Abstract
With this paper soft genetic operators for Evolutionary Algorithms are introduced and analyzed for multimodal continuous parameter optimization problems. A new scaling rule for multiple mutations is formalized and compared with a new step-size scaling for Evolution Strategies. The scaling of the Evolutionary Algorithm with Soft genetic operators (EASY) is compared with that of the Breeder Genetic Algorithm (BGA). A performance comparison of EASY with recently published results concerning the performance of Bayesian/Sampling and Very Fast Simulated Reannealing techniques for global optimization is given.
This work is supported by the Bundesminister für Forschung und Technologie (BMFT) as part of the project SALGON and the Deutsche Forschungsgemeinschaft (DFG) Grant Vo 493/1-1.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Th. Bäck and H.-P. Schwefel “An Overview of Evolutionary Algorithms for Parameter Optimization” Evolutionary Computation 1 (1):1–23, 1993
K. A. DeJong “An Analysis of the Behavior of a Class of Genetic Adaptive Systems” Doctoral Dissertation, University of Michigan 1975
L. J. Eshelman and J. D. Schaffer “Real-coded Genetic Algorithms and Interval-schemata” Foundations of Genetic Algorithms, pp. 187–202, Morgan Kaufmann 1992
D. S. Falconer “Introduction to Quantitative Genetics” Longman 1981
R.A. Fisher “The Genetical Theory of Natural Selection” Oxford University Press 1929, 2nd rev. ed. Dover Publications 1958
D. E. Goldberg “Genetic Algorithms in Search, Optimization, and Machine Learning” Addison-Wesley 1989
H. Katsuura “Continuous Nowhere-Differentiable Functions — An Application of Contraction Mappings” The American Mathematical Monthly, 5 (98) 1991
M. Kimura “The Neutral Theory of Molecular Evolution” Cambridge University Press 1983
B. Kosko “Neural Networks and Fuzzy Systems” Prentice Hall 1992
H. Mühlenbein and D. Schlierkamp-Vosen “Predictive Models for the Breeder Genetic Algorithm, I. Continuous Parameter Optimization” Evolutionary Computation 1 (1):25–49, 1993
A. Ostermeier, A. Gawelczyk and N. Hansen “A Derandomized Approach to Self Adaptation of Evolution Strategies” Technical University Berlin, Bionics and Evolution Techniques Laboratory. Technical Report TR-93-003, July 1993, Submitted to Evolutionary Computation
D. Rasch “Einführung in die mathematische Statistik” Deutscher Verlag der Wissenschaften, Berlin 1976
B. Rosen “Function Optimization Based on Advanced Simulated Annealing”, ftp: cis. archive. ohio-state. edu, dir: /pub/neuroprose, file: rosen. advsim. ps.Z
I. Rechenberg “Evolutionsstrategie” Frommann-Holzboog 1973
I. Rechenberg “Evolutionsstrategie 94” Frommann-Holzboog 1994
H.-P. Schwefel “Numerical Optimization of Computer Models” John Wiley 1981
Stuckman, B. E. and E. E. Easom “A Comparison of Bayesian/Sampling Global Optimization Techniques” IEEE Trans. Systems, Man and Cybernetics. Vol. 22, No. 5, pp. 1024–1032, 1992
G. Syswerda “Uniform Crossover in Genetic Algorithms” Proc. Third Int. Conf. on Genetic Algorithms. pp. 2–9, D. Schaffer (Ed.), Morgan Kaufmann 1989
H.-M. Voigt “Fuzzy Evolutionary Algorithms” Technical Report tr-92-038, International Computer Science Institute (ICSI) Berkeley, June 1992, ftp: icsi.berkeley.edu, dir: /pub/techreports/1992, file: tr-92-038.ps.Z
H.-M. Voigt, J. Born and I. Santibanez-Koref “Multivalued Evolutionary Algorithms” Technical Report tr-93-022, International Computer Science Institute (ICSI) Berkeley, April 1993, see also in: St. Forrest (Ed.) “Proc. 5th Intl. Conf. Genetic Algorithms” p. 657, San Mateo: Morgan Kaufmann Pub. 1993 and ftp: icsi.berkeley.edu, dir: /pub/techreports/1993, file: tr-93-022.ps.Z
H.-M. Voigt and T. Anheyer “Modal Mutations in Evolutionary Algorithms” Proc. IEEE Int. Conf. on Evolutionary Computation, vol. I, pp.88–92, IEEE 1994
A. H. Wright “Genetic Algorithms for Real Parameter Optimization” Foundations of Genetic Algorithms. pp. 205–220, Morgan Kaufmann 1990
L.A. Zadeh “Fuzzy Sets” Information and Control, vol. 8, 338–353, 1965
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1995 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Voigt, H.M. (1995). Soft genetic operators in Evolutionary Algorithms. In: Banzhaf, W., Eeckman, F.H. (eds) Evolution and Biocomputation. Lecture Notes in Computer Science, vol 899. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59046-3_8
Download citation
DOI: https://doi.org/10.1007/3-540-59046-3_8
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-59046-0
Online ISBN: 978-3-540-49176-7
eBook Packages: Springer Book Archive