Skip to main content

Exploiting mate choice in evolutionary computation: Sexual selection as a process of search, optimization, and diversification

  • Conference paper
  • First Online:
Evolutionary Computing (AISB EC 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 865))

Included in the following conference series:

Abstract

Sexual selection through mate choice is a powerful evolutionary process that has been important in the success of sexually-reproducing animals and flowering plants. Over the short term, mate preferences evolve because they improve the outcome of sexual recombination. Over the long term, assortative mate preferences can help maintain genetic diversity, promote speciation, and facilitate evolutionary search through optimal outbreeding; selective mate preferences can reinforce the speed, accuracy, and efficiency of natural selection, can foster the discovery and propagation of evolutionary innovations, and can function as aesthetic selection criteria. These strengths of sexual selection complement those of natural selection, so using both together may prove particularly fruitful in evolutionary computation. This paper reviews the biological theory of sexual selection and some possible applications of sexual selection in evolutionary search, optimization, and diversification. Simulation results are used to illustrate some key points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aizawa, A. N., & Wah, B. W. (1993). Dynamic control of genetic algorithms in a noisy environment. In Forrest (Ed.), pp. 48–55.

    Google Scholar 

  • Andersson, M. (1994). Sexual selection. Princeton U. Press.

    Google Scholar 

  • Bateson, P. (Ed.). (1983). Mate choice. Cambridge U. Press.

    Google Scholar 

  • Belew, R. K., & Booker, L. B. (Eds.). (1991). Proc. of the Fourth Int'l Conf. on Genetic Algorithms. Morgan Kaufmann.

    Google Scholar 

  • Booker, L.B. (1985). Improving the performance of genetic algorithms in classifier systems. In Proc. of an Int'l Conf. on Genetic Algorithms and their Applications, pp. 80–92.

    Google Scholar 

  • Caldwell, C., & V. S. Johnston (1991). Tracking a criminal suspect through “facespace” with a genetic algorithm. In Belew & Booker (Eds.), pp. 416–421.

    Google Scholar 

  • Cavicchio, D. J. (1970). Adaptive search using simulated evolution. PhD. thesis, Univ. Michigan.

    Google Scholar 

  • Collins, R. J., & Jefferson, D. R. (1991). Selection in massively parallel genetic algorithms. In Belew & Booker (Eds.), pp. 249–256.

    Google Scholar 

  • Collins, R. J., & Jefferson, D. R. (1992). The evolution of sexual selection and female choice. In Varela & Bourgnine (Eds.), pp. 327–336.

    Google Scholar 

  • Cronin, H. (1991). The ant and the peacock: Altruism and sexual selection from Darwin to today. Cambridge U. Press.

    Google Scholar 

  • Darwin, C. (1862). On the various contrivances by which orchids are fertilized by insects. John Murray.

    Google Scholar 

  • Darwin, C. (1871). The descent of man, and selection in relation to sex (2 vols.) John Murray.

    Google Scholar 

  • Davidor, Y., Yamada, T., & Nakano, R. (1993). The ECOlogical framework II: Improving GA performance at virtually zero cost. In Forrest (Ed.), pp. 171–176.

    Google Scholar 

  • Dawkins, R. (1986). The blind watchmaker. Norton.

    Google Scholar 

  • De Jong, K.A. (1975) An analysis of the behavior of a class of genetic adaptive systems. Ph.D. thesis, Univ. Michigan.

    Google Scholar 

  • Deb, K., & Goldberg, D.E. (1989) An investigation of niche and species formation in genetic function optimization. In Schaffer (Ed.), pp. 42–50.

    Google Scholar 

  • Dobzhansky, T. (1937). Genetics and the origin of species. (Reprinted 1982). Columbia U. Press.

    Google Scholar 

  • Eigen, M. (1992). Steps towards life: A perspective on evolution. Oxford U. Press.

    Google Scholar 

  • Eshelman, L. J., & Schaffer, J. D. (1991). Preventing premature convergence in genetic algorithms by preventing incest. In Belew & Booker (Eds.), pp. 115–122.

    Google Scholar 

  • Eshelman, L. J., & Schaffer, J. D. (1993). Crossover's niche. In Forrest (Ed.), pp. 9–14.

    Google Scholar 

  • Fisher, R. A. (1930). The genetical theory of natural selection. Clarendon Press.

    Google Scholar 

  • Fogarty, T. C. (1989). Varying the probability of mutation in the genetic algorithm. In Schaffer (Ed.), pp. 104–109.

    Google Scholar 

  • Fogarty, T. C. (1993). Reproduction, ranking, replacement, and noisy evaluations: Experimental results. In Forrest (Ed.), p. 634.

    Google Scholar 

  • Forrest, S. (Ed.). (1993). Proc. of the Fifth Int'l Conf. on Genetic Algorithms, Morgan Kaufmann.

    Google Scholar 

  • Goldberg, D.E. (1989). Genetic algorithms in search, optimization, and machine learning. Addison-Wesley.

    Google Scholar 

  • Goldberg, D.E., Deb, K., & Horn, J. (1992). Massive multimodality, deception, and genetic algorithms. In MÄnner & Manderick (Eds.), pp. 37–46.

    Google Scholar 

  • Goldberg, D.E., & Richardson, J. (1987). Genetic algorithms with sharing for multimodal function optimization. In Proc. of the Second Int'l Conf. on Genetic Algorithms, pp. 41–49.

    Google Scholar 

  • Gordon, V. S., & Whitney, D. (1993). Serial and parallel genetic algorithms as function optimizers. In Forrest (Ed.), pp. 177–183.

    Google Scholar 

  • Gorges-Schleuter, M. (1989). ASPARAGOS: An asynchronous parallel genetic optimization strategy. In Schaffer (Ed.), pp. 422–427.

    Google Scholar 

  • Gorges-Schleuter, M. (1992). Comparison of local mating strategies in massively parallel genetic algorithms. In MÄnner & Manderick (Eds.), pp. 553–562.

    Google Scholar 

  • Harvey, I. (1992). Species adaptation genetic algorithms: The basis for a continuing SAGA. In Varela & Bourgnine (Eds.), pp. 346–354.

    Google Scholar 

  • Hillis, W. D. (1992). Co-evolving parasites improve simulated evolution as an optimization procedure. In C. G. Langton et al. (Eds.), Artificial Life II, pp. 313–324. Addison-Wesley.

    Google Scholar 

  • Kauffman, S. A. (1993). The origins of order: Self-organization and selection in evolution. Oxford U. Press.

    Google Scholar 

  • Kirkpatrick, M. (1987). The evolutionary forces acting on female preferences in polygynous animals. In Bradbury & Andersson (Eds.), pp. 67–82.

    Google Scholar 

  • Littman, M. J., & Ackley, D. H. (1991). Adaptation to constant utility non-stationary environments. In Belew & Booker (Eds.), pp. 136–142.

    Google Scholar 

  • Mahfoud, S. W. (1992). Crowding and preselection revisited. In MÄnner & Manderick (Eds.), pp. 27–36.

    Google Scholar 

  • Manderick, B., & Spiessens, P. (1989). Fine-grained parallel genetic algorithms. In Schaffer (Ed.), pp. 428–433.

    Google Scholar 

  • Manderick, B., de Weger, M., & Spiessens, P. (1991). The genetic algorithm and the structure of the fitness landscape. In Belew & Booker (Eds.), pp. 143–150.

    Google Scholar 

  • MÄnner, R., & Manderick, B. (Eds.). (1992). Parallel problem solving from nature, 2. North-Holland.

    Google Scholar 

  • Mayr, E. (1942). Systematics and the origin of species. (Reprinted 1982). Columbia U. Press.

    Google Scholar 

  • Michod, R. E., & Levin, B. R. (Eds.). (1988). The evolution of sex: An examination of current ideas. Sinauer.

    Google Scholar 

  • Miller, G. F. (1993). Evolution of the human brain through runaway sexual selection. Ph.D. thesis, Stanford University Psychology Department. (To be published as a book by MIT Press/Bradford Books, 1995).

    Google Scholar 

  • Miller, G. F. (in press). Sexual selection in human evolution: Review and prospects. For C. Crawford (Ed.), Evolution and human behavior: Ideas, issues, and applications. Lawrence Erlbaum.

    Google Scholar 

  • Miller, G. F., & Todd, P. M. (1993). Evolutionary wanderlust: Sexual selection with directional mate preferences. In J.-A. Meyer, H. L. Roitblat, & S. W. Wilson (Eds.), From Animals to Animats 2: Proc. Second Int'l Conf. on Simulation of Adaptive Behavior, pp. 21–30. MIT Press.

    Google Scholar 

  • Miller, G. F., & Todd, P. M. (in press). The role of mate choice in biocomputation: Sexual selection as a process of search, optimization, and diversification. For W. Banzaf & F. Eeckman (Eds.), Proceedings of the 1992 Monterey Biocomputation Workshop.

    Google Scholar 

  • Mühlenbein, H. (1989) Parallel genetic algorithms, population genetics, and combinatorial optimization. In Schaffer (Ed.), pp. 416–421.

    Google Scholar 

  • Mühlenbein, H. (1992). Darwin's continent cycle theory and its simulation by the Prisoner's Dilemma. In Varela & Bourgnine (Eds.), pp. 236–244.

    Google Scholar 

  • Ostermeier, A. (1992). An evolution strategy with momentum adaptation of the random number distribution. In MÄnner & Manderick (Eds.), pp. 197–206.

    Google Scholar 

  • Pomiankowski, A. (1988). The evolution of female mate preferences for male genetic quality. Oxford Surveys in Evolutionary Biology, 5, 136–184.

    Google Scholar 

  • Ridley, M. (1993). The red queen: Sex and the evolution of human nature. Viking.

    Google Scholar 

  • Schaffer, J. D. (Ed.) (1989). Proc. of the Third Int'l Conf. on Genetic Algorithms. Morgan Kauffman.

    Google Scholar 

  • Schaffer, J. D., & Eshelman, L. J. (1991). On crossover as an evolutionarily viable strategy. In Belew & Booker (Eds.), pp. 61–68.

    Google Scholar 

  • Schultz, A. C. (1991). Adapting the evaluation space to improve global learning. In Belew & Booker (Eds.), pp. 158–164.

    Google Scholar 

  • Sims, K. (1992). Interactive evolution of dynamical systems. In Varela & Bourgnine (Eds.), pp. 171–178.

    Google Scholar 

  • Todd, P. M., & Miller, G. F. (1991). On the sympatric origin of species: Mercurial mating in the Quicksilver Model. In Belew & Booker (Eds.), pp. 547–554.

    Google Scholar 

  • Todd, P. M., & Miller, G. F. (1993). Parental guidance suggested: How parental imprinting evolves through sexual selection as an adaptive learning mechanism. Adaptive Behavior, 2(1): 5–47.

    Google Scholar 

  • Todd, S., & Latham, W. (1992). Artificial life or surreal art? In Varela & Bourgnine (Eds.), pp. 504–513.

    Google Scholar 

  • Varela, F. J., & Bourgnine, P. (Eds.) (1992). Toward a practice of autonomous systems: Proceedings of the First European Conference on Artificial Life. MIT Press.

    Google Scholar 

  • Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding, and selection in evolution. In Proc. Sixth. Int'l Congr. Genetics, 356–366.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Terence C. Fogarty

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Miller, G.F. (1994). Exploiting mate choice in evolutionary computation: Sexual selection as a process of search, optimization, and diversification. In: Fogarty, T.C. (eds) Evolutionary Computing. AISB EC 1994. Lecture Notes in Computer Science, vol 865. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58483-8_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-58483-8_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58483-4

  • Online ISBN: 978-3-540-48999-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics