THE UNIVERSITY OF

WARWICK

Original citation:

Janowski, Tomasz (1994) Fault-tolerant bisimulation and process transformations.
University of Warwick. Department of Computer Science. (Department of Computer
Science Research Report). (Unpublished) CS-RR-270

Permanent WRAP url:
http://wrap.warwick.ac.uk/60948

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:

The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

warwickpublicationswrap

M
highlight your res

http://wrap.warwick.ac.uk/

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60948
mailto:publications@warwick.ac.uk

Fault-Tolerant Bisimulation and Process
Transformations *

Tomasz Janowski **

Department of Computer Science

University of Warwick, Coventry CV4 TAL, UK

Abstract. We provide three methods of verifying concurrent systems
which are tolerant of faults in their operating environment - algebraic,
logical and transformational. The first is an extension of the bisimulation
equivalence, the second is rooted in the Hennessy-Milner logic, and the
third involves transformations of CCS processes. Based on the common
semantic model of labelled transition systems, which is also used to model
faults, all three methods are proved equivalent for certain classes of faults.

1 Introduction

Many models of concurrent systems have been proposed in the literature, based
on either actions or states. Examples include sequences [MP91], trees [Mil89],
machines [LT87], partial orders [Pra86] and event structures [Win89]. They offer
different ways of representing executions of systems (linear or branching), their
concurrent activity (interleaving or non-interleaving) and interaction (shared
memory or message-passing). A concept which unifies various models is a labelled
transition system [Kel76], a triple (P, A, —) where P is a set of processes, A a set
of actions and — C P x A x P a labelled transition relation. Labelled transition
relations are often defined by induction on the structure of processes, providing
the structured operational semantics [Plo81] of process description languages. An
example of such a language is CCS [Mil89).

As models of processes, labelled transition systems describe their behaviour
in detail, including particulars of their internal computation. However, in order
to specify a process and then to prove its correctness, it is useful to decide which
properties of the model are relevant and which can be ignored. Following [Mil89],
it is most common to ignore these properties which cannot be observed in the
finite interval of time. Two ways to do so are as follows:

— we can identify a process with its equivalence class, according to the (weak)
bisimulation equivalence = [Par81];

— we can identify a process with its properties, specified by the (weak) formulas
of the Hennessy-Milner logic [HM85] and verified by satisfaction relation .

* To be presented at the Third International Symposium “Formal Techniques in Real-
Time and Fault-Tolerant Systems”, Libeck, Germany, September 1994.

** Supported by the University of Warwick, under its Scholarship Scheme for East
Europe, and by an Overseas Students Award from CVCP.

A vital test of the usefulness of any formal theory is that statements of this
theory must be confirmed in practice (by experiment). Given such statements
as P~ Qor @ E M, it is expected that the low-level process @), when placed in
the real environment, behaves respectively as specified by the high-level process
P or the formula M. In practice however, such () depends on various hardware
components which often malfunction because of the physical faults. Such faults
affect the semantics of @) so that it may no longer behave as specified. Moreover,
physical faults do not exist before () is put into practice and so cannot be removed
beforehand, they must be folerated.

Clearly, it is not possible to tolerate arbitrary faults. We have to decide which
faults are anticipated (and thus should be tolerated) and which are not (such
faults are catastrophical). To represent the effect of the anticipated faults on the
semantics of processes, we will use the set > of the faulty transitions. To verify
fault-tolerance is then to prove that the low-level process behaves ‘correctly’ in
the presence of the transitions - > . As such, fault-tolerance depends on the
chosen notion of correctness. In this paper we provide three methods to verify
fault-tolerance for bisimulation equivalence and the Hennessy-Milner logic:

1. A fault-tolerant bisimilarity [T where P [T @ if observing P in the fault-
free environment (performing transitions —) and @ in the environment
which contains anticipated faults (performing transitions — and - >),
we cannot tell them apart in the finite interval of time.

2. A relation |= to verify satisfaction of formulas of the Hennessy-Milner logic
in the presence of the anticipated faults (when processes P undergo both
normal and faulty transitions — U >).

3. A language D for specifying faults and a process transformation 7(Q,¥)
where given the CCS process @), the effect of transitions > (specified by
¥ € D) on @ are represented syntactically. Then, verifying that @ is fault-
tolerant involves proving either:

(a) P~ T(Q,¥) for the high-level process P, or
(b) T(Q,¥) E M for the formula M.

We show that, for wide classes of faults, all these methods are equivalent:

PqQ %VMGMP':M&EQ":M

]] W

P~T(Q,0) Virem P EM iff T(Q %) M

When the ‘full’ fault-tolerance is either impossible or too expensive to ensure,
we may be still satisfied with its conditional version, given certain assumption
about the quantity of faults. To this end we will use n € NU{oo} as the maximal
number of times transitions - > can occur successively (if n = oo then - >
can occur at any time; if n = 0 then not at all). As before, we provide and prove
the equivalence of the three methods for verifying n-conditional fault-tolerance:
relations (L, and |y, and transformation 7(., %, n).

The rest of this paper is as follows. In Section 2 we describe the semantic
model. ‘Intolerant’ bisimulation equivalence, its fault-tolerant and conditional
fault-tolerant versions are defined in Section 3. Their logical characterisation,
in terms of the Hennessy-Milner logic, is given in Section 4. Both languages, of
processes and faults, are defined in Sections 5 and 6, followed by transformations
T and 7T which are shown to provide the third, equivalent method of verifying
fault-tolerance and conditional fault-tolerance in Section 7. Finally, in Section
8, we draw some conclusions and comment on the directions for future work.

2 Semantic Model

Consider the labelled transition relation — . If (P,«, P’) € —> then we write
P =5 P and say that P performs a and evolves into P’ (we also use P —— P’
for the action sequence s € A*). One kind of transition we wish to largely ignore
is —> where action 7 is unobservable and represents the outcome of a joint
activity (interaction) between two processes. Interaction takes place on the pair
of complementary actions a,@ € £ where £ =4.5 A— {7} is the set of observable
actions and @ is a function over A which is bijective and such that @ = a, @ # 7
and 7 = 7. We use « to range over A and [to range over L. =45 LU {¢}
where ¢ denotes the empty sequence. We also let ~ be the function over A* such
that £=¢, 7:5=5and @a: 5 =a:5 (: denotes concatenation).

When placed in the ‘real’ environment, a process may not behave according
to — : it may either perform transitions --- > which do not belong to —
~~~~~~ > N — = , or it may refuse to perform some of the transitions — . The

first case is demonstrated by transition P ~» P in Figure 1, the second (in part)

by @ N Q'"". To represent the second case in full, we should physically remove

Q 2Ly Q" from the diagram. This would complicate our model so suppose only
that this transition may be refused. This is achieved by two more transitions

Q N Q"". Given the set, > of faulty transitions as the effect of faults, we let
> contain both kinds of transitions, —> =g.; —> U - > (we also use
> for the action sequence s € A*).

P =<
a
Cc T
p oo > p Qe > Q"
\ \
P nyy

Fig. 1. Transition diagrams of P and @ with faulty transitions.



3 Bisimulation and Fault-Tolerance

There are many equivalences by which to abstract from the behavioural de-
tails of the transition relation —> . They differ, among other things, in the
adopted model of execution (linear- or branching-time) and concurrency (inter-
leaving or non-interleaving). The best known of them and deemed to be the
strongest among interleaving and branching-time equivalences is that of bisim-
ulation equivalence [Par81], as. Two bisimilar processes, their semantics defined
by transition relation — , cannot be distinguished by observing them in the
finite interval of time. This property may no longer hold in the presence of faults
which result in the additional transitions > (of the low-level process). As such,
= allows to verify correctness in the absence of faults only, it is fault-intolerant.
How to verify fault-tolerance, i.e. correctness in the presence of transitions -,
and conditional fault-tolerance, where transitions - > occur under assumption
n about their quantity, is the topic of the current section.

3.1 Fault-Intolerance

Bisimulation equivalence is defined as the maximal fixed point of the functional

F on the set of binary relations B on P, (P, Q) € F(B) iff

WheneverPi>P’thenE|Q,7sQ%Q’/\§:&/\(P’,Q’)EB 5
whenever @ —> @’ then 3, , P> P’ AS=a A (P',Q)€ B 2)

This maximal fixed point exists because F is monotonic: if By C Bs then
F(B1) C F(Bz). Originally, it was reached ‘from above’, as the limit of the
sequence F*(P x P) for all n > 0. Unfortunately, unless infinite ordinals n are
taken into account, this requires that transition relations — are weak-image-
finite i.e. that for all P € P, the set {P'| P> P’ A § = &} is finite. No
such assumption is needed to reach = ‘from below’, as the union of all pre-fixed
points B of F, = =4.; (J{B | B C F(B)} [Par81]. An additional advantage is
the useful technique for proving P ~ Q). It is enough to find a pre-fixed point B
of F such that (P, Q) € B. Such a B is called a bisimulation. We have:

P%QiﬁwheneverP%P’thenElQ”sQLQ’/\?:&\/\P’%Q’ 5
whenever Q — @’ then EIP,7SPL>P’/\§:&/\P’%Q’ (3)

3.2 Fault-Tolerance

If observing two processes, the high-level in the fault-free environment (perform-
ing transitions — ) and the lower-level in the environment which is affected by
the anticipated faults (performing transitions ), we cannot tell them apart
in the finite interval of time, then we say that the lower-level process is fault-
tolerant (with respect to the high-level one). To verify this property we provide
two relations, must-bisimilarity T and may-bisimilarity T .



The first is the direct extension of ~ to take account of transitions - >
We have P [L @ if P and @ are ‘bisimilar’, the first performing transitions —
and the second both — and -* . We define [T using a musi-bisimulation B
which is a binary relation such that if (P,Q)) € B then any —> transition of
P is matched by some transition sequence — of () and any +—— transition
of () is matched by some transition sequence — of P, such that the matched
transitions have the same observable actions and B is preserved:

whenever P —*» P’ thenElQ,7sQ%Q’A:‘;\:&\A(P’,Q’)EB 4
whenever @ — Q' then EIP,7SPL>P’/\§:62/\(P’,Q/)EB “)

Then P £ @ iff (P,Q) € B for some must-bisimulation B. Such @ satisfies the
basic postulate: no external observer can distinguish between P which behaves
according to transitions —* and @ which may additionally perform transitions
~~~~~~ > . In one aspect however, such () is unsatisfactory. Because [ allows to
match transitions of the high-level process by faulty transitions of the low-level
one, such () may not behave properly in the environment where not all transitions
~~~~~~ > are provided. For @ to behave as specified, transitions --> must occur.
In practice however, it is more useful is to assume the mere possibility of faults
(that faults may occur), not their necessity (that they must occur).

This assumption is met by may-bisimilarity P = ) where only normal tran-
sitions of () are allowed to match transitions of P. As before, may-bisimilarity
[z is defined as the largest may-bisimulation which is a binary relation B such

that if (P, Q) € B then:

whenever P -~ P’ then Jors @ Q' AS=
whenever @ > @’ then 3, | P > P/ A5 =

an(P,Q)eB 5
an(P,Q)eB (5)
Ezample 1. Consider the high-level process P in Figure 2 and four low-level,
fault-affected processes @), R, S and T. We have:

1. P = @ because {(P,Q),(P',Q"),(P',Q")} is a bisimulation but P £ and
P [ZQ) because there is no must- or may-bisimulation which contains (P, @):
Q+—> Q" and P > P (5= ¢) only, however P —> P’ but Q"'+~ .

2. P L R because {(P, R),(P,R"),(P',R'),(P',R")} is a must-bisimulation
but P % R and P [f R because there is no bisimulation or may-bisimulation
which contains (P, R): P = P’ and R > R’ (3 = a) only, however P’ s p
but R’ has no normal transitions, R' -/~ .

3. P [T S because {(P, S), (P, S"), (P, 58", (P, 8")}is a must-bisimulation and
P =~ S because {(P,S),(P’,5"),(P',5")} is a bisimulation. Also P £S be-
cause there is no may-bisimulation which contains (P, S): S+ §" and
P =5 P (5= ¢) only, however P -+ P’ but §""—}» .

4. PaT, PzT and P &~ T because {(P,T),(P,T"),(P',T"),(P',T")} is
simultaneously a must-bisimulation, may-bisimulation and bisimulation. O



Fig. 2. Transition diagrams of P, @, R, S and T with faulty transitions.

The example shows that & and [T are not comparable: [T does not imply =,
nor does &~ imply [T. However, it is easy to show that any may-bisimulation is
simultaneously a must-bisimulation and a bisimulation. As a result, because all
relations are defined as the union of the corresponding bisimulations, we have:

z € CN= (6)

The example (P LS and P &~ S but P[£S) also shows that this inclusion is
proper i.e. that P [L Q and P =~ @ together are not enough to establish P [T Q.
That is a pity since P [T ) which is more desirable than P [T (), is also more
difficult to establish (the equivalence diagram (1) for [ is only partly valid for
may-bisimilarity [z ). However, for B to be a may-bisimulation, it is not only
necessary but also sufficient that B is a bisimulation and a must-bisimulation:

B is a may-bisimulation iff it is a must-bisimulation and a bisimulation. (7)

Thus in order to prove P [Z @, it is enough to show that (P, Q) € B for B which
is a bisimulation and a must-bisimulation at the same time. This justifies our
efforts to establish the properties of [T in the first instance. What both relations
have in common is that neither of them is reflexive or symmetric (they are not
preorders). For processes in Figure 2 we have:

— Q [£Q because there is no must-bisimulation which contains the pair (Q, @):
Q+— Q" and Q = Q (5= ¢) only, however Q —= @’ but Q"""+ . Conse-
quently Q [Z@) because of (6).

— @ [z P because {(Q, P),(Q, P"),(Q", P')} is a may-bisimulation but P [£Q
because @ > Q" and P > P (5 = ¢) only, however P = P’ but Q"'+ .
Consequently we have @ P and PEQ, as well as Q T P and P [£Q.

The lack of these properties is not unexpected when verifying correctness in
the presence of faults. Because one and the same process has two different se-
mantics, as the high-level (fault-free) process and as the low-level (fault-affected)
one, we cannot ensure that the underlying relation is reflexive or symmetric.



Transitivity is most desirable to support the stepwise development of pro-
cesses and to support the reasoning in the presence of faults where it may be help-
ful to deal with only some of transitions > (not all) at a time. To this end let

us partition > among m > 0 nonempty disjoint sets >, > = U;nzl e
Given j = 0,...,m we define +—> as the union of the normal transitions —

and the first j partitions of ~>: > =4 — U ngl ~> . This gives an

ascending sequence —» = +—> C .- C > = +—> of the transition relations.

Suppose now that for 0 < j <1 < m, IZ? and II{ denote the correspond-
ing bisimulation relations where transitions > are regarded as normal and

transitions Ui’:j+1 - as abnormal:
P EgQ iff whenever P % P’ then 34, ; @ |%> Q' ANS=anPp E?Q’ (8)
whenever @ > @' then dpi, P |%> PAS=a AP ]Q
Relation II{ is defined alike. Then, given j < k < [, we can easily prove the
following transitive properties of [ and [ (o is the relational composition):

Zio E{ C ] Tio Tf C o 9)

N

According to the first inclusion, to tolerate transitions Ui’:j+1 w3 (given [T ),

at least once we must tolerate them altogether. According to the second, to

tolerate transitions Ui’:j+1 > (with respect to [T), it is enough to first tolerate

transitions Uf:j+1 - and then transitions U£:k+1 >, Following the first

inclusion, it is easy to see that [T is transitive. This is not the case for T and

in general the first inclusion does not hold for [T and the second for [T, as

shown by processes in Figure 3. We have: P T @ [ R but clearly P [ZR. Also,
T

P98 and S 3T but PEST because T ~%> T and P+ P (5 = ¢) only,
however P +— P’ but T"'+f> .

P R
a b a b

P i Q’ R’ R

S

)

a v b
g
S T S’

Fig. 3. Transition diagrams of P, @, R, S and T with faulty transitions.



3.3 Conditional Fault-Tolerance

For any may- or must-bisimilar processes P and @, - > is the assumption
about faults of the operating environment of J, where () is guaranteed to behave
‘properly’, as specified by P. We call > a qualitative assumption, in opposite
to the quantitative assumptions n € NU{oo} which are introduced in this section
and specify the maximal number of times transitions > can occur successively
(if n = 0 then - > are assumed not to occur at all; if n = co then they can
occur at any time). The reasons for introducing such assumptions are threefold:

— For certain sets - >, we cannot ensure fault-tolerance in full. In these cir-
cumstances, we must be satisfied with its degraded, conditional version, for
certain assumptions about the quantity of - .

— Even when the “full’ fault-tolerance is (in theory) possible, we may choose
its conditional version because it is often easier to do so. This argument is
true for applications which are not safety-critical.

— Conditional fault-tolerance may facilitate the stepwise procedure where
is first designed for restricted assumptions about faults and then stepwise
transformed for increasingly relaxed assumptions.

Recall that if @+ Q' then @ evolves into @’ performing the sequence s of
transitions —> and - > . This may be no longer the case if transitions - >
can only occur under assumption n. It these circumstances we will use the family
{ |—>§ 1 =0 of relations |—>§ CPxA xP.I(Q,sQ) € |—>§ then we write
Q |i>; Q' and say that @) evolves into ()’ by the sequence s € A* of transitions
>, under assumption n, and given that ¢ is the number of times transitions
~~~~~~ > have successively occurred before and j after @) |i>; Q'. Formally, relations
|—>§ are defined by the following inductive rules:

QriQ
Q @}Q” whenever 35, @ = @ Q?Q” \% (10)
Q> Q' |i>§.+1Q“ ANi#n

The induction above is well-defined: the first rule provides the base, for the empty
sequence ¢, and the second rule decreases the length of the action sequence by
one. Given n = 0, we always have ¢ = n, so transitions --»> cannot occur at all.
Given n = oo, it is never the case that ¢ = n, so - > can occur at any time.
Consider conditional version of [T, [,. We have P [T ,@Q if observing P in
the fault-free environment (performing transitions —>) and @ in any environ-
ment where it may also perform transitions > (provided no more than n times
in a row), we cannot distinguish between them in the finite amount of time. In
order to keep track of the number 7 of the successive transitions >, [T, is de-
fined using [0, n]-indexed families { B; }7_, of binary relations B; C P x P. Such
a family {B;}"_, is called a conditional must-bisimulation iff for all ¢, j € [0, n]

and a € A, if (P,Q) € B; then:

whenever P - P’ then Jors; @ Q;Q’ NS =

an (P,
WheneverQii);iQ’ then Jp, | PP AS=aAn (P,

B.
(P, Q") € B; ()

Similarly, { B;}7, is called a conditional may-bisimulation iff for all 7, j € [0, n]
and o € A, if (P, Q) € B; then:

whenever P % P’ then EIQ,7S Q->Q ANs=

an(P,Q)eB;
WheneverQii);iQ’ then EIP,7SPL>P’/\§:62/\ !

12
Let i € [0,n]. We define relations ! and [as follows:
P riQiff (P,Q) € B, for some {B;}",
which is a conditional must-bisimulation

P z!Qiff (P,Q) € B, for some {B;}",

which is a conditional may-bisimulation

Then we have P ,Q iff P £%Q and P = ,Q iff P Z2Q.

Ezample 2. Consider processes in Figure 4. We have:

Finally P [Z{ R because then R’ --> R cannot be taken but is needed to
match transitions of P. O

P

Fig. 4. Transition diagrams of P, @ and R with abnormal transitions.

Conditional may-bisimilarity [T, is monotone decreasing with respect to n.
This is not the case for [T, as shown by P LR and P [, R in Figure 4. For
n = 00, [Le and [T, coincide with their unconditional versions; for n = 0,
they coincide with . We have the following diagram of inclusions:

=00 CCEp1CEpC:--C Eo=~r
n NN I (13)
C=1Cx (] (H Co=

X

4 Logic of Processes

The Hennessy-Milner logic [HM85] is a simple modal logic for specifying prop-
erties of processes. It provides a language M of formulas M which extends
propositional logic by the modal operators (8) M. M is defined by the grammar:

M 2= true | MAM | -M | (5)M (14)

The semantics of M (the set of all processes which satisfy M) is defined by
relation = C P x M where if (P, M) € = then we write P = M. Following
[AMB85], |= is defined as the least set such that:

P = true
PEMAN iff PEM A PEN s
PE-M iff not P=M (15)

PE(@M iff 3, PP ANS=0APEM

We abbreviate —true as false, =(5)-M as []M and for m > 1 define {(3)™ M
as (B)(B)""'M and (B)'M as (B)M ([8]™ M is defined alike).

Algebraically, we can identify a process with its equivalence class. However,
given a logic where properties of processes can be stated and verified, we can
identify a process with its properties. When both algebraic and logical views
agree, that is when two processes are equivalent iff they have the same properties,
then we say that the equivalence is characterised by the logic. Following [HM85],
if P& @ then P and @ satisfy the same formulas M € M and the other way
round but only for weak-image-finite — :

PrQ iff Vyou PEMSQEM (16)

The aim of this section is to provide similar statements for fault-tolerant and
conditional fault-tolerant extensions of a2. Consider the new relation = C P x M
which is defined like = except that the transitions > are now used to define
the semantics of formulas (3) M:

QEMM iff 35, Qr—Q AN5=8AQ M (17)

Applying |= for the high-level process and |= for the low-level one, we can show
that for weak-image-finite relations =, must-bisimilarity [T is characterised
by the Hennessy-Milner logic:

Proposition 1. For weak-image-finite relation — we have:

PrQ iff Vyeu PEM & QM

Proof. (=) By induction on the structure of M. (<=) We show that the relation
B =45 {(P,Q)| Vyera PEM & Q |= M} is a must-bisimulation. For
details see Appendix A. a

10

Because P [Z () implies P T Q, we also have P = M iff Q | M for any
P @ and M € M. The inverse however does not hold, as demonstrated by P
and S in Figure 2 which have the same properties (P with respect to = and S
according to |=) but still P [£S.

FEzample 3. Consider processes in Figure 2 and two formulas for m > 0:

— M = [b]*"(a)true which asserts that the first action a is always possible
after an even number of b’s;

— N = [a](b)*™*(a)true where the second occurrence of a may be possible
after an odd number of b’s.

We have P = M AN and thus Q E M AN and S E M A N because of
P~ @ = S. We also have P [L R what gives R |= M AN and P LS what
results in S | M AN. Finally @ | -M AN and R =M A-N. O

Consider n € N U {oo} which specifies the maximal number of times transi-
tions --»> can occur successively. The logical characterisation of [, involves
conditional satisfaction relation |=, which is defined in terms of the family of
relations |=! , indexed by [0, n]. Consider i € [0, n]. For all formulas except (3) M,
=, is defined like |=. For {3)M we have:

Q. (AM iff 3y, ,; QrQ AS=8ANQ |F M (18)

Thus Q |=, M if Q satisfies M, performing transitions — and > but
the last no more than n times in a row and no more than n — ¢ of them initially.
Finally, we define P |=, M iff P |2 M. Given such |=, and provided that >
is weak-image-finite, we can prove the following characterisation theorem:

Proposition2. For weak-image-finite relation — we have:

Pr,.Q iff Vyeru PEM & QM
Proof. (=) By induction on the structure of M. (<=) We show that the family
{Bi}i_ of relations B; =q; {(P,Q)|Vyemq PEM & QI M}isa
conditional must-bisimulation. For details see Appendix A. a

As a result, because P [z ,,Q) implies P [T ,Q, we have P = M iff Q |, M
for all P = ,Q) and M € M.

Ezample 4. Consider processes in Figure 4, m > 0 and the following formulas:

— M = (a)true A [a][a] false
where action a is possible but then it cannot be followed by another a;
— N = (bYtrue A [b][a] false
where action b is possible but not followed by a either.
We have P = [a][b]*"tY{(M A N) and thus @ = [a][b]*"TH(M A N) because
of P~ Q. For Q@ we have Q |= [a][p]*"T1N and Q |& —[a][b]*™ 1M, however

subsequent actions a, cannot be chosen. For R we have R |= —[a][b]*"T'M and

R |= —[a][b]?™ 1N, however R |=2 [a][b]? (M A N) because then transition
R > R" cannot be chosen. |

11

5 Language of Processes

The structure of a process P has been ignored so far, it was defined as an element
of the abstract set P. The more complex is the behaviour of P however, the
greater is the need to treat P structurally. In this section, following [Mil89], we
define P as the language of processes which is given the structured operational
semantics [Plo81] in terms of the labelled transition system (P, A, —).

The syntax of P is based on two sets of symbols, A of actions and X’ of process
identifiers, and involves two syntactic categories, £ of process expressions and
D of declarations. Let X,Y € X, L C £ and f be a function over A such that
f(r) =7, f(a) # 7 and f(@) = f(a). £ is defined by the grammar:

E := X |0 |aFE | E+E | E|E | E\L | E[f] (19)

Informally, 0 is unable to take any action and «.F performs « and then
behaves like E. The operator + represents summation, | parallel composition,
\ restriction and [] renaming. One derived operator is E ™ F where F and F
proceed in parallel with actions out of E and in of F ‘joined’ and restricted,
E ™ F =45 (E[mid/out]|F[mid/in])\ {mid} where mid is not used by E or F.

We use X(F) for the set of all identifiers in F and E{F/X} for the process
expression F where all identifiers X are replaced by F'. In order to interpret
X € X(F), we use declarations of the form X = F. If also X € X(F) then
such X is defined by recursion. Given X = F and ¥ = G where X € X(G) and
Y € X(F), such X and YV are defined by the mutual recursion. In the sequel
we will often need to manipulate declarations for mutually recursive identifiers.
Then, it will be helpful to use a simple language D for specifying collections of
such declarations. D, ranged over by A and V, is defined by the grammar:

A= []| AIXZ2E] | a0A | AaV (20)

Informally, [] is an empty declaration and A[X = F] declares X as E and
other identifiers as in A. Moreover, « ® A and A & V perform respective op-
erations (a-prefix and summation) on the right sides of all the corresponding
declarations in A and V. Formally, A € D is assigned a partial function [A]
from A to £ which is defined in Figure 5 by induction on the structure of A. We
use dom(A) as the domain of [A] (dom([]) =4es 0) and ran(A) as its range.

[0 ® AJ(X) =acs a.[AJ(X) if X € dom(A)

~ E if X=Y
[ALY = EINX) =des { [A](X) if X#Y, X €dom(A)
[AT(X) if X € dom(A)— dom(V)
[A® VI(X) =a.s { [AI(X)+[VI(X)if X € dom(A)Ndom(V)
[vI(x) if X € dom(V)—dom(A)

Fig. 5. Denotational semantics of declarations D.

12

We abbreviate [|[[X = E][Y = Fl as [X = E,Y = F] and write [X = F | p]
for all declarations X = E such that the predicate p holds. A is said to be closed
if all identifiers in the right side expressions of A are declared in A:

U) Cdom(a)
Feran(A)

(21)

A process P € P is finally the pair (E, A) of the process expression F and
the closed declaration A for all identifiers of F, X(F) C dom(A). We write
(E, Ay =(F, V) if (E, A) and (F, V) are identical.

The semantics of (E, A) € P is defined in terms of the labelled transition
system (P, A, —) by induction on the structure of E.If E = X then transitions
of (X, A) involve the semantics of A, they are inferred from the transitions of
([A](X), A). Following [Mil89], transition relation —> is the least set defined
by inference rules in Figure 6.

(B, A) =5 (B’ A)
(E+F, Ay = (B, A)
(E', A) (F, Ay =
(E'|F, A) (E|F, Ay =

(F, Ay 25 (F', A)
(E+F, Ay > (F', A)
(F',4)

(E|F', 4)

(0., A) = (E, A)
(E,A) =

(E|F, Ay =

(E,A) =

(E', 4)

(F, Ay =

(', A)

(E|F, Ay D>

(E'|F,

A)

(E,A) =
(E\L,A) =

(E', 4) _
; , oo gL
(E'\L, 4)
([A1(x), >—>(E 4)
(X,4) = (B, 4)

(E, A) 2 (E’, A)
(E[f], 4) 295 (E'[1], 2)
, X €dom(A)

Fig. 6. Operational semantics of processes P

Ezample 5. Consider n € NU{oco} and the process R,, which performs actions a
and b; the first at any time; the second no more than n times in a row. We have
R, =ac; (Yo, A, & V,) where:

An:def[y:ayo |0<i<n]
Vn—def[—b}/z+1|0<l<n] O
We compose processes by composing their expressions, using the process
combinators (19). For binary operators + and | we assume that the component
processes have disjoint sets of identifiers. If dom(A) N dom(V) = then:

Oz.<E, A> =def <a E A>

(B, A\ L —es (E\L,)

(£, A)[/] =acy (E[f], 4) (22)
<E7A>+<F V> —def <E+F A@V>

(B, A) | (F,V) =aey (E | F,AD V)

13

In the language defined so far, processes interact by synchronising on com-
plementary actions a and @. There is no directionality or value which passes
between them. For pragmatic reasons, we also need a value-passing language
for the set V of values (we assume, for simplicity, that V' is finite). To this end
we introduce value constants (like), value variables (like # and s), value and
boolean expressions (like e and p respectively), built using constants, variables
and any function symbols we need. The last include fs as the length of the se-
quence s, sg its first element, s’ all but the first element and s : z as the sequence
s with value z appended. We also introduce parameters into process identifiers:
X(el,..,en) for X of arity n. Then we extend the basic language by input and
output prefixes a(x).F, @(e).E and conditionals if p then F else F. For their
translation into the basic language see [Mil89].

Ezample 6. Consider a buffer Buf,, of capacity m > 0, which receives (by action
in) and subsequently transmits (by action out) all values unchanged, in the same
order and with at most m of them received but not sent. We have:

Bufm =4y (X(c),A®V)

where A =g.¢ [X(s) = in(x).X(s:2) |0 < s < m]
V =45 [X(s) = out(s0).X(s") |0 < s < m] O

6 Language of Faults

Although a fault is modelled by a set of transitions, using this set directly is
not the most convenient way of specifying faults in practice, especially when the
abnormal behaviour we want to describe is complex. The purpose of this section
is to define the language where faults can be specified and combined.

The idea is to use process identifiers as ‘states’ which can be affected by faults.
Consider a process (X, A). Transitions of (X, A) can be only inferred from the
transitions of ([A](X), A) where [A](X) is the process expression assigned to
X by A. In order to specify faults, we will use an alternative, ‘faulty’ declaration
¥ € D. Suppose that X € dom(¥). Then X is assigned yet another expression
[#](X) which determines abnormal transitions of (X, A), following transitions

of ([¥](X), A) and denoted by > :
([#](X), 4) 5> (E, 4)

(23)
(X,4) 5> (£, 4)

Transition relation > is defined as the least set which satisfies inference rules
in Figure 7 and used to denote ¥-affected semantics of P. We also define:

Q%> @ iff Qs Q and Q> @ (24)

and relations |7>; CPx A" x P (10), given ¢,j € [0,n] and faulty transitions
~~~~~~ >, specified by ¥.

14



(B, ) ri> (E', 4) (F.A) > (F, A)
(a.E, Ay —> (E, A) (E+F Ay > (B, A) (E+F, Ay > (F', A)
(E,4) 5> (£, 4) (F,4) > (F', A)
(E|F, 4) > (E IF,A> (BI|F,A) 5> (BIF, A)
(B, A) > (E', A) (P, A) > (F', A)
(EIF,A) > (E'|F', A)

(B A (B.4) 5> (1, 4)
(LS (L) (E17) 2) = (111, )
([ANX), A) 52 (B2 A) v gy AKX B2 (B A) )

(X, 4) > (E, A) (X, 4) > (E, 4)

Fig. 7. Operational semantics of processes P affected by the fault ¥.

¥ is not assumed to be closed. However, in order to ensure that > does
not lead from the well-defined process (where all identifiers are declared) to the
ill-defined one, we assume that all process identifiers in the right-side expressions

of ¥ are declared by A:

U

Feran(¥)

X(F) C dom(A) (25)

We use Py C P for the set of such (F, A) and assume that > C Py x A x Py
and |7>; C Py x A* x Py.

Ezample 7. Consider the following declarations which specify various commu-
nication faults of the bounded buffer Buf,,, creation (¥e), corruption (¥e),
omission (¥o), replication (¥r) and permutation (¥p) of messages:

Ve =4.5 [X(s) = Tout(+/).X(s) |0 < 4s < m]
Ue =405 [X(s) = Tout(y/).X(s) |0 < 4s < m]
Vo =gy [X(s) = 7.X(s") [0 < s <m
Ur =gep [X(s) = T.oul(s).X(s) |0 < 4s < m]
Up =g4.5 [X(s) = Tout((s')o). X(s0 : ") | 1 < 8s < m]

We use 4/ to denote messages which has been corrupted or created. This is a way
to abstract from their particular value which is immaterial. Also, we assume that
when permuted, only one message is delayed. In order to specify more complex
faults, e.g. simultaneous creation, omission and permutation of messages, we can
use the summation ¥e ® ¥o ® ¥p of declarations:

[X(s) = roul(y/).X(5) | #s = 0]

[X(s) = rout(v)X(s) + X () | £5 = 1]
[X(5) = rout(/). X (s) + 7.X(s") + mout((s)o). X (50

s") |1 <ts<m] g

15



7 Fault Transformation of Processes

The primary effect of faults is that a process no longer behaves according to
the normal transition relation — . In addition to —, it can also perform
transitions - , specified by ¥ € D. This is a direct, semantic method to repre-
sent effects of faults on the behaviour of the process. In this section we present
an alternative, syntactic method. The idea is to capture the effect of faults,
specified by ¥, by the process transformation 7( - ,¥) where for any @ € Py,
its behaviour in the ¥-affected environment is ‘the same’ as the behaviour of
7(Q,%) in the environment which is free of faults [Liu91, LJ91]. We show that
T(Q,¥) yields the binary relation on P x Py which coincides with [T and the
satisfaction relation which agrees with |=. In the conditional case we provide a

transformation 7( - ,¥, n) which is shown to coincide with [T, and |=,.

7.1 Fault-Tolerance

Consider ¥ € D which specifies transitions - > and a process (F, A) € Py

'
with the well-defined, ¥-affected semantics > . If (E, A) has no identifiers in
common with ¥ then (E, A) is not affected by the transitions ->. Suppose

that X € dom(A)Ndom(¥) and that transitions of (¥, A) can be inferred from
(X, A) = (E', A). We have either

([A)(X), 4) 5> (E', A) o ([Z](X), A) 5> (E', A) (26)
(X, 4) 5> (F', A) (X, 4) 5> (F', A)

where the first transition is normal (it uses A to interpret X') and the second
is faulty (it uses ¥). The ability of (F, A) to perform the second transition (with
respect to — ) can be syntactically represented by summation, by redefining
its process identifier X as [A](X) + [#](X). To represent the capacity for all
transitions in -+, such a summation must be performed for all identifiers X €

dom(A) Ndom(¥). This leads to the following transformation:

THE,A),¥) =45 (E, A V) (27)

We would like to show that 7 ({E, A), ¥) captures the effect of faults, specified
by ¥ on (FE,A). Observe first that declarations (and thus transformation 7))
‘persist’ through the transitions = and —>:

If (B, A) = Q' then Q' = (E', A) for some .

If T((E, A),¥) =5 R’ then R' = T({E', A),¥) for some E'. (28)

Both statements can be shown by transitional induction. Transitional induction
is also employed to prove the following lemma (for details see Appendix B):

Lemma 3.

If QePy
then Q B> Q' iff T(Q,¥) > T(Q',¥).

16



Transformation 7( - ,%¥) induces the satisfaction relation on Py x M which
holds between a process @ € Py and a formula M € M iff T(Q,¥) = M.

Applying Lemma 3, we can show that this relation coincides with |=:

Proposition4.

I MeM,QePyand
transitions - > are specified by ¥

then Q |= M iff T7(Q,¥) = M

Proof. By induction on the structure of formulas M, applying Lemma 3. For
details see Appendix B. a

Transformation 7( - ,¥) also induces the binary relation on P x Py which
holds between P € P and @ € Py iff P = T(Q,¥). The following proposition
asserts that this relation coincides with must-bisimilarity [T:

Proposition 5.

If PeP,Qe€Py and
transitions - > are specified by ¥

then P TQ iff P~7(Q,¥)

Proof. 1t is easy to see that for weak-image-finite =, this statement follows
from the characterisation theorem (16) and Propositions 1 and 4. For any >,
it follows from the fact that:

B C P x Py is a must-bisimulation iff T(B, ¥) is a bisimulation (29)
where T(B,¥) =45 {(P,7(Q,¥)) | (P,Q) € B}. For details see Appendix B. O

Thus for must-bisimilarity [L, we have the equivalence diagram (1) of all
three approaches to verify fault-tolerance, given -.> such that > is weak-

image-finite. For = which is not weak-image-finite, we cannot guarantee that
PE=M iff Q=M forall M € M implies P L Q).

Moreover, for may-bisimilarity [z, we cannot guarantee that P = 7 (Q,¥) im-
plies P [z Q. However, applying equivalences (7) and (29) it is easy to see that
B C P x Py is a may-bisimulation iff it is a bisimulation together with T(B,¥).
As a result, given transitions > , we have the following statements:

P = Qiff (P,Q) € B for B which is a bisimulation

P rQiff (P,Q) € B for B such that T(B,¥) is a bisimulation.
Pz Qiff (P,Q) € B for B which is a bisimulation together with T(B,¥).

17



Ezample 8. Consider m, w > 0 and the task to ensure a reliable communication,
specified by the bounded buffer Buf,, over a medium of capacity m which
omits and replicates messages. To this end, we will use a version of the sliding
window protocol with the window size w. The protocol consists of two processes,
the sender So and the receiver Ro. The first transmits all messages with their
sequence numbers ¢ modulo w+1, such that at most w messages are sent without
being acknowledged. Suppose, for simplicity, that acknowledgements take place
by synchronising So and Ro on the action ack. We use s for the sequence of
messages sent but not acknowledged (s < w) and repeatedly retransmit sq. For
all arithmetic operations taken modulo w + 1 we have:

So =g.¢ (Z5(0,¢), [Zs(i,s) =in(x).Zs(i,s,z) |0 < ts < wd
[Zs(i,s) = ack.Zs(i,s') [0 < §s < w]P
[Zs(i,s) = out(i—1s,s0).75(i,s) |0 <ts <w]
[Zs(iys,2) = out(i,x).Zs(i+ 1,5 :2) |0 < #s < w|®d
[Zs(i,s,2) = @.Zs(i, s, x) |0 < ts < w]d
[Zs(i,s,2) = oul(i — 1,50).Z5(i,8,2) | 0 < s < w])
Ro=4.¢ (Zr(0), [Zr(i) =in(j,x).ifi=j

then W(r).ﬂ.ZT(i +1)
else 7r(7)])

Given such So and Ro, we can prove that:
Bufy, =~ (So ™ T(Bufm,Yod¥r) ™ Ro)\{ack}

and consequently Bufy, L (So ™ Bufs, 7 Ro)\ {ack}, following Proposition 5
and the fact that processes So and Ro are not affected by Wo @ ¥r (they have
disjoint sets of identifiers). However, the above statement does not depend on
the transitions specified by ¥o ¢ ¥r and we can find a bisimulation B such that
(Bufy,(So ™ Bufym ™ Ro)\ {ack}) € B and T(B,¥o @ ¥r) is a bisimulation.

Thus we have Bufy, [ (So ™ Bufy ~ Ro)\{ack}. O

7.2 Conditional Fault-Tolerance

Consider declaration ¥ and a process (F, A) € Pg. Suppose that we want to
verify (E, A) in the presence of transitions -+ and under assumption n about
their quantity. To this end, like before, we will use process transformations. The

idea is to use a family {X;}?_, of identifiers for eac}}\ identifier X of A or V.
Consider i € [0, n] and the following transformations 7;(-,n) and 7;(-, ¥, n):
Ti((B,A),n)  =ac; (E;, Ay) and
Ti((E, A),W,n) =ac; T(Ti((E, A),n), &)
where FE; =def E{XZ/X | X e X(E)}
Ay =aep [Xi =EF{YL/Y | Y € X(F)
U =aey [Xi = F{Yia /Y | Y € X(F)

18



Thus ’f]v'z is defined in terms of transformations 7 and ’i Also, A, is obtained
from A by replacing each declaration X = F with the family of declarations
X, = F{Yu/Y | Y € X(F)}, forall i € [0, n], and similarly for &, but only given
i € [0,n). Finally, we define ’j'(, n) and 7’(, ¥, n) taking i = 0:

T(E, A),n) =gep 'Zo(<EaA>a”)

TUE, A, ¥, n) =4e; To((E, A),¥,n) (30)

Recall the family { |7>; 1o of relations which denotes the effect of transitions
-+ on the semantics of Py, under assumption n about their quantity. There

are two problems to obtain the same effect using transformations:

1. Consider X € dom(A) N dom(¥) and (X, A) = (E, A) which can be in-
ferred from ([A](X), A) > (E, A) or {[W](X), A) = (E, A). The problem
appears when (X, A) > (E, A) can be inferred from both of them. Then it
is always regarded as ‘normal’ by |7>; but not always by ’f]V'(, ¥, n). If no
such F and « exists then we say that ¥ has the proper effect on A.

2. The second problem is that in case of 7(-,¥,n) (but not |7>;), some tran-
sitions do not ‘update’ the index 7. Suppose that ¥ =4.; [X = 7.0.X] and
A =4t [X 2 b.X]. Then we have: (X, A) ~&> (a.X, A) = (X, A) and thus
(X, A) =53(X, A), however 7’0(<X, A), ¥, n) = 7’1(<X, A), ¥, n). We can
solve this problem assuming that all expressions involved are linear i.e. they
are of the form Ele «;.X; (A is linear if all F' € ran(A) are linear).

Under assumption about the linear form of A and ¥, we can easily show that:

if (X, A) = Q' then Q' = (Y, A) and (31)
if 7,((X,A),¥,n) > R' then R’ = 7,;((Y, A),¥,n)

where Y € X and j € [0, n]. Then we have the following lemma:

Lemma 6.

If (X, A) € Py where
¥ has the proper effect on A and ¥ and A are linear
then (X, A) >4 (Y, A) iff T;((X, A), ¥, n) = T;((Y, A),¥,n)

Proof. By induction on the length of s. For details see Appendix C. a

Like before, transformation ’va'( -, ¥, n) induces two relations: the satisfaction re-
lation which holds between @ € Py and M € M iff %(Q, ¥, n) |E M and the bi-
nary relation which holds between P € P and QQ € Py iff P ~ %(Q, ¥, n). Under
assumptions of Lemma 6, we can show that the first relation coincides with con-
ditional satisfaction relation and the second with conditional must-bisimilarity:

Proposition 7.

If M eMand (X, A) € Py where
¥ has the proper effect on A and ¥ and A are linear

then (X, A) |=, M iff T((X,A),¥,n) M

19



Proof. We show that for all i € [0,n], (X, A) |=%, M iff ’i((X, Ay ¥.n) = M.
The proof proceeds by induction on the structure of M, applying Lemma 6. For
details see Appendix C. a

Proposition 8.

If PePand (X,A)€ Py where
¥ has the proper effect on A and ¥ and A are linear

then P [T, (X, A) iff P~ T((X,A),¥,n)

Proof. For weak-image-finite >, this statement follows from (16) and Propo-
sitions 2 and 7. For any > and family {B;}", such that if (P, Q) € B; then
Q = (X, A), it follows from the fact that:

{B;i}"_, is a conditional must-bisimulation iff

%({Bi}?zo, ¥, n) is a bisimulation (32)
where g({Bi}?:Oa v, n) —def U?:O{(Pv %Z(Qv v, n)) | (Pv Q) € Bi}'
For details of the proof see Appendix C. a

Assuming additionally that all right-side expressions in ¥ are of the form
Ele 7.X;, the same result can be obtained applying auxiliary actions, concur-
rent composition and processes R, (Example 5):

T'((X,A),¥,n) =4; (X,(A@@) & (W) | Ry)\{a,b}
where [A® @](X) = [A](X){@Y/Y | Y € X([A](X))}.

Thus for [, and under assumptions of Lemma 6, we have the equivalence

diagram similar to (1), given ;> such that > is weak-image-finite. Con-

sider T({B;}o,n) =def Uio{(P; 7:(Q,n)) | (P,Q) € B;}. For [z, we can
show that {B;}"_, is a conditional may-bisimulation iff T({B;}",, ¥, n) and
§({Bi}?:07 n) are bisimulations.

Although the linear form of A and ¥ is necessary to establish these results,
the meaning of 7 and 7 for non-linear A and ¥ is also well-understood. While
in the first case all transitions are significant, they all ‘update’ the index i, in
the second case only chosen ones are significant. The main reason for ‘mismatch’
between 7(-, ¥, n) and |7>; for non-linear expressions lies in the restrictive form
of the latter. In the following example we will illustrate using transformations
7 to verify conditional fault-tolerance for (E, A) and ¥ which is not linear.

Ezample 9. Consider n, m > 0 and the task to ensure a reliable communication
(specified by Bufpint2) over amedium of capacity m which permutes messages.
To this end we will use two processes: the sender Sp, and the receiver Rp,. In
order to determine the proper transmission order, messages will be send by Sp,
with their sequence numbers modulo n. The value of n determines the number
of parallel components St; of Rp, (i = 0,...,n — 1), each one used to store a
message with the sequence value 7, received out-of-order. The value of L means
that no message is stored. Suppose that the summation ¢ + 1 below is taken
modulo n. Then we have:

20



Spn =aer (Zs(0),[Zs(i) = in(x).out(z,i).Zs(i+1) | 0 < i < nl)
an =def (Ct?“ | Sto | | Stn_l)\{sto,...,stn_l}
Ctr =45 (Zr(0), [Zr(i) = in(z,j).ifi=

then out(z).Zm(i + 1)

else st;(z).Zr(i) [0 <i<n)
[Zm(i)= sty(x). ifz=1
then Zr(7)

else out(z).Zm(i+1)| 0 <i < n])
St; =aer (Zmi, [Zm; = sti(x).sti(x).Zm; + st;(L).Zm;]), 0<i<n

We can shown that the process Sp, — Buf, — Rp, tolerates ¥p, provided the
number of successive permutations is not greater than n:

Bufiminta & %(Spn ™ Btfm ™ Rpn,¥p,n) O

8 Conclusions

Currently, there is a number of methods for specifying and proving correctness of
systems which are tolerant of faults in the operating environment [Cri85, JH87,
LJ91, Nor92, Pel91, PJ93, Pra87]. Based on different formalisms and various
semantic models, of systems and faults, using different ways to represent effects
of faults on the behaviour of systems, they are difficult to compare and relate. In
particular, it is not certain whether a system which is fault-tolerant with respect
to one of these methods is also fault-tolerant according to the others.

This relationship is clear for three methods defined in this paper: algebraic,
logical and transformational. Based on the common semantic model of labelled
transition systems, which is also used to model faults, all three methods have
been proved equivalent for certain classes of faults. The equivalence holds in two
cases, unconditional, where no assumption is made about the quantity of faults,
and conditional, given the maximal number of times they can occur successively.

There is a number of directions that we plan to develop this work. We plan
to study the use of other bisimulation-like relations, like the partial [Wal90],
the ‘terminating’ [AH92] and the context-dependent [Lar87] bisimilarities for
fault-tolerance. In the presence of faulty transitions, a convergent process may
diverge and the one which terminates (successfully) may deadlock. We plan
to relate our theory with modal specifications [LT88] which constrain possible
implementations by two kinds of transitions, necessary and admissible (any nec-
essary transition is also admissible). Bisimulation gives rise to the refinement
ordering between modal specifications which is different however from the re-
lations defined in this paper. We plan to determine the class of contexts (built
from the operators of the process language) where our relations, especially the
stronger, may-bisimilarity, is substitutive. Last but not least, we plan to support
the development of fault-tolerant processes, based on the verification theory of
this paper and using the decomposition of faults specified in our language.

21



Acknowledgements

I am grateful to my supervisor, Mathai Joseph, for many valuable comments
on draft versions of this paper, to Zhiming Liu for stimulating discussions on
fault-tolerance, and to David Walker for his reading, helpful comments and for
putting some literature to my attention.

References

[AH92] L. Aceto and M. Hennessy. Termination, deadlock and divergence. Journal of
ACM, 39(1):147-187, 1992.

[Cri85] F. Cristian. A rigorous approach to fault-tolerant programming. IEEE Trans-
actions on Software Engineering, 11(1):23-31, 1985.

[HM85] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concur-
rency. Journal of the ACM, 32(1):137-161, 1985.

[JH87T] He Jifeng and C.A.R. Hoare. Algebraic specification and proof of a distributed
recovery algorithm. Distributed Computing, 2:1-12, 1987.

[Kel76] R. Keller. Formal verification of parallel programs. Communications of ACM,
19(7):561-572, 1976.

[Lar87] K.G. Larsen. A context dependent equivalence between processes. Theoretical
Computer Science, 49:185-215, 1987.

[Liu91] Z. Liu. Fault- Tolerant Programming by Transformations. PhD thesis, Univer-
sity of Warwick, 1991.

[LJ91] Z. Liu and M. Joseph. Transformations of programs for fault-tolerance. For-
mal Aspects of Computing, 4:442—-469, 1991.

[LT87] N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algo-
rithms. Technical report, MIT Laboratory for Computer Science, 87.

[LT88] K.G. Larsen and B. Thomsen. A modal process logic. In Proc. 3rd Annual
Symposium on Logic in Computer Science, pages 203—210, 88.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall International,
1989.

[MP91] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems, volume 1. Springer-Verlag, 1991.

[Nor92] J. Nordahl. Specification and Design of Dependable Communicating Systems.
PhD thesis, Technical University of Denmark, 1992.

[Par81] D. Park. Concurrency and automata on infinite sequences. LNCS, 104, 81.

[Pel91] J. Peleska. Design and verification of fault tolerant systems with CSP. Dis-
tributed Computing, 5:95-106, 1991.

[PJ93] D. Peled and M. Joseph. A compositional approach for fault-tolerance using
specification transformation. LNCS, 694, 1993.

[Plo81] G. Plotkin. A structural approach to operational semantics. Technical report,
Computer Science Department, Aarhus University, 81.

[Pra86] V. Pratt. Modeling concurrency with partial orders. International Journal of
Parallel Programming, 15(1):33-71, 1986.

[Pra87] K.V.S.Prasad. Combinators and Bisimulation Proofs for Restartable Systems.
PhD thesis, Department of Computer Science, University of Edinburgh, 1987.

[Wal90] D.J. Walker. Bisimulation and divergence. Information and Computation,

85:202-241, 90.

[Win89] G. Winskel. An introduction to event structures. LNCS, 354:364-397, 1989.

22



A  Proofs from Section 4

Lemma9.
B is a must-bisimulation iff for all (P, Q) € B and s € A*:

whenever P =+ P’ then ElQ’t Q'L)Q//\:‘E\:?/\ (P/,Q/) €B
whenever Q > @' then 3, , P> P/ AS=1TA(P,Q') € B
Proof. (=) Consider (P,Q) € B and let P = Py =% ... 2 P, = P’ where

n>0and s = ay...a,. If n = 0 then P’ = P and it is enough to take t = ¢
and Q' = Q. If n > 0 then for all k € [1,n] there exists @ and t; such that

Qi—1 "> Qi T = @y and (Py, Qi) € B. Let t =g £y : -+ : 1. Then Q v Q'
t=7%and (P',Q') € B. For Q > Q' the proof is the same.
(<) Tt is enough to take s such that §s = 1. ad

Proof of Proposition 1.

(=) Let P L@ and M € M. We will show that P |= M iff Q |= M, by induction
on M. Let P |= (BYM; (for true, My A Mz and =M, the proof is obvious). Then
P > P’ where § = 3 and P’ = M, for some s and P’. Applying Lemma 9,
there exists t and @’ such that @ N Q',t=%and P’ Q. Then, by induction
we have Q' |= M and finally @ |= (8)M;. For Q |= (3)M; the proof is similar.
(<) Consider B =45 {(P,Q)|Vyyeny P E M & Q | M} and suppose
that —— is weak-image-finite. We will show that B is a must-bisimulation. Let
(P,Q) € B and P P'. Then P [= (a)true and Q |= (Q)true what gives
Q + Q' for some s (5 = @) and @Q'. Let Q be the set of all such @Q’. Because
> is weak-image-finite, we have Q@ = {Q@;}_; for some n > 0. Then, it is
enough to find ¢ € [1, n] such that (P’,Q;) € B. Suppose on the contrary, that
for all ¢ € [1,n] there exists M; € M such that P' = M; and Q; | M;. Let
M =45 My A---ANM,. Then we have P’ E M and so P = (&)M, however
Q £ (@)M in spite of (P,Q) € B. For Q > @' the proof is the same ( —> is
also weak-image-finite). O

Lemmal0. '

If Q >iQ' =] Q" then Q F>LQ".

Proof. By induction on the len.gth of s. IT Q |i>; Q' @%Q” then we have Q' = Q
and ¢ = j what implies &}CQ”. If @ @;Q’ |t—>gC then either ¢ < n and
Q > Q" |i>j.+1Q’ @QQ” or Q > Q" %?Q’ @QQ” for some Q. In the

first case by induction Q" &2"’1@” so we get chvs—)tﬁc Q". In the second case by
induction Q' &QQ” so we finally get chvs—)tﬁc Q. ad

Lemmall.
Consider {B;}", where B; C P x P for i € [0,n]. {B;}, is a conditional
must-bisimulation iff for all ¢, j € [0,n], (P,Q) € B; and s € A*:
whenever P - P’ then Jgria @ lt—>;Q’ At=F5A(P,Q) € B;
whenever li%Q’ then 3p, , P L P AT=FA

23



Proof. (=) Consider i € [0,n], (P,Q) € B; and s = «ay...a,. Suppose that
P=Py= ... 2% P, = P for n > 0. If n = 0 then it is enough to take ¢t = ¢,
J=iand Q' = Q. It n> 0 then for all k € [1, n] there exists Qy, tx and i such
that Qp_1 = LN Zk le, i, = ay and (Pr, Qk) € B;, where Qo = @ and ip = 7. Let

t=1ty:--:t,. Thent = 3, (P',Qn) € B;, and from Lemma 10, @ |—>ZnQn
For ) |i>; Q’ the proof is similar.
(<) Tt is enough to take s such that §s = 1. ad

Proof of Proposition 2.

(=) Let i € [0,n], P £{Q and M € M. We will show that P = M iff Q =, M
by induction on M. Let P | < YMy (for true, My A My and =M the proof is
obvious). Then P = P’ and 5 = 3 for some P such that P E M. Applying
Lemma 11, there exists t (t = f) and j such that @ ) ;Q" and P’ T, Q’ for
some @'. Then by induction we have Q' |=), M; and thus Q |, (3)M;. For
Q |=: (B)M; the proof is similar.

(<) Let Bi =gy {(P,Q)| Vyyem P E M & Q |E, M} and suppose that
> is weak-image-finite. We will show that {B;}I'_, is a conditional must-
bisimulation. Suppose that i € [0,n], (P,Q) € B; and P =+ P’. Then we have
P = (@)true and Q |=¢ (@)true so Q Q;Q’ for some j and s such that 5= a.
Let Q; be the set of all such @'. Because r— is weak-image-finite, we have

Q; = {Qi}i;l where k; > 0 and there exists j such that &; > 0. Then it is
enough to show that for some j there exists & € [1, k;] such that (P’, Q) € B;.
Suppose on the contrary: for all j € [0,n] and for all & € [1,k;] there exists
M,g € M such that P E M]g and Qi = M]g Let}M =def /\?20 /\z]:1 M]g Then
we have P’ = M so P |= (&)M, however @ |£L (&) M in spite of (P,Q) € B;.

For @ |i>; ()’ the proof is the same, because — is also weak-image-finite. O

B Proofs from Section 7.1

Proof of Lemma 3.
We proceed by transitional induction. Let I' =4.; A D W.
(=) If Q = (F,A) — Q' then Q' = (F',A) (28) and we will show that
(E, Ty = (E', I') by induction on the inference of transition (E, A) > (E', A).
There are six cases:
1. E=akF' Then {(a.B' T > (E',T).
2. B = Fy + E3. Then either (Ey, A) > (E', A) or (Ey, A) > (E', A). For
the first (the second is symmetrical), by induction (Ey, Iy = (E’, I') and
so we have (Ey 4 Fq, I') = (E', T).
3. E = F1|F;. Then there are three cases:
(a) (E1, A) o> (B}, A) where E' = E}|E,. Then by induction we have
(E1, TY =5 (F, ') and so (E1|Eq, I') = (E}| B2, T).
(b) (E2, A) > (E%, A) where E' = Fy|E} is similar.
(¢) (E1,A) > (E1, A) and (E3, A) /> (EY, A) fo_r o =71 and E' = F{|F).
By induction (Fy, I') = (E}, I') and {Fy, I') = (F%, I') and so we have
<E1|E27F> — <E/1|Eéap>

24



4. E = By \ L. Then (Fy, A) > (B}, A) for a,a ¢ L and E' = E;\ L. Thus
by induction (Ey, I'y = (E}, I') and so (E4\ L, I') = (E{\ L, T').

5. F = Fq[f] is similar.

6. © = X. Then either (JAJ(X),A) > (B, A) or ([¥](X), A) > (E', A).
Consider the first (the second is symmetrical), then X € dom(A) and by
induction ([A](X), I') = (E’, I'). There are two cases:

(a) X ¢ dom(¥). Then (X, I') = (E', T') because [I'](X) = [A](X).

(b) X € dom(¥). Then [I'|(X) = [A](X)+[¥](X) from (25) and so because
(TANX) + [¥](X), ') =5 (E', T'), we have (X, ') > (E', T').

(<) Let 7(Q,¥) > R’ where Q = (F, A). Then R’ = T({E', A),¥) applying

(28) and we will show that (E, A) = (E’, A), using the similar induction on

the inference of the transition (E, ') <> (E’, I'}. Consider £ = X only. Then

(I'N(X), I'y = (E', I') and by induction we have ([I'](X), A) = (E’, A). Thus

there are two cases:

1. X ¢ dom(¥). Then [I'(X)=[A](X) so (X, A)r> (E', A).

2. X € dom(¥). Then [I'|(X) = [A](X) + [#](X) applying (25) so we either
have ([A](X), A) > (B, A) or ([¥](X), A) > (E’, A). In both cases we
finally get (X, A) — (E', A). a

Proof of Proposition 4.

We will show that @ |= M iff 7(Q,¥) = M by induction on the structure of
M. Let T(Q,%¥) E (8)M; (for true, My A Mz and =M, the proof is obvious).
Then 7(Q,¥) = R’ where 5§ = 3, R' = My and R' = T(Q',¥) applying (28).
Thus Q > @' from Lemma 3 and by induction we have Q' |= M;. As a result
Q = (B)M;. For Q |= {B8)M; the proof is similar. a

Proof of Proposition 5.

(=) Let P L Q. Then (P,Q) € B which a must-bisimulation for - > . We
will show that T(B,¥) =45 {(P,7(Q,¥))|(P,Q) € B} is a bisimulation. If
P =5 P’ then Q —> Q' where 5 = @ and (P',Q’) € B for some @'. But then
(P, T(Q',¥)) € I(B,¥) and T(Q,¥) > T(Q',¥) what follows from Lemma
3.1 7(Q,¥) = R then we get R’ = 7(Q',¥) (28) and applying Lemma 3 we
have @ Fo> (. Thus there exists P’ such that P = P, § = & and (P',Q’) € B.
Because then (P, 7(Q',¥)) € T(B,¥), T(B,¥) is a bisimulation.

(<) P=T(Q,¥) then (P, 7(Q,¥)) € B which is the least bisimulation with
this property. Applying (28), it is easy to see that there exists C' C P x Py
such that B = 3(C,¥) and it is enough to prove that C' is a must-bisimulation.
Let (P,Q) € C and P = P'. Then (P,7(Q,¥)) € B and applying (28) there
exists @' and s such that 7(Q,¥) > 7(Q',¥), s = @ and (P, 7T(Q',¥)) €
B. Then we have (P',Q') € C and Q > Q' from Lemma 3. Let Q > Q'
Then 7 (Q,¥) = T(Q',¥) from Lemma 3 and there exists P’ and s such that
P2 P 5=a and (P',7(Q',¥)) € B. Thus (P',Q’) € C what completes the
proof that C' is a must-bisimulation. a

25



C Proofs from Section 7.2

Proof of Lemma 6:

We proceed by induction on the length of s. Let I}, =4, A, © W,

(=) For s = ¢ it is immediate. Let (X, A) %; (Y, A). Because the right-side

expressions of A and ¥ are linear, applying (31) there exists 7 and k such that

(X, A) > (7, A) %f (Y, A). There are two cases:

— (X, A) > (Z, A) where k = 0. Because ¥ has the proper effect on A, this

transition can be only inferred from ([A](X), A) = (Z, A). Thus we have
([50(X5), Ty = (Zo, I},) and by induction:

Ti((X, A), W, n) - To((Z, A), ¥, n) = T;({(Y, A), ¥, n)

— (X, A) -5 <Z A) where i £ n and k£ = i+ 1. Tt can be only inferred from
(¥1(xX ) A) > (7, > and so {[¥](X), A) = (Z, A) (¥ is linear). Thus we
have ([I](X ), n> (Z;41, I) because i £ n and by induction

Ti((X, A, W, n) > T 11 ((Z, A), W, n) = T,;((Y, A), ¥, n)

(<) For s = ¢ it is immediate. Let ’i((X, A), ¥, n) =5 ’va'j(<Y, A), ¥, n). Apply-
ing (31), T;({(X,A),W¥,n) 2> Tp({(Z, A),¥,n) = T;((Y, A),¥,n) for some Z
and k. The first transition can be only inferred from ([I,](X;), I%) = (Zr, In)
and there are two possible cases:
—{[A)(X), Ty == (7, I >Where k = 0. Then {[A](X), A) > (7, A) and
by induction we have (X, A) 5 (7, A) |—>0<Y A) and (X, A) fip—s); (Y, A).
— {[w.](X:), I > (Zr, I'y) where z # n and k = ¢+ 1. Then we have
(IW(X), A) = (Z, A) s0 (X, A) - <Z A) (¥ has the proper effect on A).
Thus by induction, (X, A) 2> (Z, A> Z+1<Y A) so (X, A) %; (V,A). O

Proof of Proposition 7:
It is enough to show that for all ¢ € [0,n] and M € M:

(X, A) |z M iff T;,((X, A),¥,n) = M

The proof proceeds by induction on the structure of M.

(=) Let (X, A) |=; (B)M;. Then (X, A) liﬂQ’ where 5= 3, Q' |F; M1 and by
(31), Q' = (Y, A) for some Y € X. Thus T;((X, A),¥,n) = T;((Y, A), ¥, n)
applying Lemma 6 and by induction, ’T](<Y, AY, ¥, n) = M;. Then because
s = 3, we finally have ’i((X, Ay, ¥, n) = (B)M;. In the remaining cases (true,
- My and My A My) the proof is obvious.

(<) Let 7;((X, A),¥,n) = (8)M;. Then T;((X, A),¥,n) > R’ where 5 = 4,
R E My and by (31), R = ’va'j(<Y, A), ¥, n) forsomeY € X and j € [0, n]. Thus
we have (X, A) %3 (Y, A) applying Lemma 6, and by induction (Y, A) |&; M;.
Finally we get (X, A) |=; (8)M1 (§ = 3). The remaining cases are simple. O

26



Proof of Proposition 8:
(=) Let P [L,{(X,A). Then (P,{X,A)) € By where {B;}i, is the smallest
conditional must-bisimulation with this property, and it is enough to show that

g({Bi}?:Oa v, n) =def U?:O{(Pv %Z(<X7 A>7 v, n)) | (Pv <X7 A>) € Bi}

is a bisimulation. Let ¢ € [0,n] and (P, ’i((X, A), ¥, n)) € %({Bi}?zo,w, n)
where (P, (X, A)) € B;. We have:

— If P> P’ then (X, A) l%);Q’ where § = @, j € [0,n], (P',Q') € B; and
Q' = (Y, A) applying (31). Thus (P, 7;({Y, A),¥,n)) € T({B;}1—g, ¥, n)
and ’i((X, A), ¥, n) > ’va'j(<Y, A), ¥, n) from Lemma 6.

- If ’i((X, A), ¥, n) > R then R = ’va'j(<Y, A), ¥, n) for some ¥ and j (31)
and applying Lemma 6 we have (X, A) %; (Y, A). Because (P, (X, A)) € B;,
there exists P’ and s (5 = @) such that P = P’, (P',(Y,A)) € B; and
finally (P, 7;((Y, A),®,n)) € T({B:}g, ¥, n).

(<) Let P ~ T((X,A),¥,n) and (P,T({(X,A),¥,n)) € B where B is the
smallest bisimulation with this property. Applying (31), it is easy to see that
there exists {B;}, such that B = %({Bi}?zo,w, n), and it is enough to show
that {B;}"_, is a conditional must-bisimulation. Let (P, (X, A}) € B; where
i € [0,n]. Then (P, ’i((X, A), ¥, n)) € B and we have:

— If P -5 P’ then ’i((X, A), ¥, n) > R where (P',R') € B, 5 = @ and
R = ’va'j(<Y, Ay, ¥, n) for some Y and j (31). Thus (P',(Y,A)) € B; and
applying Lemma 6 we have (X, A) %; (Y, A).

- If (X, A) %;Q’ then @' = (Y, A) (31) and applying Lemma 6 we have
’i((X, A), ¥, n) = ’va'j(<Y, A), ¥, n). Thus there exists P’ and s (5§ = &)
such that P = P’ and (P, ’va'j(<Y, A), ¥, n)) € B. Then it is enough to note
that (P/, (Y, A)) € B;. O

This article was processed using the INTRX macro package with LLNCS style

27



