Skip to main content

Simplicity criteria for dynamical systems

  • Conference paper
  • First Online:
Analysis of Dynamical and Cognitive Systems

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 888))

Abstract

We formulate two simplicity criteria for dynamical systems based on the concepts of finite automata and regular languages. Finite automata are regarded as dynamical systems on discontinuum and their factors yield the first simplicity class. A finite cover of a topological space is almost disjoint, if it consists of closed sets which have the same dimension as the space, and meet in sets whose dimension is smaller. A dynamical system is regular, if it yields a regular language when observed through any finite almost disjoint cover. Next we formulate two topological simplicity criteria. A dynamical system has finite attractors, if the Ω-limit of its state space is finite. A dynamical system has chaotic limits, if every point is included in a set whose Ω-limit is either a finite orbit or a chaotic subsystem. We show the relations between these criteria and classify according to them several classes of zero-dimensional and one-dimensional dynamical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. B.Balcar, P.Simon: Appendix on general topology. Handbook of Boolean Algebras (J.D.Monk and R.Bonnet, eds.), Elsevier Science Publishers B.V., 1241 (1989).

    Google Scholar 

  2. J.Brooks, G.Cairns, G.Davis, P.Stacey: On Devaney's definition of chaos. The American Mathematical Monthly, 99,4, 332 (1992).

    Google Scholar 

  3. A.W. Burks: Essays on Cellular automata. University of Illinois Press. Urbana 1970.

    Google Scholar 

  4. P.Collet, J.P.Eckmann.: Iterated Maps on the Interval as Dynamical Systems. Birkhauser, Basel 1980.

    Google Scholar 

  5. J.P.Crutchfield, K.Young: Computation at the onset of chaos. in: Complexity, Entropy and the Physics of Information, SFI Studies in the Sciences of Complexity, vol VIII (W.H.Zurek, ed.), Addison Wesley 223 (1990).

    Google Scholar 

  6. K. Culik II, S.Yu: Cellular automata, ΩΩ-regular sets, and sofic systems. Discrete Applied Mathematics 32,85–101 (1991).

    Google Scholar 

  7. K.Culik II, L.P.Hurd, S.Yu: Computation theoretic aspects of cellular automata. Physica D 45, 357–378 (1990).

    Google Scholar 

  8. R.L. Devaney: An Introduction to Chaotic Dynamical Systems. Addison-Wesley, Redwood City 1989.

    Google Scholar 

  9. D.Fiebig, U.R.Fiebig: Covers for coded systems. Symbolic Dynamics and its Applications (Peter Walters, ed.) American Mathematical Society, Providence 1992.

    Google Scholar 

  10. J.G.Hocking: Topology. Addison-Wesley, Reading 1961.

    Google Scholar 

  11. J.E.Hopcroft, J.D.Ullmann: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Menlo Park 1990.

    Google Scholar 

  12. J.Guckenheimer: Sensitive dependence to initial conditions for one dimensional maps. Commun.Math.Phys. 70, 133 (1979).

    Google Scholar 

  13. J.Guckenheimer, P. Holmes: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences 42, Springer-Verlag, Berlin 1983.

    Google Scholar 

  14. S.A.Kauffman, S.Johnson: Co-evolution at the edge of chaos: coupled fitness landscapes, poised states, and co-evolutionary avalanches. in: Artificial Life II. SFI Studies in the Sciences of Complexity, vol. X (Ch.G.Langton, Ch. Taylor, J.D.Farmer, S.Rasmunsen, eds.) Addison-Wesley, Redwood City 1992.

    Google Scholar 

  15. P.Koiran,P.Cosnard,M.Garzon: Computability with low-dimensional dynamical systems. Rapport n 92-31, Ecole Normal Superieure de Lyon, 1992.

    Google Scholar 

  16. C.Kuratowski: Topologie. Polskie Towarzystwo Matematyczne, Warszawa 1952.

    Google Scholar 

  17. P. Kůrka: Ergodic languages. Theoretical Computer Science 21:351–355, (1982).

    Google Scholar 

  18. P.Kůrka: One-dimensional dynamics and factors of finite automata. to appear in Acta Universitatis Carolinae, Mathematica et Physica.

    Google Scholar 

  19. P.Kůrka: Regular unimodal systems and factors of finite automata. submitted to Theoretical Computer Science.

    Google Scholar 

  20. Ch.G.Langton: Life at the Edge of Chaos. in: Artificial Life II. SFI Studies in the Sciences of Complexity, vol. X (Ch.G.Langton, Ch.Taylor, J.D.Farmer, S.Rasmunsen, eds.) Addison-Wesley, Redwood City 1992.

    Google Scholar 

  21. J.Milnor, W.Thurston: On iterated maps of the interval. Dynamical Systems (J.C.Alexander, ed.) Lecture Notes in Mathematics 1342, pp. 465–563, Springer-Verlag, Berlin 1988.

    Google Scholar 

  22. M.Mitchell, P.T.Hraber, J.P.Crutchfield: Revisiting the edge of chaos: evolving cellular automata to perform computations. Complex Systems, in press.

    Google Scholar 

  23. Ch. Moore: Unpredictability and undecidability in dynamical systems. Physical Review Letters 64(20), 2354–2357, (1990).

    PubMed  Google Scholar 

  24. M.Shub: Global Stability of Dynamical Systems. Springer-Verlag, Berlin 1987.

    Google Scholar 

  25. A.R.Smith: Simple computation-universal cellular spaces. J. ACM 18, 339–353 (1971).

    Google Scholar 

  26. S.M.Ulam, J.von Neumann: On combinations of stochastic and deterministic processes. Bull.Amer.Math.Soc. 53, 1120, (1947).

    Google Scholar 

  27. S.Wolfram: Theory and Applications of Cellular Automata. World Scientific, Singapore, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Stig I. Andersson

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kůrka, P. (1995). Simplicity criteria for dynamical systems. In: Andersson, S.I. (eds) Analysis of Dynamical and Cognitive Systems. Lecture Notes in Computer Science, vol 888. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58843-4_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-58843-4_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58843-6

  • Online ISBN: 978-3-540-49113-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics