Skip to main content

Analysis of selection, mutation and recombination in genetic algorithms

  • Conference paper
  • First Online:
Evolution and Biocomputation

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 899))

  • 278 Accesses

Abstract

Genetic algorithms have been applied fairly successful to a number of optimization problems. Nevertheless, a common theory why and when they work is still missing. In this paper a theory is outlined which is based on the science of plant and animal breeding. A central part of the theory is the response to selection equation and the concept of heritability. A fundamental theorem states that the heritability is equal to the regression coefficient of parent to offspring. The theory is applied to analyze selection, mutation and recombination. The results are used in the Breeder Genetic Algorithm whose performance is shown to be superior to other genetic algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. Asoh and H. Mühlenbein. On the mean convergence time of genetic populations without selection. Technical report, GMD, Sankt Augustin, 1994.

    Google Scholar 

  2. Thomas Bäck. Optimal mutation rates in genetic search. In S. Forrest, editor, 5rd Int. Conf. on Genetic Algorithms, pages 2–9, San Mateo, 1993. Morgan Kaufmann.

    Google Scholar 

  3. Thomas Bäck and Hans-Paul Schwefel. A Survey of Evolution Strategies. In Proceedings of the Fourth International Conference of Genetic Algorithms, pages 2–9, San Diego, 1991. ICGA.

    Google Scholar 

  4. Thomas Bäck and Hans-Paul Schwefel. An Overview of Evolutionary Algorithms for Parameter Optimization. Evolutionary Computation, 1:1–24, 1993.

    Google Scholar 

  5. R. K. Belew and L. Booker, editors. Procedings of the Fourth International Conference on Genetic Algorithms, San Mateo, 1991. Morgan Kaufmann.

    Google Scholar 

  6. H. J. Bremermann, M. Rogson, and S. Salaff. Global properties of evolution processes. In H.H. Pattee, editor, Natural Automata and Useful Simulations, pages 3–42, 1966.

    Google Scholar 

  7. M. G. Bulmer. “The Mathematical Theory of Quantitative Genetics”. Clarendon Press, Oxford, 1980.

    Google Scholar 

  8. J. F. Crow. Basic Concepts in Population, Quantitative and Evolutionary Genetics. Freeman, New York, 1986.

    Google Scholar 

  9. J. F. Crow and M. Kimura. An Introduction to Population Genetics Theory. Harper and Row, New York, 1970.

    Google Scholar 

  10. L.J. Eshelman. The CHC Adaptive Search Algorithm: How to Have Safe Search when Engaging in Nontraditional Genetic Recombination. In G. Rawlins, editor, Foundations of Genetic Algorithms, pages 265–283, San Mateo, 1991. Morgan-Kaufman.

    Google Scholar 

  11. D. S. Falconer. Introduction to Quantitative Genetics. Longman, London, 1981.

    Google Scholar 

  12. R. A. Fisher. The Genetical Theory of Natural Selection. Dover, New York, 1958.

    Google Scholar 

  13. S. Forrest, editor. Procedings of the Fifth International Conference on Genetic Algorithms, San Mateo, 1993. Morgan Kaufmann.

    Google Scholar 

  14. David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, 1989.

    Google Scholar 

  15. D.E. Goldberg. Genetic algorithms, noise, and the sizing of populations. Complex Systems, 6:333–362, 1992.

    Google Scholar 

  16. D.E. Goldberg, K. Deb, and B. Korb. Messy genetic algorithms revisited: Studies in mixed size and scale. Complex Systems, 4:415–444, 1990.

    Google Scholar 

  17. Michael Herdy. Reproductive Isolation as Strategy Parameter in Hierarchical Organized Evolution Strategies. In PPSN 2 Bruxelles, pages 207–217, September 1992.

    Google Scholar 

  18. J.H. Holland. Adaptation in Natural and Artificial Systems. Univ. of Michigan Press, Ann Arbor, 1975.

    Google Scholar 

  19. M. Kimura. The neutral theory of molecular evolution. Cambridge University Press, Cambridge University Press, 1983.

    Google Scholar 

  20. H. Mühlenbein, M. Gorges-Schleuter, and O. Krämer. Evolution Algorithms in Combinatorial Optimization. Parallel Computing, 7:65–85, 1988.

    Google Scholar 

  21. Heinz Mühlenbein. Evolution in time and space — the parallel genetic algorithm. In G. Rawlins, editor, Foundations of Genetic Algorithms, pages 316–337, San Mateo, 1991. Morgan-Kaufman.

    Google Scholar 

  22. Heinz Mühlenbein and Dirk Schlierkamp-Voosen. Predictive Models for the Breeder Genetic Algorithm: Continuous Parameter Optimization. Evolutionary Computation, 1(l):25–49, 1993.

    Google Scholar 

  23. Heinz Mühlenbein and Dirk Schlierkamp-Voosen. The science of breeding and its application to the breeder genetic algorithm. Evolutionary Computation, 1(4):335–360, 1994.

    Google Scholar 

  24. Ingo Rechenberg. Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Information. Fromman Verlag, Freiburg, 1973.

    Google Scholar 

  25. H. Schaffer, editor. Procedings of the Third International Conference on Genetic Algorithms, San Mateo, 1989. Morgan Kaufmann.

    Google Scholar 

  26. J.D. Schaffer and L.J. Eshelman. On crossover as an evolutionary viable strategy. In R. K. Belew and L. Booker, editors, Procedings of the Fourth International Conference on Genetic Algorithms, pages 61–68, San Mateo, 1991. Morgan Kaufmann.

    Google Scholar 

  27. H.-P. Schwefel. Numerical Optimization of Computer Models. Wiley, Chichester, 1981.

    Google Scholar 

  28. G. Syswerda. Uniform crossover in genetic algorithms. In H. Schaffer, editor, 3rd Int. Conf. on Genetic Algorithms, pages 2–9, San Mateo, 1989. Morgan Kaufmann.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wolfgang Banzhaf Frank H. Eeckman

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mühlenbein, H., Schlierkamp-Voosen, D. (1995). Analysis of selection, mutation and recombination in genetic algorithms. In: Banzhaf, W., Eeckman, F.H. (eds) Evolution and Biocomputation. Lecture Notes in Computer Science, vol 899. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59046-3_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-59046-3_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59046-0

  • Online ISBN: 978-3-540-49176-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics