Skip to main content

Bypass strong V-structures and find an isomorphic labelled subgraph in linear time

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 903))

Included in the following conference series:

  • 159 Accesses

Abstract

This paper identifies a condition for which the existence of an isomorphic subgraph can be decided in linear time. The condition is evaluated in two steps. First the host graph is analysed to determine its strong V-structures. Then the guest graph must be appropriately represented. If this representation exists, the given algorithm constructively decides the subgraph isomorphism problem for the guest and the host graph in linear time.

The result applies especially to the implementation of graph rewriting systems. An isomorphic subgraph must be determined automatically in each rewriting step. Thus the efficient solution presented in this paper is an important advancement for any implementation project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bunke, H.; Glauser, T.; Tran, T.-H.: ‘An efficient implementation of graph grammars based on the RETE matching algorithm', [EKR91], pp. 174–189.

    Google Scholar 

  2. Corneil, D.G.; Gotlieb, C.C.: ‘An Efficient Algorithm for Graph Isomorphism', Journal of the Association for Computing Machinery, 17 (1) 51–64 (1970).

    Google Scholar 

  3. Dörr, Heiko: ‘An Abstract Machine for the Execution of Graph Grammars', Proc. of the Poster Session of the International Conference on Compiler Construction, CC'94, Research Report Dept of Computer and Information Science, Linköping University, LiTH-IDA-R-94-11, pp. 51–60.

    Google Scholar 

  4. Ehrig, Hartmut; Kreowski, Hans-Jorg; Rozenberg, Grzegorz (ed.): Graph-Grammars and Their Application to Computer Science, 4th Int. Workshop, Bremen, March 5–9, 1990, LNCS 532, Springer, Berlin, 1991.

    Google Scholar 

  5. Garey, Michael R.; Johnson, David S.: ‘Computers and Intractability', W.H. Freeman and Co., New York, 1979.

    Google Scholar 

  6. Göttler, Herbert: ‘Graphgrammatiken in der Softwaretechnik', Informatik-Fachberichte 178, Springer, Berlin, 1988.

    Google Scholar 

  7. Himsolt, Michael: ‘Graphed: An interactive Graph Editor', in STACS 89, LNCS 349 Springer Verlag, Berlin, 1989.

    Google Scholar 

  8. Klauck, Christoph; Mauss, Jakob: ‘A Heuristic Driven Chart-Parser for Attributed Node Labelled Graph Grammars and its Application to Feature Recognition in CIM', Research Report, Deutsches Forschungszentrum für Künstliche Intelligenz, Kaiserslautern/Saarbrücken, DFKI-RR-92-43, 1992.

    Google Scholar 

  9. Löwe, Michael; Beyer, Martin: ‘AGG — An Implementation of Algebraic Graph Rewriting’ in Kirchner, Claude (ed.) Rewriting Techniques and Applications, Montreal, Canada, June 16–18, 1993, LNCS 690, Springer, Berlin, 1993, pp. 451–456.

    Google Scholar 

  10. Nagl, Manfred: ‘Graph-Grammatiken, Theorie, Implementierung, Anwendungen'; Vieweg, Braunschweig, 1979.

    Google Scholar 

  11. Schürr, Andreas: ‘Operationales Spezifizieren mit programmierten Graphersetzungssystemen', Deutscher Universitäts-Verlag, Wiesbaden, 1991.

    Google Scholar 

  12. Witt, Kurt-Ulrich: ‘On linearizing graphs', in Noltemeier, Hartmut (ed.) Graphtheoretic Concepts on Computer Science, WG '80, Bad Honnef, LNCS 100, Springer, Berlin, 1981, pp. 32–41.

    Google Scholar 

  13. Zündorf, Albert: ‘Implementation of the imperative/rule based language PROGRES', Aachener Informatik-Berichte Nr. 92-38, RWTH Fachgruppe Informatik, Aachen, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ernst W. Mayr Gunther Schmidt Gottfried Tinhofer

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dörr, H. (1995). Bypass strong V-structures and find an isomorphic labelled subgraph in linear time. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds) Graph-Theoretic Concepts in Computer Science. WG 1994. Lecture Notes in Computer Science, vol 903. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59071-4_57

Download citation

  • DOI: https://doi.org/10.1007/3-540-59071-4_57

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59071-2

  • Online ISBN: 978-3-540-49183-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics