Abstract
Genetic algorithms have been applied fairly successful to a number of optimization problems. Nevertheless, a common theory why and when they work is still missing. In this paper a theory is outlined which is based on the science of plant and animal breeding. A central part of the theory is the response to selection equation and the concept of heritability. A fundamental theorem states that the heritability is equal to the regression coefficient of parent to offspring. The theory is applied to analyze selection, mutation and recombination. The results are used in the Breeder Genetic Algorithm whose performance is shown to be superior to other genetic algorithms.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
H. Asoh and H. Mühlenbein. On the mean convergence time of genetic populations without selection. Technical report, GMD, Sankt Augustin, 1994.
Thomas Bäck. Optimal mutation rates in genetic search. In S. Forrest, editor, 5rd Int. Conf. on Genetic Algorithms, pages 2–9, San Mateo, 1993. Morgan Kaufmann.
Thomas Bäck and Hans-Paul Schwefel. A Survey of Evolution Strategies. In Proceedings of the Fourth International Conference of Genetic Algorithms, pages 2–9, San Diego, 1991. ICGA.
Thomas Bäck and Hans-Paul Schwefel. An Overview of Evolutionary Algorithms for Parameter Optimization. Evolutionary Computation, 1:1–24, 1993.
R. K. Belew and L. Booker, editors. Procedings of the Fourth International Conference on Genetic Algorithms, San Mateo, 1991. Morgan Kaufmann.
H. J. Bremermann, M. Rogson, and S. Salaff. Global properties of evolution processes. In H.H. Pattee, editor, Natural Automata and Useful Simulations, pages 3–42, 1966.
M. G. Bulmer. “The Mathematical Theory of Quantitative Genetics”. Clarendon Press, Oxford, 1980.
J. F. Crow. Basic Concepts in Population, Quantitative and Evolutionary Genetics. Freeman, New York, 1986.
J. F. Crow and M. Kimura. An Introduction to Population Genetics Theory. Harper and Row, New York, 1970.
L.J. Eshelman. The CHC Adaptive Search Algorithm: How to Have Safe Search when Engaging in Nontraditional Genetic Recombination. In G. Rawlins, editor, Foundations of Genetic Algorithms, pages 265–283, San Mateo, 1991. Morgan-Kaufman.
D. S. Falconer. Introduction to Quantitative Genetics. Longman, London, 1981.
R. A. Fisher. The Genetical Theory of Natural Selection. Dover, New York, 1958.
S. Forrest, editor. Procedings of the Fifth International Conference on Genetic Algorithms, San Mateo, 1993. Morgan Kaufmann.
David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, 1989.
D.E. Goldberg. Genetic algorithms, noise, and the sizing of populations. Complex Systems, 6:333–362, 1992.
D.E. Goldberg, K. Deb, and B. Korb. Messy genetic algorithms revisited: Studies in mixed size and scale. Complex Systems, 4:415–444, 1990.
Michael Herdy. Reproductive Isolation as Strategy Parameter in Hierarchical Organized Evolution Strategies. In PPSN 2 Bruxelles, pages 207–217, September 1992.
J.H. Holland. Adaptation in Natural and Artificial Systems. Univ. of Michigan Press, Ann Arbor, 1975.
M. Kimura. The neutral theory of molecular evolution. Cambridge University Press, Cambridge University Press, 1983.
H. Mühlenbein, M. Gorges-Schleuter, and O. Krämer. Evolution Algorithms in Combinatorial Optimization. Parallel Computing, 7:65–85, 1988.
Heinz Mühlenbein. Evolution in time and space — the parallel genetic algorithm. In G. Rawlins, editor, Foundations of Genetic Algorithms, pages 316–337, San Mateo, 1991. Morgan-Kaufman.
Heinz Mühlenbein and Dirk Schlierkamp-Voosen. Predictive Models for the Breeder Genetic Algorithm: Continuous Parameter Optimization. Evolutionary Computation, 1(l):25–49, 1993.
Heinz Mühlenbein and Dirk Schlierkamp-Voosen. The science of breeding and its application to the breeder genetic algorithm. Evolutionary Computation, 1(4):335–360, 1994.
Ingo Rechenberg. Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Information. Fromman Verlag, Freiburg, 1973.
H. Schaffer, editor. Procedings of the Third International Conference on Genetic Algorithms, San Mateo, 1989. Morgan Kaufmann.
J.D. Schaffer and L.J. Eshelman. On crossover as an evolutionary viable strategy. In R. K. Belew and L. Booker, editors, Procedings of the Fourth International Conference on Genetic Algorithms, pages 61–68, San Mateo, 1991. Morgan Kaufmann.
H.-P. Schwefel. Numerical Optimization of Computer Models. Wiley, Chichester, 1981.
G. Syswerda. Uniform crossover in genetic algorithms. In H. Schaffer, editor, 3rd Int. Conf. on Genetic Algorithms, pages 2–9, San Mateo, 1989. Morgan Kaufmann.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1995 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mühlenbein, H., Schlierkamp-Voosen, D. (1995). Analysis of selection, mutation and recombination in genetic algorithms. In: Banzhaf, W., Eeckman, F.H. (eds) Evolution and Biocomputation. Lecture Notes in Computer Science, vol 899. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59046-3_9
Download citation
DOI: https://doi.org/10.1007/3-540-59046-3_9
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-59046-0
Online ISBN: 978-3-540-49176-7
eBook Packages: Springer Book Archive