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Abst rac t .  A directed graph is upward planar if it can be drawn in the 
plane such that every edge is a monotonically increasing curve in the 
vertical direction, and no two edges cross. An undirected graph is recti- 
linear planar if it can be drawn in the plane such that every edge is a 
horizontal or vertical segment, and no two edges cross. Testing upward 
planarity and rectilinear planarity are fundamental problems in the effec- 
tive visualization of various graph and network structures. In this paper 
we show that upward planarity testing and rectilinear planarity testing 
are .NP-complete problems. We also show that it is NP-hard to approxi- 
mate the minimum number of bends in a planar orthogonal drawing of 
an n-vertex graph with an O(n 1-~) error, for any e > 0. 

1 I n t r o d u c t i o n  

Graph drawing addresses the problem of constructing geometric representations 
of abstract graphs and networks [5]. It is an emerging area of research that  
combines flavors of topological graph theory and computational geometry. The 
automatic generation of drawings of graphs has important  applications in key 
computer technologies such as software engineering, database design, visual in- 
terfaces, and computer-aided-design. 

Various graphic standards have been proposed for the representation of 
graphs in the plane. Usually, vertices are represented by points, and each edge 
(u, v) is represented by a simple open Jordan curve joining the points associ- 
ated with the vertices u and v. A straight-line drawing maps each edge into 
a straight-line segment. An orthogonal drawing maps each edge into a chain of 
horizontal and vertical segments. A rectilinear drawing is an orthogonal straight- 
line drawing, i.e., a drawing where every edge is either a horizontal or a vertical 
segment. A drawing is planar if no two edges cross. A graph (or digraph) is 
planar if it admits a planar drawing. A graph is rectilinear planar if it admits 
a planar rectilinear drawing. A drawing of a digraph is upward if every edge is 
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monotonically nondecreasing in the y-direction. A digraph is upward planar if it 
admits a planar upward drawing. 

Testing upward planarity and rectilinear planarity are fundamental problems 
in the effective vishalization of various graph and network structures. For exam- 
ple, upward planarity is useful for the display of order diagrams and subroutine- 
call graphs, while rectilinear planarity is useful for the display of circuit schemat- 
ics and entity-relationship diagrams. In this paper we show that the following 
two problems are NP-complete: 

Upward planarity testing: testing whether a digraph is upward planar. 

Rectilinear planarity testing: testing whether a graph is rectilinear planar. 

These problems have challenged researchers in order theory, topological graph 
theory, computational geometry, and graph drawing for many years. Our in- 
tractability results motivate the following observations: 

- Testing whether a graph admits a planar drawing or an upward drawing can 
be done in linear time. Combining the two properties makes the problem 
NP-hard. 

- Every planar graph admits a planar straight-line drawing. Hence, we can say 
that planarity is equivalent to straight-line planarity, and both properties 
can be verified in linear time. We can view upward and rectilinear planarity 
as derived from straight-line planarity by adding further constraints, which 
make the problem become apparently much more difficult. 

We also show that it is NP-hard to approximate the minimum number of 
bends in a planar orthogonal drawing of an n-vertex graph with an O(n 1-') 
error, for any e > 0. 

Previous results on upward and rectilinear planarity testing are summarized 
below. In the rest of this section, we denote with n the number of vertices of the 
graph being considered. 

Combinatorial results on upward planarity of covering digraphs of lattices 
were first given in [15, 22]. Further results on the interplay between upward 
planarity and ordered sets are surveyed by Rival [23]. Lempel, Even, and Ceder- 
baum [16] relate the planarity of biconnected undirected graphs to the upward 
planarity of st-digraphs. A combinatorial characterization of upward planar di- 
graphs is provided in [8, 14]: namely, a digraph is upward planar if and only if 
it is a spanning subgraph of a planar st-dzgraph. This characterization implies 
that upward planarity testing is in NP. 

Di Battista, Liu, and Rival [7] show that every planar bipartite digraph is 
upward planar. Papakostas [21] gives a polynomial-time algorithm for upward 
planarity testing of outerplanar digraphs. Bertolazzi, Di Battista, Liotta, and 
Mannino [1, 2] give a polynomial-time algorithm for testing upward planarity 
of triconnected digraphs and of digraphs with a fixed embedding. Concerning 
single-source digraphs, Thomassen [28] characterizes upward planarity in terms 
of forbidden circuits. Hutton and Lubiw [12] combine Thomassen's characteri- 
zation with a decomposition scheme to test upward planarity of a single-source 
digraph in O(n 2) time. Bertolazzi, Di Battista, Mannino, and Tamassia [3] show 
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that upward planarity testing of a single-source digraph can be done optimally 
in O(u) time. They also give a parallel algorithm that runs in O(log n) time on 
a CRCW PRAM with n log log n/log n processors. 

Regarding rectilinear planarity testing, Shiloach [24] and Valiant [29] show 
that any planar graph of degree at most 4 admits a planar orthogonal draw- 
ing. Vijayan and Wigderson [30] study structural properties of rectilinear planar 
drawings. From their results, the membership of rectilinear planarity testing 
in NP is easy to establish. Storer [25], Tamassia and Tollis [27], Liu, Marchioro, 
Morgana, Petreschi, and Simeone [18, 19, 20, 17], Even and Granot [9], and Biedl 
and Kant [13, 4] give various techniques for constructing planar orthogonal draw- 
ings with O(n) bends. Tamassia [26] gives an O(n 2 logn)-time algorithm that 
constructs a planar orthogonal drawing with the minimum number of bends for 
an embedded planar graph. Di Battista, Liotta, and Vargiu [6] give polynomial 
time algorithms for minimizing bends in planar orthogonal drawings of series- 
parallel and cubic graphs. The latter two results show that rectilinear planarity 
testing can be done in polynomial time for a fixed embedding or for special 
classes of graphs. 

Our proof techniques are based on a two-phase reduction from the known 
NP-complete problem NOT-ALL-EQUAL-3-SAT, In the first phase, we reduce NOT- 
ALL-EQUAL-3-SAT to an auxiliary undirected flow problem. In the second phase, 
we reduce this undirected flow problem to the upward (or rectilinear) planarity 
testing of a special class of digraphs. The latter reduction is interesting in its 
own and provides new insights on the characterization by flow networks of the 
angles formed by the edges of upward planar drawings [1, 2] and orthogonal 
drawings [6, 26]. 

The rest of this paper is organized as follows. Preliminary definitions and 
results are provided in Section 2. The reduction from NOT-ALL-EQUAL-a-SAT to 
the auxiliary flow problem is given in Section 3. Sections 4 and 5 describe the 
reductions from the auxiliary flow problem to upward and rectilinear planarity 
testing, respectively. In this extended abstract, proofs and technical details are 
omitted. They can be found in the full paper [11]. 

2 Pre l iminar ies  

We assume standard concepts and definitions on NP-completeness [10]. Our re- 
sults use reductions from the following well-known NP-complete problem: 

NOT-ALL-EQUAL-a-SAT Given a set of clauses with three literals each, is there a 
truth assignment such that each clause has at least one true literal and one 
false literal? 

An embedding of a planar graph is the collection of circular permutations 
of the edges incident upon each vertex in a planar drawing of the graph. An 
embedded graph is a planar graph equipped with an embedding. The angles of an 
embedded graph are the pairs of consecutive edges incident on the same vertex. 
Such angles are mapped to geometric angles in a straight-line drawing of the 
graph. 
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A rectilinear embedding of a graph G is an embedding of G where each angle is 
assigned a label in the set {1, 2, 3, 4}, such that  there exists a rectilinear drawing 
of G where each angle labeled g in the embedding measures g~r/2 in the drawing. 

An upward embedding of a digraph G is an embedding of G where each angle 
formed by pairs of incoming or outgoing edges is assigned a label in the set 
{small, large}, such that  there exists a planar straight-line upward drawing of 

where each angle labeled small has measure < ~" and each angle labeled large 
has measure > 7r. 

In the rest of this section, we define several graphs that  will be used as gadgets 
in our reductions. 

We show in Fig. l(a) tendriITk (k > 1), which is an acyclic digraph with k +  1 
sources and k + 1 sinks. We also define tendril To as a a digraph consisting of a 
single edge. Tendril Tk (k >__ 0) has a designated source and a designated sink, 
called the poles of Tk. We shall consider transformations where a directed edge 
(u, v) of a digraph is replaced with a tendril Tk, where the source is identified 
with u and the sink with t. 

(a) (b) (c) (d) 
Figure  1: (a) Tendril T3. (b) Wiggle W3. (c) Rectilinear tendril T3. (d) Rectilinear 
wiggle W3. The poles are drawn as black-filled circles. 

L e m m a  1. Tendml Tk is upward planar and admzts a unique upward planar 
embedding. 

In the upward planar embedding of Tk, the external face consists of two paths 
between s and t. One such path, called outer path, has 2k large angles and no 
small angles, and the other path, called znner path, has 2k small angles and no 
large angles. When a tendril replaces an edge of an embedded planar digraph, 
the outer path becomes a subpath of a face, and we say that the contributzon of 
the outer path to the face is +2k. Similarly, we say that  the contribution of the 
inner path to its face is - 2k .  

Figure l(b) shows a wiggle Wk, which is an acyclic digraph consisting of a 
chain of 2k + 1 edges whose orientation alternates along the chain. The extreme 
vertices of Wk, a source and a sink, are called the poles of Wk. We shall consider 
transformations where a directed edge (u, v) of an embedded digraph is replaced 
with wiggle Wk, where s is identified with u and v with t. Given an upward 
embedding of Wk, we say that  the contribution of Wk to a face f containing 
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Wk is the number of large angles minus the number of small angles of Wk in 
f .  Clearly, Wk can be upward embedded to give to f any contribution 2i with 
0 < i < k. Note that  if Gk gives contribution c to a face, it gives contribution 
- c  to the other face it belongs to. 

We show in Fig. l(c) an undirected graph called rectilinear tendril Tk, which 
also has two designated poles denoted by s and t. We also define rectilinear 
tendril To as a a graph consisting of a single edge. We show in Fig. l(d) rectilinear 
wiggle Wk, which is a chain of 4k + 1 edges. 

The contribution of a rectilinear tendril (or wiggle) to a face containing it is 
the number of angles of the tendril (or wiggle) labeled 3 minus the number of 
angles labeled 1 that  lie in the face. Rectilinear tendril Tk contributes 4k, 4k + 1, 
or 4k + 2 to one face, and the opposite value to the other face. Rectilinear wiggle 
Wk contributes to one face any value between 0 and 4k, and the opposite value 
to the other face. 

3 An Auxiliary Undirected Flow P r o b l e m  

In this section we define two auxiliary flow problems and show that  they are 
equivalent to NOT-ALL-EQUAL-3-SAT under polynomial-time reductions. 

A switch-flow network is an undirected flow network Af where each edge is 
labeled with a range [d . .  �9 c'] of nonnegative integer values, called the capacity 
range of the edge. For simplicity, we denote the capacity range [c . . .  c] with [c]. A 
flow for a switch-flow network is an orientation of and an assignment of integer 
"flow" values to the edges of the network. A feasible flow is a flow that  satisfies 
the following two properties: 

Range properly: the flow assigned to an edge is an integer within the capacity 
range of the edge. 

Conservation property: the total flow entering a vertex from the incoming edges 
is equal to the total flow exiting the vertex from the outgoing edges. 

Starting from an instance S of NOT-ALL-EQUAL-3-SAT, we construct a switch- 
flow network Af as follows (see Fig. 2). Let the literals of 8 be denoted with 
xl,  Yl," �9 ', x , ,  yn, where Yl -- xT, and the clauses of S be denoted with cl," �9 cm. 
Let/9 be a positive integer parameter. We denote with c~i and fli (i -- 1 , . . . ,  n) 
the number of occurrences of literals xi and Yi in the clauses of S, respectively. 

t% 
Note that  ~i=l (a i  +/34) = 3m. Also, we define 7i = (2i - 1)0 and dii = 2i0 
(i = 1 , . . . ,  n). Network Af has a literal vertex for each literal of S and a clause 
vertex for each clause of S, plus a special dummy vertex z. There are three types 
of edges in Af: 

Literal edges joining pairs of literals associated with the same boolean variable. 
The capacity range of literal edge (xi, Yi) is [aiTi + ]~i6i]. 

Clause edges joining each literal to each clause. The capacity range of clause 
edge (xi, cj) is [74] if xi E cj, and [0] otherwise. The capacity range of clause 
edge (Yi, cj) is [/ii] if Yi E cj, and [0] otherwise. 

Dummy edges joining each literal and each clause to the dummy vertex. The 
capacity ranges of dummy edges (z, xi) and (z, Yi) are [fliSi] and [cqTi], re- 
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spect ively.  The  capac i ty  range  of  d u m m y  edge (z, cj) is ,[0 �9 �9 �9 r/j - 20], where  
r/j is the  sum of  the  capaci t ies  of  the  clause edges inc iden t  on cj. 

40 40 

3 3 

(a) (b) 

40 40 

Y3 3 

--36 0 

0 .28 

(c) (d) 
F i g u r e  2: (a) Switch-flow network A/" with parameter  0 = 4 associated with the 
t h e  N O T - A L L - E Q U A L - 3 - S A T  instance S with clauses cl = ylx2y3, c2 = YlY2x3, and 
c3 = zlx2x3. The clause edges with nonzero capacity range are shown with thick lines. 
(b)  Feasible flow for Af corresponding to the satisfying truth assignment (yl, z2, x3) 
for S. Only the edges with nonzero flow are shown. (e) Planar switch-flow network 
P associated with ,5. (d)  Feasible flow for P corresponding to the satisfying truth 
assignment (yl,  x2, x3) for S. Only the edges with nonzero flow are shown. 

The  cons t ruc t ion  of  ne twork  Af f rom S is s t ra ightforward ' ,  and  we have: 

L e m m a  2. Given an instance S 0fNOT-ALL-EQUAL-3-SAT with n variables and 
m clauses, the associated switch-flow network Af has O(n + m) vertices and 
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O(nm) edges, and can be constructed in O(nm) time. 
A feasible flow in network Af corresponds to a satisfying truth assignment 

for S. Namely, we have that a literal is true whenever its incident literal edge 
is incoming in the feasible flow (see Fig. 2(b)) and its incident clause edges 
with nonzero capacity range are outgoing. Also, the three clause edges with 
nonzero capacity range incident on a clause vertex cj cannot be all incoming or 
all outgoing because of the conservation property at vertex cj and the choice of 
capacity range for the dummy edge incident on cj. We obtain: 
L e m m a 3 .  An instance S of NOT-ALL-EQUAL-3-SAT is satisfiable if and only if 
the associated switch-flow network.IV" admits a feasible flow. Also, given a feasible 
flow for A/', a satisfying truth assignment for S can be computed in time O(nm), 
where n and m are the number of variables and clauses of S, respectively. 

Now, starting from Af, we construct a planar switch-flow network 79 as follows 
(see Fig. 2). First, we construct a drawing of Af such that the literal vertices 
and the clause vertices are arranged on two parallel lines, and crossings occur 
only between clause edges. Next, we replace the crossings formed by the clause 
edges with new vertices, called crossing vertices. We call fragment edges the edges 
originated by the splitting of the clause edges. Each fragment edge inherits the 
capacity range of the originating clause edge. 
L e m m a 4 .  Given network Af representing an instance S Of NOT-ALL-EQUAL-3- 
SAT with n variables and m clauses, the associated planar switch-flow network 79 
has O(n2m 2) vertices and edges, and can be constructed in O(n2m 2) time. Also, 
network A/" admits a feasible flow if and only if network 79 admits a feasible flow, 
and a feasible flow for.N" can be computed from a feasible flow for79 in O(n2m 2) 
time. 

By combining Lemmas 3 and 4, we obtain the main result of this section. 

T h e o r e m 5 .  Given an instance S of NOT-ALL-EQUAL-3-SAT with n variables 
and m clauses, the associated planar switch-flow network79 has O(n2rn 2) vertices 
and edges, and can be constructed in O(n2m 2) time. Instance S is satisfiable if 
and only if network P admits a feasible flow. Also, given a feasible flow for 79, 
a satisfying truth assignment for S can be computed in time O(n2m2). 

4 U p w a r d  P l a n a r i t y  T e s t i n g  

In this section we show how to reduce the problem of computing a feasible flow 
in the planar switch-flow network 7 9 associated with a NOT-ALL-EQUAL-3-SAT 
instance S to the problem of testing the upward planarity of a suitable digraph. 
We set parameter 0 equal to 4. 
L e m m a 6 .  Let S be a NOT-ALL-EQUAL-3-SAT instance with at least three vari- 
ables and three clauses. The planar switch-flow network 79 associated wzth S is 
triconnected. 

Now, we construct on orientation 7 5 of 79 as follows (see Fig. 3): 

- Every literal edge (zi, Yi) is oriented from zi to Yi- 

- Every fragment edge is oriented away from the clause vertex and towards 
the literal vertex. 
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- Every dummy edge incident on a literal vertex is oriented towards the dummy 
vertex, and every dummy edge incident on a clause vertex is oriented towards 
the clause vertex. 

. . . . . . . . . . . . . . . .  

I I " " , .  

~ - , I  \ , '  k ~ ;  7, \ . "  ,~a',.~,," / I I 

,' ,',' ,' , ' r" ,,! I 
/ , ' , ' , ' , ' / I  i l l  ' / I I I H I  I I I I 

~.',' I i l l  

, , , ,  , , ~ / ~  ! l / : / ' ~ ' . , \  ' ~ ,  i ,' / 

', ' ,~ ", '; , " , ~ . . " ' ~ . ' , "  / / 
�9 \ I / !  i 1 "  % I \~ '.~ /,," ~ .1  - x  x \~  ~ / 

' ' ' , , ' , , '- \ / ,\ ~',  Ik ",,:,',! / 

/ \ 
\ \ 

/ 

Figure 3: Orientation ~ ~drawn with dashed lines) of the network P shown in 
Fig. 2(c) and dual digraph 79 (drawn with solid lines) of ~3. 

L e m m a  T. In digraph 75, every vertex has at least one incoming and one outgo- 
ing edge, every directed cycle contains the dummy vertex, and there are exactly 
two faces that are dzrected cycles. 

By Lemma 6, the planar embedding of 7 9 and the dual graph :D of P are 
unique. We construct the dual digraph 7) of 7 5 by orienting every dual edge of 7) 
from the face on the left to the face on the right of the primal edge (see Fig. 3). 
L e m m a 8 .  The dual digraph ~ of 75 ~s upward planar, triconnected, acyclic and 
has exactly one source and one s~nk, denoted with s and t. 

Starting from digraph TS we construct a new digraph ff by replacing the edges 
of 7) with subgraphs (tendrils or wiggles), as follows (see Fig. 4): 

- Every edge of 7~ that is the dual of a literal edge, fragment edge, or dummy 
edge incident on a literal vertex is replaced with tendril To, where [c] is the 
capacity range of the dual edge. Note that  c is a multiple of parameter 0. 

- Every edge o f / )  that is the dual of a dummy edge incident on a clause vertex 
is replaced with wiggle We, where [0. . .c]  is the capacity range of the dual 
edge. 
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The vertices of ~ that  are also in ~ are called primary vertices. The remaining 
vertices of ~ are called secondary vertices. 
L e m m a  9. Digraph ~ is planar and acyclic. Also, the only primary source vertex 
is s and the only primary sink vertex is t. 

By Lemma 8 and the construction of digraph ~, all the embeddings of ~ are 
obtained by choosing one of the two possible flips for each tendril. 

L e m m a  10. Digraph ~ is upward planar if and only if the tendrils can be flipped 
and the wiggles can be arranged such that for every face the total contribution of 
the tendrils and wiggles is zero. 

The proof of Lemma 10 uses the characterization of upward embeddings by 
Bertolazzi, Di Battista, Liotta, and Mannino [1, 2]. 

We establish the followin~g correspondence between digraph ~ and network 
7 ) (see Fig. 4): the faces of G correspond to the vertices of 7); the tendrils and 

)Lj  

dummy edges 

�9 x ,  hteral edge 
/ . . . . .  

clause clause 
edges ~ �9 * ~ edges 

1 

(a) (b) 
clause~ges 

.... ~ ssing vertex 

I edge 

wiggle 

(c) (d) 
Figure 4: Schematic illustration of: (a) digraph ~ obtained from ~ by replacing edges 
with tendrils and wiggles; (b) the two faces of 0 associated with literal vertices z, and 
y, of 7); (c) the face of ~ associated with a clause vertex of P; and (d) the face of 
associated with a crossing vertex of 7 ). 
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wiggles of ff correspond to the the edges of P;  flipping a tendril of (corresponds 
to orienting an edge of P; the contribution of a tendril or wiggle of G corresponds 
to the flow in an edge of :P; the balance of the contributions of the tendrils and 
wiggles in the faces of ff corresponds to the conservation of flow at the vertices 
of P.  

T h e o r e m 1 1 ,  Given an instance 8 of NOT-ALL-EQUAL-3-SAT with n variables 
and m clauses and the associated planar switch-flow network 7), digraph ~ as- 
sociated with 8 and 7) has O(n3m ~) vertices and edges, and can be constructed 
in O(n3m 2) time. Instance S is satisfiable and network 7) admits a feasible flow 
if and only if digraph ~ is upward planar. Also, given an upward planar embed- 
ding for ~, a feasible flow for 7 ) and a satisfying truth assignment for S can be 
computed in time O(nSm~). 

From Theorems 5 and 11 we conclude: 

C o r o l l a r y  12. Upward planarity testing is NP-complete. 

5 Rectilinear Planarity Testing 
In this section we show how to reduce the problem of computing a feasible flow 
in the planar switch-flow network 7 ~ associated with a NOT-ALL-EQUAL-3-SAT 
instance 8 to the problem of testing the rectilinear planarity of a suitable graph 
G. The construction of graph ~ is carried out in several stages, where at each 
stage an intermediate graph is produced. 

Given an instance ,~ of NOT-ALL-EQUAL-3-SAT with n variables and m 
clauses, let 7) be the associated planar switch-flow network with parameter 
0 = 32rim. 

Let 7) be the dual graph of 7 ~. The edges of 7) are classified as literal, clause, 
and dummy edges according to the type of their dual edge in 7 ~. Starting from 7), 
we construct a degree-3 planar graph ~- by first replacing every vertex of degree 
d with a binary tree with d leaves, and then replacing every edge of the resulting 
graph with a chain of 5 edges. Graph U has O(n2m 2) vertices and edges. 

L e m m a  13. Graph S has a unique planar embeddzng and admits a rectilinear 
embedding. 

We classify the edges of 5 v as expansion, literal, clause, and dummy edges, 
where the edges forming the binary trees replacing the former vertices of 7) are 
expansion edges, and the remaining edges of ~" are classified according to the 
type of the edge of 7) that originated them. Note that  each edge e of 7) is thus 
associated with exactly 5 edges of~" forming a path, and we call the middle edge 
the representative of e in J'. 

Finally, we construct graph G as follows. Let e be an edge of 7 ~. If e is a 
dummy clause edge with capacity range [0.-.  c], we replace the representative of 
e in T with rectilinear wiggle We. Else, e is a literal, fragment, or dummy literal 
edge with capacity range [e], and we replace the representative of e in ~" with 
rectilinear tendril T~. 

By Lemma 13 and the construction of digraph G, all the embeddings of ~ are 
obtained by choosing one of the two possible flips for each rectilinear tendril. 
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L e m m a  14. Graph ~ admits a rectilinear planar drawing if and only zf the rec- 
tilinear tendrils can be flipped and the rectilinear wiggles can be arranged such 
that for every face the total contribution of the tendrils and wiggles is zero. 

We establish the following correspondence between graph G and network 
P:  the faces of ~ correspond to the vertices of 7~; the rectilinear tendrils and 
wiggles of G correspond to the the edges of 7); flipping a rectilinear tendril of 
corresponds to orienting an edge of 7); the contribution of a rectilinear tendril 
or wiggle of G corresponds to the flow in an edge of 7~; the balance of the 
contributions of the rectilinear tendrils and wiggles in the faces of G corresponds 
to the conservation of flow at the vertices of P .  

T h e o r e m 1 5 .  Given an instance S of NOT-ALL-EQUAL-3-SAT with n variables 
and m clauses, graph ~ associated with S has O(n4m 3) vertices and edges, and 
can be constructed in O(n4m z) time. Instance S is satisfiable if and only if 
graph ~ is rectilinear planar. Also, given a rectilinear planar embedding for ~, a 
satisfying truth assignment for S can be computed in time O(n4m3). 

From Theorem 15 we conclude: 
C o r o l l a r y  16. Rectilinear planarity testing is NP-complete. 
C o r o l l a r y 1 7 .  Let G be an n-vertex planar graph whose minimum number of 
bends in any planar orthogonal drawing is b*. Computing a planar orthogonal 
drawing of G with O(b* + n l -e)  bends is NP-hard for e > O. 
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