Donnell, eds.), pp. 1–21, Lecture Notes in Computer Science 613, Springer-Verlag, Berlin, 1992. Proceedings of the Summer Symposium, San Antonio, TX, June 1991.

    Google Scholar 

  17. H. Läuchli, “An Abstract Notion of Realizability for which Intuitionistic Predicate Calculus is Complete”, in: Intuitionism and Proof Theory (A. Kino, J. Myhill, and R. E. Vesley, eds.), pp. 277–234, Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Company, Amsterdam, London, 1970. Proceedings of the Conference on Intuitionism and Proof Theory, Buffalo, New York, August 1968.

    Google Scholar 

  18. J. C. Mitchell, “Type Systems for Programming Languages”, in: Handbook of Theoretical Computer Science, Volume B (J. van Leeuwen, ed.), pp. 365–458, North-Holland Publishing Company, Amsterdam, 1990.

    Google Scholar 

  19. Andrew M. Pitts, “Poloymorphism is Set-Theoretic, Constructively”, in: Proceedings of the Conference on Category Theory and Computer Science, Edinburgh, 1987 (D. Pitt, ed.), pp. 12–39, Lecture Notes in Computer Science 283, Springer-Verlag, Berlin, 1987.

    Google Scholar 

  20. D. Prawitz, Natural Deduction, Almqvist & Wiksell, Stockholm, 1965.

    Google Scholar 

  21. John C. Reynolds, “Polymorphism is Not Set-Theoretic”, in: Semantics of Data Types, pp. 145–156, Lecture Notes in Computer Science 173, Springer-Verlag, Berlin, 1984.

    Google Scholar 

  22. G. F. Rose, “Propositional Calculus and Realizability”, Transactions of the American Mathematical Society 75 (1953) 1–19.

    Google Scholar 

  23. R. Statman, “Logical Relations and the Typed Lambda Calculus”, Information and Control 65 (1985) 85–97.

    Google Scholar 

  24. Sören Stenlund, Combinators, λ-terms, and Proof Theory, D. Riedel Publishing Company, Dordrecht-Holland, 1972.

    Google Scholar 

  25. Alfred Tarski, “Pojecie Prawdy W Jezykach Nauk Dedukcyjnch”, Prace Towarzystwa Naukowego Warzawskiego (1933). English translation in [26].

    Google Scholar 

  26. Alfred Tarski, Logic, Semantics, and Metamathematics, Oxford University Press, 1956.

    Google Scholar 

  27. A. S. Troelstra and D. van Dalen, Constructivism in Mathematics: an Introduction, Studies in Logic and the Foundations of Mathematics, North-Holland, 1988.

    Google Scholar 

  28. D. van Dalen, “Intuitionistic Logic”, in: Handbook of Philosophical Logic III (D. Gabbay and F. Guenther, eds.), pp. 225–339, D. Reidel, Dordrecht, 1986.

    Google Scholar 

  29. W. Veldman, “An Intuitionistic Completeness Theorem for Intuitionistic Predicate Logic”, Journal of Symbolic Logic 41 (1976) 159–166.

    Google Scholar 

  30. L. Wittgenstein, “Tractatus Logico-Philosophicus”, Annalen der Natur-philosophie (1921). English translation in [31].

    Google Scholar 

  31. L. Wittgenstein, Tractatus Logico-Philosophicus, Routledge and Kegan Paul, 1961.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Igor Prívara Branislav Rovan Peter Ruzička

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lipton, J., O'Donnell, M.J. (1994). Intuitive counterexamples for constructive fallacies. In: Prívara, I., Rovan, B., Ruzička, P. (eds) Mathematical Foundations of Computer Science 1994. MFCS 1994. Lecture Notes in Computer Science, vol 841. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58338-6_61

Download citation

  • DOI: https://doi.org/10.1007/3-540-58338-6_61

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58338-7

  • Online ISBN: 978-3-540-48663-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics