Skip to main content

Dominoes

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 903))

Included in the following conference series:

Abstract

A graph is called a domino if every vertex is contained in at most two maximal cliques. The class of dominoes properly contains the class of line graphs of bipartite graphs, and is in turn properly contained in the class of claw-free graphs. We give some characterizations of this class of graphs, show that they can be recognized in linear time, give a linear time algorithm for listing all maximal cliques (which implies a linear time algorithm computing a maximum clique of a domino) and show that the PATHWIDTH problem remains NP-complete when restricted to the class of chordal dominoes.

On leave from Friedrich-Schiller-Universität Jena, Germany.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beineke, L. W., On derived graphs and digraphs, In: H. Sachs, H. J. Voss and H. Walther, eds., Beiträge zur Graphentheorie, Teubner, Leipzig, (1968), pp. 17–23.

    Google Scholar 

  2. Berge, C., Hypergraphs, North Holland, 1989.

    Google Scholar 

  3. Bermond, J. C. and J. C. Meyer, Graphe représentatif des arêtes d'un multigraphe, J. Math. Pures Appl. 52, (1973), pp. 299–308.

    Google Scholar 

  4. Bodlaender, H. L., A tourist guide through treewidth, Acta Cybernetica 11, (1993), pp. 226–234.

    Google Scholar 

  5. Cameron, P. J., J. M. Goethals, J. J. Seidel and E. E. Shult, Linegraphs, root systems and elliptic geometry, J. Algebra 43, (1976), pp. 305–327.

    Google Scholar 

  6. Chaudhuri, P., An algorithm for finding all triangles in a digraph in parallel, Pure and Applied Mathematika Sciences, Vol. XXV, (1987), pp. 27–35.

    Google Scholar 

  7. Chiba, N. and T. Nishizeki, Arboricity and subgraph listing algorithms, SIAM J. Comput. 14, (1985), pp. 210–223.

    Google Scholar 

  8. Biggs, N., Algebraic graph theory, Cambridge University Press, (1993).

    Google Scholar 

  9. Fiorini, S. and R. J. Wilson, Edge colorings of graphs, Pitman, London, (1977).

    Google Scholar 

  10. Fulkerson, D. R. and O. A. Gross, Incidence matrices and interval graphs, Pacific J. Math. 15, (1965), pp. 835–855.

    Google Scholar 

  11. Golumbic, M. C., Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, (1980).

    Google Scholar 

  12. Gustedt, J., On the pathwidth of chordal graphs, Disc. Appl. Math. 45, (1993), pp. 233–248.

    Google Scholar 

  13. Harary, F., Graph Theory, Addison-Wesley Publ. Comp., Reading, Massachusetts, (1969).

    Google Scholar 

  14. Hemminger, R. L., Characterization of the line graph of a multigraph, Notices Amer. Math. Soc. 18, (1971), pp. 934.

    Google Scholar 

  15. Itai, A. and M. Rodeh, Finding a minimal circuit in a graph, SIAM J. Comput. 7, (1978), pp. 413–423.

    Google Scholar 

  16. Kloks, T., Treewidth, Ph.D. Thesis, Utrecht University, Utrecht, The Netherlands, 1993.

    Google Scholar 

  17. Krausz, J., Démonstration nouvelle d'un théorème de Whitney sur les résaux, Mat. Fiz. Lapok 50, (1943), pp. 75–85.

    Google Scholar 

  18. Leeuwen, J. van, Graph Algorithms. In: J. van Leeuwen, ed., Handbook of Theoretical Computer Science, A: Algorithms and Complexity, Elsevier Science Publ., Amsterdam, 1990, pp. 527–631.

    Google Scholar 

  19. Lehot, P. G. H., An optimal algorithm to detect a line graph and output its root graph, J. of the ACM 21, (1974), pp. 569–575.

    Google Scholar 

  20. Lovász, L. and M. D. Plummer, Matching Theory, Ann. Disc. Math. 29, (1986).

    Google Scholar 

  21. Maffray, F., Kernels in perfect line-graphs, Journal of Combinatorial Theory, Series B 55, (1992), pp. 1–8.

    Google Scholar 

  22. Minty, G. J., On maximal independent sets of vertices in claw-free graphs, Journal on Combinatorial Theory, Series B 28, (1980), pp. 284–304.

    Google Scholar 

  23. Monien, B. and I. H. Sudborough, Min Cut is NP-complete for Edge Weighted Trees, Theoretical Computer Science 58, (1988), pp. 209–229.

    Google Scholar 

  24. Roussopoulos, N. D., A max{m, n} algorithm for determining the graph H from its line graph G, Information Processing Letters 2, (1973), pp. 108–112.

    Google Scholar 

  25. Sysło, M. M., A labeling algorithm to recognize a line digraph and output its root graph, Information Processing Letters 15, (1982), pp. 28–30.

    Google Scholar 

  26. Trotter, L. E., Line perfect graphs, Mathematical Programming 12, (1977), pp. 255–259.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ernst W. Mayr Gunther Schmidt Gottfried Tinhofer

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kloks, T., Kratsch, D., Müller, H. (1995). Dominoes. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds) Graph-Theoretic Concepts in Computer Science. WG 1994. Lecture Notes in Computer Science, vol 903. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59071-4_41

Download citation

  • DOI: https://doi.org/10.1007/3-540-59071-4_41

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59071-2

  • Online ISBN: 978-3-540-49183-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics