Skip to main content

Towards DNA sequencing chips

  • Invited Papers
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1994 (MFCS 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 841))

Abstract

DNA sequencing is an important technology for the determination of the sequences of nucleotides that make up a given DNA fragment. In view of the limitations of current sequencing technology, it would be advantageous to have a DNA sequencing method that provides the sequences of long DNA fragments and is amenable to automation. Sequencing by Hybridization (SBH) is a challenging alternative to the classical sequencing methods. The basic approach is to build an array (Sequencing Chip) of short DNA fragments of lenght l and to use biochemical methods for finding all substrings of lenght l of an unknown DNA fragment. Combinatorial algorithms are then used to reconstruct the sequence of the fragment from the l-tuple composition. In this article we review biochemical, mathematical, and technological aspects of SBH and present a new sequencing chip design which might allow significant chip miniaturization without loss of the resolution of the method.

The research was supported in part by the National Science Foundation under the grant CCR-9308567 and by the National Institutes of Health under the grant 1R01 HG00987-01

The research was supported in part by the National Institutes of Health under the grant HG-00813 and by the Department of Energy under the grant DE-FG03-92-ER81275

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bains W. Hybridization methods for DNA sequencing. Genomics, 11, (1991), 294–301

    Google Scholar 

  2. Bains W., Smith G.C. A novel method for DNA sequence determination. J.Theor. Biol., 135, (1988), 303–307

    Google Scholar 

  3. Cantor C., Mirzabekov A., Southern E. SBH: An idea whose time has come. Genomics. 13 (1992), 1378–1383

    Google Scholar 

  4. Churchill G.A., Waterman M.S. The accuracy of DNA sequences: estimating sequence quality. Genomics. 14 (1992), 89–98.

    Google Scholar 

  5. Drmanac R., Crkvenjakov R. Yugoslav Patent Application 570. (1987)

    Google Scholar 

  6. Drmanac R., Labat L., Brukner I., Crkvenjakov R. Sequencing of megabase plus DNA by Hybridization. Genomics, 4 (1989), 114–128

    Google Scholar 

  7. Drmanac S., Labat I., Crkvenjakov R., Vicentic A., Gemmell A., Drmanac R. Sequencing by hybridization (SBH): a production line to sequence one million M13 clones arrayed on membranes. Electrophoresis, 13, (1992), 566–573

    Google Scholar 

  8. Drmanac R., Crkvenjakov R. m Sequencing by hybridization (SBH), with oligonucleotides probes as an integral approach for the analysis of complex genomes. International Journal of Genome Research, 1, (1992), 59–79

    Google Scholar 

  9. Eggers M., Beattie K., Shumaker J., Hogan M., Hollis M., Murphy A., Rathman D., Erlich D. Genosensors: microfabricated devices for automated high throughput DNA sequence analysis. In ‘Genome Mapping and Sequencing', (Abstracts of the paper presented at the 1992 meeting arranged by M.Olson, C.Cantor and R.Roberts), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, (1992), 111

    Google Scholar 

  10. Fodor S.P.A., Read J.L., Pirrung M.S., Stryer L., Lu A.T., Solas D. Light-directed spatially addressable parallel chemical synthesis. Science, 251, (1991) 767–773

    Google Scholar 

  11. Fodor S.P.A., Rava R.P., Huang X.C., Pease A.C., Holmes C.P., Adams C.L. Multiplex biochemical assays with biological chips. Nature, 364, (1993) 555–556

    Google Scholar 

  12. Gillevet P.M. Mutliplex genomic walking: Integration of the wet lab and computer lab into a single prototyping environment. In C.Cantor, J.Fickett. H.Lim, R.Robbins (eds.) The Second International Conference on Bioinformatics, Supercomputing and Complex Genome Analysis, (1992), 197–206

    Google Scholar 

  13. Khrapko K.R., Lysov Yu.P., Khorlin A.A., Shik V.V., Florent'ev V.L., Mirzabekov A.D. An oligonucleotide apporach to DNA sequencing. FEBS Letters, 256, (1989), 118–122

    Google Scholar 

  14. Khrapko K.R., Lysov Yu.P., Khorlin A.A., Ivanov I.B., Yershov G.M., Vasilenko S.K., V.V., Florent'ev, Florent'ev V.L., Mirzabekov A.D. A method for DNA sequencing by hybridization with oligonucleotide matrix. DNA Sequence, 1, (1991), 375–388

    Google Scholar 

  15. Lipshutz R.J. Maximum likelihood DNA sequencing by hybridization. J. Biom. Struct. Dyn. 11, (1993), 637–653

    Google Scholar 

  16. Lysov Yu.P., Florent'ev V.L., Khorlin A.A., Khrapko., Shik V.V., Mirzabekov A.D. DNA Sequencing by hybridization with oligonucleotides. A novel method. Dokl. Acad. Sci USSR, 303, (1988) 1508–1511

    Google Scholar 

  17. Macevicz S.C. International Patent Application PS US89 O4741 (1989)

    Google Scholar 

  18. Maskos U., Southern E.M. Nucleic Acids Research, 20, (1992), 1675–1681

    Google Scholar 

  19. Ohara, O. Dorit, R., Gilbert W. Direct genomic sequencing of Bacterial DNA: The pyruvate kinase I gene of Eschericia coli. Proc Natl. Acad. Sci. USA, 86, (1989), 6883

    Google Scholar 

  20. Pease A.C., Solas D., Sullivan E.J., Cronin M.T., Holmes C.P., Fodor S.P.A. Oligonucleotide arrays for for rapid DNA sequence analysis. Proc. Natl. Acad. of Sci. USA, 91, (1994) 5022–5026

    Google Scholar 

  21. Pevzner P.A. l-tuple DNA sequencing: a computer analysis. J.Biom.Struct. and Dyn., 7, (1989) 63–73

    Google Scholar 

  22. Pevzner P.A., Lysov Yu.P., Khrapko K.R., Belyavsky A.V., Florentiev V.L., Mirzabekov A.D. Optimal chips for megabase DNA sequencing. J.Biomol.Struct.Dyn., 9, (1991) 399–410

    Google Scholar 

  23. Pevzner P.A. DNA physical mapping and alternating Eulerian cycles in coloured graphs. Algorithmica, 12, (1994) (to appear)

    Google Scholar 

  24. Southern E. United Kingdom Patent Application GB8810400. (1988)

    Google Scholar 

  25. Ukkonen E. Approximate string matching with q-grams and maximal matches. Theoretical Computer Science, 92, (1992) 191–211

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Igor Prívara Branislav Rovan Peter Ruzička

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pevzner, P.A., Lipshutz, R.J. (1994). Towards DNA sequencing chips. In: Prívara, I., Rovan, B., Ruzička, P. (eds) Mathematical Foundations of Computer Science 1994. MFCS 1994. Lecture Notes in Computer Science, vol 841. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58338-6_64

Download citation

  • DOI: https://doi.org/10.1007/3-540-58338-6_64

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58338-7

  • Online ISBN: 978-3-540-48663-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics