
Information Flow Controls
Inference Controls:

An Integrated Approach

V S

F. Cuppens 1 and G. Trouessin ~

10NERA-CERT, 2 Av. E. Belin, 31055 Toulouse Cedex, France,
email: cuppens~tls-cs.cert.fr

2 CESSI CNAM-TS, 14 Place Saint Etienne, 31000 Toulouse, France

A b s t r a c t . This paper proposes a formal method for modeling database
security based on a logical interpretation of two problems: the (internal)
information flow controls and the (external) information inference con-
trois. Examples are developed that illustrate the inability of "classical"
security models such as non-interference and non-deducibility to com-
pletely take into account the inference problem, because both are too
constraining: the former model leads to the existence problem, whereas
the latter one leads to the elimination problem. The causality model,
which has been developed to solve the information flow control problem
by considering that "what is known, must be permitted to be known",
does not also explicitly take into account the inference problem. But we
show that it is possible to extend causality so that inference can in fact
be solved by formalizing the security policy consistency in the following
way "any information must not be both permitted and forbidden, to be
known". However, some difficulties remain if we do not consider that a
subject can perform not only valid derivations but also plausible deriva-
tions. In particular, we show that classical solutions to the inference
problem such as use of polyinstantiated databases are not plainly satis-
factory, unless the security policy is able to estimate how it is plausible
that an abductive reasoning can occur.
K e y w o r d s : Security model, Information flow control, Database security,
Inference control, Modal logic.

Introduction

An applicat ion tha t has been of par t icular interest since the beginning of work on
secure computer systems is the implementa t ion of a secure da tabase m a n a g e m e n t
sys tem (DBMS). To design and construct a secure DBMS, we need a formal
model in order to define the security requirements, to have a precise description
of the behavior desired of the security relevant port ions of the DBMS and to
have a means to prove tha t these port ions of the DBMS are secure with respect
to the security requirements.

The initial works of Hinke and Schaefer [26] and Grohn [22] provide an inter-
pre ta t ion of the Bell and LaPadu la model [2] for a relational DBMS. These first
applicat ions of a security model to a DBMS are still restrictive because the Bell

448

and LaPadula model was not designed to deal with several important problems,
among them we state:

1. Information can be passed by subtle and indirect means which the Bell and
LaPadula model cannot detect.

2. Users can derive secret information from that to which they have legal access.

Afterwards, non-interference [21] and non-deducibility [34] models have been de-
veloped. They present formal frameworks which try to solve these problems. Con-
currently, several realizations of secure databases were initiated. These projects
generally enclose a formal verification of the database operations against the
security properties of the policy model. This is, in particular, the case of the
Seaview [14, 15] and LDV [24] projects.

The Seaview verification effort is described in [37]. The Seaview specifications
contain a formal policy model of the security requirements for multilevel secure
databases as well as an abstract description of the database operations. Seaview
does not use a classical model of information flow control such as non-interference
or non-deducibility but rather an ad-hoc model. In this model, to infer that the
global system is secure, it must be proved that the initial state is secure and
that each command is secure. To prove that a command is secure, it must be
proved that it satisfies the secure-states and secure-transitions predicates. To
prove the former predicate, fourteen properties must be satisfied and to prove
the latter, sixteen properties must be satisfied. The problem with the formal
security policy model used by Seaview is the absence of a general definition
of the security constraints such as that proposed in non-interference and non-
deducibility models.

On the other hand, the LDV project is controlled by the basic LOCK pol-
icy which satisfies the requirements of the non-interference formal model. This
approach provides good assurance that the design is secure. However, we con-
sider that classical models of information flow (such as non-interfence and non-
deducibility) are too constraining to realistically take into account the security
problems in a DBMS. Section 1 states through examples this point of view. In
section 2, we show that in order to have a correct model of the security require-
ments in a DBMS, it is more convenient to split up the problem of confidentiality
into two sub-problems:

1. Internal information flow controls.
2. Inference control.

This decomposition was already suggested by Denning in [13]. In fact, our previ-
ous analysis in [9] shows that non-interfence and non-deducibility models try to
jointly solve these two sub-problems, but we consider that they do not provide
a satisfactory solution to any of them.

In sections 3 and 4, we give a logical interpretation of these two problems.
To analyze the confidentiality of a system in a logical context, we need a formal
definition of three concepts:

- The knowledge of each subject, we denote it KA.

449

- The permission to know of each subject, we denote it PKA.
- The prohibition to know of each subject, we denote it FKA.

In the context of the logic of security, confidentiality is defined by a logical
formula K.4~ -..* PKA~ that could be read:

IrA knows ~o then A should be permitted to know that ~o

In [4], we provide a semantics for this logical formula which leads to a new securi-
ty condition called causality. In section 3, we show that the security enforced via
causality provides a satisfactory solution to the problem of i n t e r n a l information
flow control but it does not deal with the inference control problem. Therefore,
the aim of section 4 is to show how to extend causality in order to take into ac-
count this problem. We show that in the context of the logic of security, inference
control is defined by the formula ",(PKa~ A FKA~) that could be read:

A cannot both have the permission to know ~o and the prohibition to know ~o

The enforcement of this condition guarantees that no inference channel exists
which uses valid derivation. Thus, by combining the causality and consistency
requirements, we obtain a general and complete formal method for modeling
database security. However, some difficulties remain because a subject can also
perform plausible derivations. In particular, we analyze some potential solutions
such as the incompleteness and/or the polyinstantiation of the database. We can
show that with the help of abductive reasoning some information can be illegally
deduced, as stated in [18], unless some supplementary measures have been taken,
such as imprecise assessment of potential abductive information. Finally, section
5 concludes on further work that remains to be done.

1 D r a w b a c k s o f " c l a s s i c a l " i n f o r m a t i o n f l o w m o d e l s

It is generally considered (see [23] for instance) that computer security is con-
cerned with the transmission of information through a computer system. Goguen
and Meseguer with non-interference [21] and, following them, Sutherland with
non-deducibility [34] presented frameworks for identifying general flows of infor-
mation through a computer system, and suggested policies that would disallow
some of them.

Actually, the main difference between non-interfence and non-deducibility is
that these definitions do not agree on information flows that must be disallowed.
However, we can bring out several common points between these two definitions:

1. At the initial time, each subject A perfectly knows all the possible behaviors
(traces) of the system. Then, A observes the system by performing inputs
and receiving outputs. Thus, for each trace t of the system, A has a partial
view of this trace that we called the restriction of t to A and we write it
t [A. Finally, we can define what A can infer from its observation in trace t
by defining its knowledge in t:

.

450

A subject A knows a piece of information ~ in a given trace t if and
only if ~o is true in all traces t I such that t r A = t l r A (that is to say
t and t ~ are indistinguishable according to A's observation).

For each subject A, both non-interference and non-deducibility aim to pro-
tect a given set of secret information (see Figure 1). According to these two
definitions, this set is the sequence of inputs performed by another user B.
In [3], we showed that, for these two definitions, the protection of this set of
secret information means the enforcement of an i g n o r a n c e condition for A,
that is to say:

- n o n - i n t e r f e r e n c e : B does not interfere with A if and only if A d o es
n o t k n o w that B has performed any input in the system.

- n o n - d e d u c i b i l i t y : A does not deduce anything on B if and only if for
every possible behavior 3 bi of B, A d o e s n o t k n o w whether B had a
behavior different from bi.

/ /
/ J
/

Fig. 1. Classical representation of confidentiality

In [4], we showed that there exist several problems with non-interference
and non-deducibility when we use these definitions to control information flow
through a computer system. In particular, we showed that these definitions dis-
allow any kind of dependency between unclassified information and secret infor-

b~ is a possible behavior of B if and only if there exists a trace t such that the
sequence of inputs performed by B in trace t is equal to b~, i.e. t[B~ --- b~

451

marion. Moreover, these definitions require implicit assumptions on the subjects'
behavior:

- For non-interference, it is always possible that B does not perform any input.
- For non-deducibility, inputs performed by A and B are always compatible.

In this paper, we want to show that, due to these problems, these two definitions
are not adapted to model database security.

1.1 E x a m p l e 1: T h e e x i s t e n c e p r o b l e m w i t h n o n - i n t e r f e r e n c e

Let us consider, in this first example issued from [28], an ordinary database
relation, Mission, with three attributes, Starship, Objective and Destination,
with Starship being the key: this means that for each starship there is at most
one tuple in the Mission relation giving us the Starship's unique Objective and
unique Destination. For example, the tuple (Intergalactic, Exploration, Talos)
denotes that the starship Intergalactic has set out for an Exploration of Talos.
This entire tuple gives us the mission of Intergalactic, as shown in Table 1.

[Starship I Objective]Destination I
Enterprise ISpying Rigel
Intergalactic [Exploration Talos

Table 1. The ordinary Mission relation

Let us now consider a multilevel relation which attempts to represent the
same information as in the ordinary Mission relation, but in a context in which all
the facts recorded in the database, denoted DB, are classified according to their
confidentiality level. Suppose that there are only two classification levels: the high
level or Secret level (denoted S) and the low level or Unclassified level (denoted
U). Following the example issued from [28], each attribute value of each tuple
can be associated with a given confidentiality level so that the previous Mission
relation becomes a new multilevel SOD relation (as shown in Table 2). Each
tuple of the SOD relation can also be associated with a classification, the Tuple
Classification (or TC-'), which is the highest classification level of the classification
levels of all the attribute values of the tuple (as indicated in Table 2).

Then, it is possible to decompose a multilevel relation in a set of single-level
relations [28, 11]. In the case of the example shown in Table 2, it can thus be
considered that two distinct databases (DBs and DBt2) are managed by the
secure DBMS to represent the original database DB:

- DBs contains the Secret data of DB to which only any Secret user, users,
has access;

452

I Starship I Objective IDestinationITC I
IEnterprise U Spying S Rigel S
Intergalactic U Exploration U Talos UIU I

Table 2. The multilevel SOD relation

- DBv contains the Unclassified data of DB to which both any users and any
Unclassified user, user~r, have access;

Each of these two databases is able to give its own answer to the following
request:

Request1: SELECT (Starship, Objective, Destination) FROM SOD
Answerl.S: (Enterprise, Spying, Rigel) (if users has sent Request1 to DBs)

(Intergalactic, Exploration, Talos)
Answer1. U: (Intergalactic, Exploration, Talos)

(if useru has sent Request1 to DBtr)

and each database can also give its own answer to the following request:

Request2: SELECT (Starshipl FROM SOD
Answer2.S: (Enterprise) (if users has sent Reqnest2 to DBs)

(Intergalactic)
Answer2. U: (Enterprise) (if useru has sent Request2 to DBtr)

(Intergalactic)

Let us assume that DB is complete with respect to SOD (as it is the case in
Table 2). This means that if a given Starship is stored in DB then its Objective
and Destination are also stored in DB. Since DB = DBsUDBtr, "DB is globally
complete with respect to SOD" means that SOD is represented in, either DBs,
or DBu, or both. In other words:

~/star, (Starship(star) E DB) :r (3obj, 3dest, SOD(star, obj, dest) e DB)]

or equivalently:

~r (Starship(star) E DB) ~ (3oh j, 3dest,SO D(star, obj, dest) E DBs
V SOD(star, obj, dest) E DBu)]

Suppose now that userv sends the following request to DBu:

Request3: SELECT (Destination) FROM SOD
WHERE Starship = Enterprise

Answer$a. U: Unknown (if userv has sent Request3 to DBv)

Although such an answer does not seem to provide any information, useru
can use the hypothesis that DB is complete to build the following reasoning.

453

From:

K~,,r~, [Vstar,(Starship(star) �9 DB)
=~ (3obj, 3dest, SOD(star, obj, dest) �9 D B)]

and by considering the information given by Answer~. U:

Ku,,~v[Starship(Enterprise) �9 DB]

usertl can derive that:

Ku,,rv [3obj, 3dest, SOD(Enterprise, obj, dest) �9 D B]

and from Answer3a. U:

K~,eru ~r Destination(Enterprise, dest) ~ DBv]

Finally, by using the fact that DB = DBu U DBs, userv can derive that:

K,,,~rv [3dest, Destination(Enterprise, dest) �9 DBs]

If the hypothesis is made that Secret tuples are only introduced in DB by
the way of Secret inputs 4, this kind of reasoning subsumes that another user,
users (whose clearance is Secret), has performed some secret input in DB (in
DBs to be more precise). In [9], we obtain a similar result in developing a
different argumentation based on the restricted value first introduced by Sandhu
and Jajodia in [31]. Now, let us consider that the non-interference model is used,
this means that:

- useru must not know that Enterprise's destination is Rigel, because the
classification level of the destination of Enterprise is secret;

- useru must not even know that the classification level of Enterprise's des-
tination is secret, because this would imply that a secret input has been
performed. In our example, from the non-interference point of view, the
security constraint is not satisfied because an inpu t /ou tpu t sequence (i.e.,
Request2-Answer2. U-Request3-Answer3a. U) can interfere with a higher
input /ou tput sequence (namely the insert in DBs of the secret tuple
(Enterprise, Spying, Rigel)).

Generally, to avoid this kind of problem which occurs when we apply the non-
interference model, the polyinstantiation technique is systematically employed.
In particular, this is the case of the LDV project, which is based on the non-
interference model. However, it is important to be able to consider that the
existence of secret information is not always secret. As it is stated in [33], it would
be better to consider that "unless otherwise specified in a secrecy constraint, the
system need not hide the existence of classified data in the database (PSi/6:
Security Policy Statement #6) ' . This means that polyinstantiation must not be
automatically employed but only when explicitly specified in the security policy.

4 This hypothesis is an integrity constraint used by most multilevel databases

454

1.2 Example 2: T h e e l i m i n a t i o n p r o b l e m w i t h n o n - d e d u c i b i l i t y

Let us now consider for this second example an extension of the previous example s .
This extension concerns an additional relation, denoted STR, that indicates for
each Starship its Category, that is to say its unique Type and its unique Range
(as shown in Table 3).

[Starship [Type [Range [TCI

Enterprise U[Quick-and-light U 20000 "1 U

Table 3. Two instances of the STR relation

Each attribute of this relation must not be obligatorily classified because it is
only considered that the mission (i.e., Objective and Destination) of a starship
can be confidential, hut not its category (i.e., Type and Range).

Even if useru does not know the secret destination of Enterprise, from
the knowledge of Enterprise's range, he can nevertheless eliminate some of the
originally possible destinations of Enterprise (see Figure 2). For instance, if
Talos is a destination more than 20000 distant, then user~r knows that
-,Dest(Enterprise, Talos). From the non-deducibility point of view, the security
constraint is not satisfied because user U can deduce that some destinations are
impossible (i.e, he can eliminate some possible behavior of secret users).

Faced with this problem, a possible solution would be to change classifica-
tions, for instance to consider that SR(Enterprise, 20000) is secret information.
Nevertheless, to consider that SR(Enterprise, 20000) is unclassified information
may be necessary because this piece of information is related to the technical
characteristics of Enterprise and is perhaps widely distributed and well-known
information.

Actually, from the non-deducibility point of view, a confidential piece of in-
formation cannot be partially determined by unclassified information. However,
it can be interesting to state that only a portion of this piece of information must
be confidential (see for instance [7]). For example, only the confidentiality must
be preserved for the two high-order bits, or for all the odd-order bits. The perti-
nence of such confidentiality constraints becomes obvious if they are applied to
information such as the employee's salary. This approach can also be applied at
a higher granularity level: at a byte level, or even at the level of the elementary
pieces of information within a global and more complex data structure.

s A similar example was developed in [9]

455

destinations
Impossible

destinations

Fig. 2. The possible/impossible destinstions of Enterprise

1.3 Synthesis

The examples of sections 1.1 and 1.2 illustrate that it is possible to differentiate
several types of inference:

1. E x a c t i n f e r e n c e . This inference occurs when a secret piece of information
is exactly determined by a user whose clearance is unclassified.

2. P a r t i a l i n f e r e n c e . I t occurs when a user whose clearance is unclassified can
reduce the set of possible values that can be assigned to a classified datum.
This problem was first studied in [7]. Example of section 1.2 is an example
of partial inference.

3. E x i s t e n t i a l i n f e r e n c e . It occurs when a user whose clearance is unclassified
derives the existence of a secret piece of information. Example of section 1.1
is an example of existential inference.

Most current research works focus on exact inference (for instance [35, 19, 17, 25])
and do not take into account the two other types of inference. We guess tha t
these types of inference are equally important but are difficult to represent for
at least two reasons :

1. To take into account these two types of inference, we need representing
existential, disjunctive or negative information. Languages used in s tandard
DBMS or in classical provers such as PROLOG do not provide these facilities.
However, several researchers are currently developing this kind of extension
(see for instance [12, 27, 30]).

2. I t is clear that the exact inference of a secret piece of information is always
a threat to confidentiality. Hence the security policy must prevent all exact
inferences. On the other hand, every partial or existential inference does not
necessarily represent a threat to confidentiality. For instance, let us assume
tha t Paul 's salary is equal to 10000 and this piece of information is classified
at secret. Let us assume that an unclassified user can derive that this salary is
between 9990 and 10010. It is a partial inference of Paul 's salary and we can
think that the security administrator will consider tha t this partial inference
is not allowed. However, let us now assume that , in another situation, this

456

unclassified user can only infer tha t Paul 's salary is greater tha t the SMIC 6 .
It is another kind of partial inference of Paul's salary but it is clear that the
security administrator cannot prevent from this partial inference.

Hence, to properly take into account partial and existential inferences, we
must develop means which would allow the security administrator to precisely
define which information is unclassified and which information is secret. It is
only after doing so that we can distinguish acceptable states from unacceptable
o n e s .

Notice that non interference and non deducibility properties respectively re-
ject all existential inferences and partial inferences. This is the reason why we
claim that these two security properties are too constraining to model database
security.

2 A f o r m a l m e t h o d t o so lve t h e d i f f e r e n t p r o b l e m s

When we want to correctly analyze problems we have to solve, it is important
to come back to the concept of security policy for confidentiality. In this paper,
we only consider the case of mandatory access control. An organization defines
a mandatory access control policy which is applied to a set of sentences 7 L: that
represents the knowledge domain of the organization and a set of subjects .4
members of this organization. For each subject A E .4, the policy divides the set
of sentences L: into two subsets:

1. The set of sentences R(A) for which A is explic!tly permit ted to have an
access.

2. The set of sentences F(A) for which A is explicitly forbidden to have an
access.

We do not assume that the policy is necessarily complete. This means that some
sentences of L: may not belong to either R(A) or F(A). For instance, let us take
the example of the multilevel security policy. Some sentences s G s receives a
classification l(s) and each subject A G .4 receives a clearance L(A). The sets
R(A) and F(A) are then defined by:

R(A) = {s G s I I(s) <_ L(A)}

F(A) -- {8 ~ s I -,(t(8) < L(A))}

In the following, we will assume that R(A) is a consistent set of sentences. On
the other hand, F(A) is not necessarily consistent. We can then, as proposed by
Dennings in [13], state two problems:

s The SMIC is the minimum salary allowed in France
7 B y a set of sentences , we mea n a full first order language wi th a set of predicates,

logical connectors (conjunction, disjunction, negation, implication)and existential
and universal quantifiers.

457

1. Internal information flow controls.
2. Inference controls.

It is well known (see [29] for instance) that a computer system can be used to
transmit information s not only by a direct access to a given piece of information
b u t also by subtle and indirect means. Internal information flow controls are
concerned with these leakages of information. To prohibit these leakages, we will
show in section 3 that the system must control the permission to know any piece
of information. This is a problem of knowledge conformity of an agent A with
respect to its rights: A must only know pieces of information for which A has
received a clearance.

When information derived from confidential data must be declassified for
wider distribution, another leakage of information can occur: a user can use
lower sensitive information stored in the database to which he can legally have
an access to derive higher sensitive information. This leakage of information
is called the inference problem. In this case, internal information controls as
described above are not sufficient. Indeed, the flow of information is outside the
computer system. Actually, we will show in section 4 that the inference problem
does not occur if the security policy is correctly defined. This means we must
verify, beside dividing ~, that the sets R(A) and F(A) are defined in a consistent
manner (see Figure 3).

It is important to notice that the pioneering work of Bell and LaPadula
deals essentially with internal flow controls and it does not take into account
anymore the inference control. On the other hand, the majority of models de-
signed to ensure information flow control (in particular non-interference and
non-deducibility) jointly deal with the two problems.

The comparative study performed in [4] showed that these models do not
provide a satisfactory control of internal flows of information. We also think
that these models do not propose a satisfactory solution to inference control.
Examples of sections 1.1 and 1.2 illustrate this point of view.

3 I n t e r n a l i n f o r m a t i o n f l o w c o n t r o l

When reasoning about security, it is important to have a precise notion of what
a subject k n o w s and what a subject is p e r m i t t e d t o know. Generally, what
a subject A knows is represented by a modal operator denoted KA. This modal
operator was extensively studied and now has a well established semantics. We
briefly recalled this semantics in section 1.

In our model, what a subject A is permitted to know is represented by an-
other modal operator PKA. This approach was first suggested by Glasgow and
McEwen in [20]. In [4], we proposed a formal semantics for this modal operator.
Intuitively, A is permitted to know T if and only if A learns ~ by playing the
role of a user cleared to know the unclassified set of sentences R(A). Hence, by
identifying the authorized role of A with the unclassified set of sentences R(A),
we have:

PKA~O ~ KR(A)~o

s By information, we mean a consistent subset of the language/~, i.e. a theory.

458

Explicit
Permission

R(A)

Internal
Information

Flow
Control

Knowledge

@

Inference
Control

Y

7V"

Fig. 3. The two problems to solve

A system is secure with respect to A if and only if the formula KA~o --* PKA~o
is valid (true in every traces of the system). This definition of security can be
equivalently stated by the following requirement on the traces of the system:

Causal i ty: For all traces t and t ~

If trR(A) = t~rR(A) then tEA = ttrA

that is to say: the information A can observe should only depend on the in-
formation A is permitted to know. This means that causality rules out every
non-authorized flow of information inside the computer system. In particular,
causality controls every non-authorized indirect flows such as covert channels.
In [4], we formally compare this definition of security with the classical defini-
tion of absence of information flow as non-interference and non-deducibility. It
appears that causality has several advantages:

1. The explicit representation of time in the model proposed in [4] enables every
covert channels to be controlled including timing channels.

459

2. Causality forces the system to be deterministic. This could appear as a draw-
back of the approach, however, it also enables every probabilistic covert
channels to be controlled [9].

3. Causality does not include the tranquillity principle and provides efficient
conditions to control the dynamic assignment of security levels and to per-
form secure downgradings [5].

4. It is possible to state the Brewer-Nash and Foley policies using the model of
causality [8].

5. Causality has the hook-up property and we even propose an extension of
this result in case of asynchronous composition [6]. This enables the security
of a system to be analyzed in a modular way.

6. Causality does not require implicit assumptions on the subject's behavior.
This enables the security of every non-input total systems to be analyzed
[4].

7. Causality allows some kind of dependencies between unclassified information
and secret information.

Thanks to these advantages (especially the two last points), causality does not
rule out interesting system's behaviors, in particular those presented in sections
1.1 and 1.2. However, this can also lead to paradoxical examples in which a
secure system copies high sensitivity inputs to low sensitivity outputs. These
paradoxical situations exist when the information flow actually occurs externally,
in the environment. Indeed, causality only provides a solution to the problem of
internal information flow.

Similarly, let us analyze the security of the two examples proposed in sec-
tions 1.1 and 1.2. In both cases, the unclassified user, userv, receives an answer
computed by BDu, and BDu only contains information that userv is legally
permitted to know. So, the output provided to userv only depends on unclassi-
fied information and, in that case, the internal flows of information are secure.
Consequently, according to causality, these two examples are Mways secure.

As we have already suggested in section 1.3, the security administrator may
specify that these two examples are actually insecure and he would consider in
this case that the causality point of view is too optimistic. However, this only
means that causality does not deal with the inference problem. In the following
section, we show how to extend causality in order to take into account this
problem.

4 I n f e r e n c e c o n t r o l

The inference problem in multilevel databases can be defined by the following: a
user A can derive higher sensitive information, from lower sensitive information
to which A has legally access. This problem seems a priori easy to solve because
we can believe that it is sufficient to arbitrarily divide the set of relevant sentences
s (those on which the multilevel security policy applies) into a set R(A) of
A's explicit permission and a set F(A) of A's explicit prohibition. Actually, the

460

problem is much more tedious because each subject A can use its own permission
to know some information but also general rules and common knowledge of the
real world to derive new information (which are eventually forbidden). So, it
must be verified, beside dividing s that the sets R(A) and F(A) were defined
in a consistent manner. In order to correctly analyze this problem, we need a
formal definition of the following concepts:

- The permission .to know of each subject. We have already proposed a formal
semantics for this concept for controlling internal flows of information. It is
considered, with this semantics, that a subject A is permitted to know every
given piece of information to0 for which A is explicitly permitted to have an
access, i.e.:

If t00 E R(A) then PKAgo

Moreover, A is implicitly authorized to perform valid derivation, i.e.:

If PKAto and PKA(tO ~ r then PKAr

that could be read: if A is permitted to know to and if A is permitted to
know (9 -" r then A is authorized to perform the derivation. Hence, A is
permitted to know r

- The prohibition to know of each subject, we denote it FKA. We must for-
mally define this concept. As in the case of the permission to know, the
semantics of FKA must enforce that a subject A is forbidden to know any
given piece of information ~0 for which A is explicitly forbidden to have an
access, i.e.:

If go0 E F(A) then FKAtoo

Moreover, there exist implicit prohibitions 9, for instance:

If FKAto or FKAr then FKA(~ A r

that could be read: if A is forbidden to know ~0 or if A is forbidden to know
r then A is implicitly forbidden to know the conjunction of ~o and r Notice,
that the converse:

If FKA(~ A r then FKAtO or FKAr

is generally not valid. For instance, think of the aggregation problem in
which two pieces of information are more sensitive together than separate.
The following sentence states another implicit prohibition:

If FKA(~O V r then FKAto and FKAr

We refer to [10] for a detailed presentation of a complete set of such implicit
prohibitions.

461

that could be read: if A is forbidden to know the disjunctive data ~oV r then
A is also implicitly forbidden to know more informative data such as ~o or
r This last axiom allows us to control a partial disclosure of information.
For instance, let us assume that Paul's salary is equal to 10000 and that
the security administrator actuMly specifies that the unclassified user A is
forbidden to know that Paul's salary is between 8000 and 15000, that is to
say:

FKA(Salary(Paul, 8000) V ... V Salary(Paul, 15000))

Hence, in using the above axiom, A is also implicitly forbidden to reduce the
set of values belonging to the interval [8000, 15000]. On the other hand, the
converse of this axiom:

If FKA~o and F K A r then F K ~ (9 V r

is generally not valid. For instance, if the security administrator states that:

Vsal, S M I C <_ sal --~ FKASalary(Paul, sal)

then we cannot infer that:

F K A (Salary(Paul, S M I C)
V Salary(Paul, S M I C + 1) V Salary(Paul, S M I C + 2) V ...)

that could be read: A is forbidden to know that Paul's salary is greater than
the SMIC, which is common knowledge to any user in France.
Similarly, we do not consider that the following instance is an implicit pro-
hibition:

If FKA~(c) then FKA(3x, FKA~(x)) (where c is a given constant)

This sentence could be read: if A is forbidden to know a secret piece of
information T(c) (for instance Destination(Enterprise, c)), then A should
not be always implicitly forbidden to know the existence of this secret piece
of information. Notice that this assumption is made in the non-interference
model. In our approach, it is the role of the security policy to explicitly
specify the case for which the existence of a secret piece of information is
also secret.

Notice also, that we do not consider that we have:

F K A~, - -,PKA~o

that could be read: A is forbidden to know ~ if and only if A is not permit ted
to know ~o. Indeed, we want to consider that there exists explicit permission to
have an access (from which we derive what a subject is permitted to know) and
explicit prohibition to have an access (from which we derive what a subject is
forbidden to know). Generally, in reasoning about normative propositions, it is
not assumed that FKAta - -~PKAto, especially when one wants to analyze the
consistency of a given set of normative propositions (see [1] for instance). This is

462

exactly the case of the inference problem. This problem occurs when the security
policy is not defined in a consistent way. This means that, if we want to avoid
this problem, we must enforce the validity of the following sentence:

",(PKA~ A FKA~)

This sentence could be read: A cannot both have the permission to know ~ and
the prohibition to know ~. The enforcement of this condition guarantees that A
cannot deduce forbidden information from permitted information by performing
valid derivations. However, some difficulties remain because A can also perform
plausible derivation. Through the following examples, we illustrate some of these
problems and define possible solutions to solve them.

4.1 Example 3: Pseudo-cons is tency due to D B ' s incomple teness

When requests are sent to the secure DBMS that manages the SOD relation
described in Example 1, answers that are formulated by this secure DBMS can
depend on several parameters:

1. The clearance level of the user who sends the request to the DBMS (i.e.,
Unclassified or Secret).

2. The "characteristic" of the database (i.e., complete or incomplete).
3. The "characteristic" of the security policy that is applied to insure the in-

ternal information flow controls and, possibly, the inference controls.
4. The method that is used to avoid such inferences (i.e., with or without

polyinstantiation).

It can thus be interesting to look at the inference problem in these different
contexts, in order to be able to define some possible solutions to solve that
inference problem. Let us consider that the security policy is defined so that
usertr is forbidden to know any secret piece of information and is also forbidden
to know the existence of such secret information.

A first solution to enforce the security policy consistency is to consider that
DB could be incomplete, this means that:

3star, [Starship(star) E DB]A
([(3obj, Objective(star, obj) E DB) A (Vdest, Destination(star, dest) r DB)]
V[(Vobj, Objective(star, obj) ~ DB) A (3dest, Destination(star, dest) E DB)]
V[(Vobj, Objective(star, obj) q[DB) A (Vdest, Destination(star, dest) r DB)])

When it is stated that (3z, Vy, Attribute(x, y) r DB), where Attribute means
in the present example Objective or Destination, it is sometimes considered [27]
that y is an undetermined value, denoted Null (see Table 4).

When DB is incomplete, the answer sent by the DBMS to usertr for Request3
is:

Request3: SELECT (Destination) FROM SOD
WHERE Destination = Enterprise

Answer(Ib.. U: Null

463

Starship Objective Destination[TC
Enterprise U Spying S Rigel S S
Enterprise U Null U Null U U
Intergalactic U Exploration U Talos U U

Table 4. The multilevel SOD relation when DB is incomplete

This means that DBu does not know the answer either, because there (per-
haps) exists a response, in the real world, that DB does not know or, because
there (actually) exists a response, in the real world and in DB, that useru cannot
know because it is unknown by DBu, and only known by DBs.

From the assumption that DB could be incomplete, and by combining the
Answer~. U and Answer3b. U, useru can deduce that:

K~,erv[(3dest, (Destination(Enterprise, dest) E DBs) A (dest r Null))
V(Vdest, Destination(Enterprise, dest) ~. DB)]

The incompleteness of DB could be considered as a satisfying approach from
the security policy point of view because there is no inconsistency, since useru
is not sure that there is a Secret destination for Enterprise; and, from the non-
interference point of view this approach is really satisfying because there is no
interference of DBs on DBu.

But if it is now considered that the probability, the possibility or the plausi-
bility (let us more generally say the "certainty factor") of the fact
~dest, Destination(Enterprise, dest) r DB] is very small, then there remains
the eventuality that the security policy can be inconsistent, exactly as in the
case previously studied with the DB's completeness. Such a small certainty fac-
tor for the fact ~/dest, Destination(Enterprise, dest) r DB] could be obtained
by useru with external information to DB, as it is stated in [18]. In fact, useru
can suppose that the DBMS either does not know the real answer to Request3,
or does not want to give him the response. He can go further in his reasoning by
considering the second hypothesis, if he has access to external information, and
thus build some abductive reasoning. Such external facts could be for examples:

- the fact that Enterprise will live soon, in a few days, and that the mission
of any starship (and of course it's destination) must be known for some
administrative reasons and thus recorded in the database (in DBs in the
present case) at least a few days before the date of the departure of the
starship (let us say half a week);

- or the fact that usertr has, or someone has for him, physically observed a
great deal of activity all around Enterprise, signifying that this starship will
live soon for a well-known mission;

- or also the fact that , usually, any starship does never stay idle more than a
few days (let us say one week), and that Enterprise arrived five or six days
ago.

464

To avoid such an abductive reasoning, another method could be used, Polyin-
stantiation (as it is often the case), but some management tools could neverthe-
less be very useful for the security manager to assess these certainty factors, for
each fact such as: "Enterprise will live soon", as it will be shown at the end of
the next example.

4.2 Example 4: Pseudo-cons is tency due to D B ' s p o l y i n s t a n t i a t i o n

Consider now that the database is complete again but polyinstantiated (as shown
in Table 5):

Vstar [3obj, 3dest, SOD(star, obL dest) DBs]
::~ [3oh f , 3dest',SO D(star, ob j ~, dest') E D Bu A

(obj' ~ oh j) A (dest' r dest)]

Starship Objective DestinationlTC
Enterprise U Spying S Rigel S S
Enterprise U Exploration U Talos U U
Intergalactic U Exploration U Talos U U

Table 5. The multilevel polyinstantiated SOD relation

This means that each fact that exists in DBs must also exist in DBu, with a
distinct value for each attribute. The security policy is the same as in Example 3,
i.e.."

F Kuseru [Destination(Enterprise, Rigei)]A
F Ku,eru [3dest, F Ku,e,vDestination(Enterprise, dest)]

Therefore, the answer sent by DBu to useru for Request3 is:

Request3: SELECT (Destination) FROM SOD
WHERE Starship = Enterprise

Answer3c: U: (Talos)

From the fact that DB is complete and polyinstantiated, useru can only be
sure that:

Bdest, Destination(Enterprise, dest) E D Btr

However, if usertr has access to contradictory external facts, he could suppose
that another destination for Enterprise might exist, only known from DBs.
Hence, in the case of DB's polyinstantiation, the abductive reasoning is still
possible. Indeed, even if useru, by some kind of external observation, can suppose
that Enterprise will live soon (exactly as in the case where DB is incomplete),

465

he can nevertheless believe that the DBMS wants him to be mislead (see [18] for
a more complete example).

It can thus be seen that some assistance tools may be very useful to the secu-
rity manager for the assessment of the certainty factors of the different external
facts that could be used for building some abductive reasoning. According to
the external facts and their certainty factors, it is thus much easier to decide if
any knowledge permitted to, or inferred by, userv is consistent with his explicit
prohibitions.

4.3 T h e use o f unce r ta in ty to contro l abduct lve reasoning

As we have shown, respectively, in Example 3 and Example $, DB's incomplete-
ness and DB's polyinstantiation are sometimes insufficient to avoid any effective
information inference, in particular when abductive reasoning is possible. In both
cases, we consider that uncertainty/certainty factors could be used to better ap-
preciate such effective inference. Different types of uncertainty/certainty factors
can be used (i.e., based, for example, on the possibility theory [38], or on the the-
ory of evidence [32]); but, at the present step of our work, the following features
of such uncertainty reasoning can be stated for any type of uncertainty/certainty
factors:

- Uncertain and/or imprecise information can easily be represented in a lin-
guistic form (which is very near to the natural language).

- The ordinal versus cardinal, and qualitative versus quantitative, aspects of
uncertain and/or imprecise information are privileged.

- The mathematical frameworks that can be used, such as the possibility the-
ory, are less normative than those classically used for representing certainty,
such as probabilities.

- Uncertain and/or imprecise information can easily be combined, and thus
updated, when represented in such a possibilistic framework.

This new type of approach used for representing, and evaluating the uncertain-
ty/certainty of information stored in the system was already stated before (see
for instance [36]) as a prospective research work for the assessment of the con-
fidentiality preservation, referring in that case to the possibility theory [38, 16].
Independently, the same approach was also stated as an interesting solution
to the abductive reasoning problem, in particular in relational DBMS [19, 18],
referring in that case to the Dempster-Shafer theory [32].

So, when it is possible, only qualitative assessment is privileged faced to
quantitative one. One advantage of such a representation is that it is much
easier to combine distinct pieces of information and then compute the resulting
certainty factor of the updated or resulting piece of information because the
possibilistic or plausibilistic framework is less normative than the traditional
probabilistic framework. This is mainly due to the following two reasons:

- The notion of independence of elementary events is not necessary to be able
to compute the uncertainty/certainty factors of the piece of information
issued from the combination of such elementary events.

466

- The fact that the sum of the certainty factors of two complementary events
is not obligatorily equal to the unity (i.e., it is not always completely sure
that either a given event, el or its contrary, g, will occur).

5 Conclusion

In this paper, we propose a general and complete method for modeling database
security by splitting up the enforcement of a security policy into two sub-
problems:

- The internal information flow controls enforced via causality.
- The inference controls enforced via policy consistency.

We think that this decomposition provides a better understanding of the con-
fidentiality problem. Notice that this method is not limited to the design of a
secure database management system. Actually, it could apply to any informa-
tion management system as soon as it is possible to give a formal correspondence
between the objects stored in the system (such as tuples in the case of a relation-
al DBMS) and formula in first order logic. However, much work remains to be
done. First of all, we have formally defined the concept of prohibition to know
some information using modal logic and possible world semantics. This formal-
ism was presented in [10]. The aim is to build a tool the security manager could
use to verify the consistency of the security policy he has defined. A possible
scenario that could provide effective assistance for security managers could be
the following:

1. The tool can prove that, a low user cannot, by using valid reasoning, de-
rive higher sensitive information from lower sensitive information. We can
conclude that no inference channel inside the security policy exists.

2. If no inference channel exists, then, for a given higher sensitive piece of
information, the tool can use abductive reasoning to find what information
a the low subject needs to assume in order to derive this higher sensitive
piece of information.

3. The tool asks the security manager whether it is plausible that a low subject
might assume a. In a more ambitious scenario, the tool can use plausible rea-
soning in order to put itself in the position of the database security manager
who tries to answer this question.

Finally, notice that, in this paper, we focus on mandatory access control
and we do not consider discretionary access controls. It could be interesting to
see whether the method we proposed can be applied to both kinds of access
(mandatory and discretionary).

A c k n o w l e d g e m e n t

We would like to thank the DRET for its support, Jill Manning for her help, and
the anonymous referees for their comments on a previous draft of this paper.

467

References

1. C. E. Alchourron. Philosophical Foundations of Deontic Logic and its Practical
Applications in Computational Contexts. In Proc. o] the First International Work.
shop on Deontic Logic in Computer Scienc~ Amsterdam, The Netherlands, 1991.
Invited Lecture.

2. D. Bell and L. LaPadula. Secure Computer Systems: Unified Exposition and Mul-
tics Interpretation. Technical Report ESD-TR-75-306, MTR-2997, MITRE, Bed-
ford, Mass, 1975.

3. P. Bieber and F. Cuppens. Computer Security Policies and Deontic Logic. In
Proc. ol the First International Workshop on Deontic Logic in Computer Science,
Amsterdam, The Netherlands, 1991.

4. P. Bieber and F. Cuppens. A Logical View of Secure Dependencies. Journal of
Computer Security, 1(1):99-129, 1992.

5. P. Bieber and F. Cuppens. Secure Dependencies with Dynamic Level Assignments.
In Prec. ot the computer security 1oundations workshop, Franconia, 1992.

6. N. Boulahia-Cuppens and F. Cuppens. Asynchronous composition and required
security condition. In IEEE Symposium on Security and Privacy, Oakland, 1994.

7. E. Cohen. Information Transmission in Sequential Programs. In Foundations o 1
Secure Computation. Aca~lemic Press, 1978.

8. F. Cuppens. A modal logic framework to solve aggregation problems. In S. Jajodia
and C. Landwehr, editors, Database Security, 5: Status and Prospects. North-
Holland, 1992. Results of the IFIP WG 11.3 Workshop on Database Security.

9. F. Cuppens. A Logical Analysis of Authorized and Prohibited Information Flows.
In IEEE Symposium on Security and Privacy, Oakland, 1993.

10. F. Cuppens and R. Demolombe. Normative Conflicts in a Confidentiality Poli-
cy. In ECAI-94 Workshop on Artificial Normative Reasoning, Amsterdam, The
Netherlands, 1994.

11. F. Cuppens and K. Yazdanian. A "Natural" Decomposition of Multi-level Rela-
tions. In IEEE Symposium on Security and Privacy, Oakland, 1992.

12. R. Demolombe and L. Farifias del Cerro. Efficient representation of incomplete
information. In J. Schmidt and C Thanos, editors, Foundations of Knowledge Base
Management. Springer Verlag, 1990.

13. D. Denning. Cryptography and Data Security. Addison-Wesley, 1982.
14. D. Denning, T. Lunt, R. Shell, M. Heckman, and W. Shockley. A Multilevel Rela-

tional Data Model. In IEEE Symposium on Security and Privacy, Oakland, 1987.
15. D. Denning, T. Lunt, R. Shell, W. Shockley, and M. Heckman. The SeaView Se-

curity Model. In IEEE Symposium on Security and Privacy, Oakland, 1988.
16. D. Dubois and H. Prude. Possibility Theory: an approach to computerized process-

ing of uncertainty. Plenum Press, 1988.
17. T. Garvey, T. Lunt, X. Qian, and M. Stickel. Toward a Tool to Detect and Elim-

inate Inference Problems in the Design of Multilevel Databases. In Proc. of the
Sixth IFIP WG 11.3 Working Conference on Database Security, Vancouver, 1992.

18. T. D. Garvey and T. F. Lunt. Cover Stories for Database Security. In S. Jajodia
and C. Landwehr, editors, Database Security, 5: Status and Prospects. North-
Holland, 1992. Results of the IFIP WG 11.3 Workshop on Database Security.

19. T. D. Garvey, T. F. Lunt, and M. E. Stickel. Abductive and Approximate Rea-
soning Models for Characterizing Inference Channels. In Proc. of the computer
security toundations workshop, Franconia, 1991.

468

20. J. Glasgow and G. McEwen. Reasoning about knowledge and permission in se-
cure distributed systems. In Proc. of the computer security foundations workshop,
Franconia, 1988.

21. J. Goguen and J. Meseguer. Unwinding and Inference Control. In IEEE Sympo-
sium on Security and Privacy, Oakland, 1984.

22. M. J. Grohn. A model of a protected data management system. Technical Report
ESD-TR-76-289, I. P. Sharp Associates Ltd., Bedford, Mass, 1976.

23. J. Guttman and M. Nadel. What needs securing. In Proc. of the computer security
foundations workshop, Franconia, 1988.

24. J. T. Haigh, R. C. O'Brien, P. D. Stachour, and D. L. Toups. The LDV Approach
to Database Security. In D. L. Spooner and C. Landwehr, editors, Database Secu-
rity, III: Status and Prospects. North-Holland, 1990. Results of the IFIP WG 11.3
Workshop on Database Security.

25. T. H. Hinke. Inference Aggregation Detection in Database Management Systems.
In IEEE Symposium on Security and Privacy, Oakland, 1988.

26. T. H. Hinke and M. Schaeffer. Secure data management system. Technical Report
RADC-TR-75-266, System Development Corporation, 1975.

27. T. Imielinski and W. Lipskl. Incomplete information in relational databases.
JACM, 31(4), October 1984.

28. S. Jajodia and R. Sandhu. Polyinstatiation Integrity in Multilevel Relations. In
IEEE Symposium on Security and Privacy, Oakland, 1990.

29. B. W. Lampson. A note on the confinement problem. Communication of the
Association for Computing Machinery, 16(10):613-615, 1973.

30. K.-C. Liu and R. Sunderraman. General indefinite and maybe information in re-
lational databases. In R. Ritter, editor, Information processing 89, pages 809-814,
New-York, 1989. Elsevier.

31. R. Sandhu and S. Jajodia. Honest Databases That Can Keep Secrets. In Pro-
ceedings of the l~th National Computer Security Conference, Washington, D.C.,
1991.

32. G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, 1976.
33. G.W. Smith. Multilevel Secure Database Design: A Practical Application. In

Fifth Annual Computer Security Applications Conference, Tucson, Arizona, 1989.
34. D. Sutherland. A Model of Information. In Proceedings of the 9th National Corn-

prater Security Conference, 1986.
35. B. ThuraJsingham, W. Ford, M. Collins, and J. O'Keefe. Design and implemen-

tation of a database inference controller. Data ~ Knowledge Engineering, 11(3),
December 1993.

36. G. Trouessin. Quantitative Evaluation of Confidentiality by Entropy Calculation.
In Proc. of the computer security foundations workshop, Franconia, 1991.

37. R. A. Whitehurst and T. F. Lunt. The Seaview Verification. In Proc. of the
computer security foundations workshop, Franconia, 1989.

38. L. A. Z~leh. Fuzzy Sets as a Basis for a Theory of Possibility. Fuzzy Sets and
Systems, 1, 1978.

