Skip to main content

Parallel computation of modular multivariate polynomial resultants on a shared memory machine

  • Conference paper
  • First Online:
Parallel Processing: CONPAR 94 — VAPP VI (VAPP 1994, CONPAR 1994)

Abstract

This paper reports our experience in parallelizing a modular algorithm for computing multivariate polynomial resultants over ℤp. The modular algorithm has the well-known scheme of “divide-conquercombine” where the “conquer” phase is straightforwardly parallelizable. But the “combine” phase is structurally sequential, and requires certain modifications for efficient parallelization. We describe and compare various different parallelization schemes (in particular for the combine phase). The variants of the algorithm have been implemented on top of the Paclib kernel which provides C-primitives for task creation and non-deterministic wait on a shared memory machine.

Supported by Austrian Science Foundation on Parallel Symbolic Computation (S5302-PHY)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. B. Buchberger, G. Collins, M. Encarnación, H. Hong, J. Johnson, W. Krandick, R. Loos, A. Mandache, A. Neubacher, and H. Vielhaber. A SACLIB Primer. Technical Report 92-34, RISC-Linz, Johannes Kepler University, Linz, Austria, 1992.

    Google Scholar 

  2. B. W. Char. Progress Report on a System for General-Purpose Parallel Symbolic Algebraic Computation. In Int. Symposium on Symbolic and Algebraic Computation (ISSAC90), pages 96–103, Tokyo, August 20–24, 1990. ACM Press.

    Google Scholar 

  3. G. E. Collins. The Calculation of Multivariate Polynomial Resultants. Journal of the ACM, 18:515–532, 1971.

    Google Scholar 

  4. H. Hong. Efficient Method for Analyzing Topology of Plane Real Algebraic Curves. In Proceedings of IMACS-SC 93, Lille, June 1993.

    Google Scholar 

  5. H. Hong, A. Neubacher, and W. Schreiner. The Design of the SACLIB/PACLIB Kernels. In A. Miola, editor, Int. Symposium on Design and Implementation of Symbolic Computation System (DISCO 93), volume 722 of Lecture Notes in Computer Science, pages 288–302, Gmunden, September 15–17, 1993. Springer.

    Google Scholar 

  6. H. Hong, W. Schreiner, A. Neubacher, K. Siegl, H.-W. Loidl, T. Jebelean, and P. Zettler. PACLIB User Manual. Technical Report 92-32, RISC-Linz, Johannes Kepler University, Linz, Austria, May 1992.

    Google Scholar 

  7. W. Küchlin. PARSAC-2: A Parallel SAC-2 Based on Threads. In S. Sakata, editor, Eighth Int. Symposium on Applied Algebra, Algebraic Algorithms, and Error Correcting Codes (AAECC8), volume 508 of Lecture Notes in Computer Science, pages 206–217, Tokyo, August 1990. Springer.

    Google Scholar 

  8. W. Küchlin. On the Multi-Threaded Computation of Integral Polynomial Greatest Common Divisors. In S. M. Watt, editor, Int. Symposium on Symbolic and Algebraic Computation (ISSAC91), Bonn, July 15–17, 1991. ACM Press.

    Google Scholar 

  9. W. Küchlin and J. Ward. Experiments with Virtual C Threads. In 4th IEEE Symposium on Parallel and Distributed Processing, Arlington, December, 1992. IEEE Press.

    Google Scholar 

  10. R. G. K. Loos. Computing in Algebraic Extensions. In B. Buchberger, G. E. Collins, and R. G. K. Loos, editors, Computer Algebra, Symbolic and Algebraic Computation, pages 173–187. Springer, 1982.

    Google Scholar 

  11. E. Mohr, D. A. Kranz, and R. H. Halstead Jr. Lazy Task Creation: A Technique for Increasing the Granularity of Parallel Programs. In 1990 ACM Symposium on Lisp and Functional Programming, pages 185–197, Nice, June 27–29, 1990.

    Google Scholar 

  12. J. L. Roch. An Environment for Parallel Algebraic Computation. In R. E. Zippel, editor, Computer Algebra and Parallelism — Second Int. Workshop on Parallel Algebraic Computation, volume 584 of Lecture Notes in Computer Science, pages 33–50, Ithaca, May 1990. Springer.

    Google Scholar 

  13. W. Schreiner. Virtual Tasks for the PACLIB Kernel. In Joint Int. Conference on Vector and Parallel Processing (CONPAR94 — VAPP VI), Lecture Notes in Computer Science, Linz, September 6–8, 1994. Springer. Also: Technical Report 94-02, RISC-Linz.

    Google Scholar 

  14. S. Seitz. Parallel Algorithm Development. In J. Della Dora and J. Fitch, editors, Computer Algebra and Parallelism, pages 223–232. Academic Press, June 1988.

    Google Scholar 

  15. K. Siegl. ∥MAPLE∥ — A System for Parallel Symbolic Computation. In H. M. Alnuweiri, editor, Parallel Systems Fair at the Seventh Int. Parallel Processing Symposium, pages 62–67, Newport Beach, April 14, 1993.

    Google Scholar 

  16. P. Wang. Parallel Univariate Polynomial Factorization on Shared-Memory Multiprocessors. In S. Watanabe and M. Nagata, editors, Int. Symposium on Symbolic and Algebraic Computation (ISSAC90), pages 145–151. Addison-Wesley, August 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bruno Buchberger Jens Volkert

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hong, H., Loidl, H.W. (1994). Parallel computation of modular multivariate polynomial resultants on a shared memory machine. In: Buchberger, B., Volkert, J. (eds) Parallel Processing: CONPAR 94 — VAPP VI. VAPP CONPAR 1994 1994. Lecture Notes in Computer Science, vol 854. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58430-7_29

Download citation

  • DOI: https://doi.org/10.1007/3-540-58430-7_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58430-8

  • Online ISBN: 978-3-540-48789-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics