Abstract
Linear constraint solving in Constraint Logic Programming languages rests on rewriting constraints under syntaxic forms. These syntaxic forms are generally called solved forms, since a satisfiable linear constraint system can be rewritten under one of these forms, and reciprocally, a linear constraint system of one of these forms is satisfiable. This paper aims to present three different solved forms two of which are used in the main CLP languages with linear constraints CHIP, CLP(R) and Prolog III. The third form was proposed by JL. Imbert and P. Van Hentenryck in 1991 [8]. We discuss the advantages and disadvantages of each and present the results of some comparative tests.
A short version of this paper appeared in [6].
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
A. Colmerauer, H. Kanoui, R. Pasero and P. Roussel. “Un système de communication en français”. Rapport préliminaire de fin de contrat IRIA, Groupe Intelligence Artificielle, Faculté des Sciences de Luminy, Université Aix-Marseille II, France, October 1972.
A. Colmerauer. “Equations and Inequations on Finite and Infinite Trees”. In Proceedings of the International Conference on Fifth Generation Computer Systems (FGCS-84), pages 85–99, Tokyo, Japan, November 1984. ICOT.
A. Colmerauer. “Opening the Prolog III Universe”. In BYTE, August 1987, p177-182.
M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf and F. Berthier. “The Constraint Logic Programming Language CHIP”. In Proceedings of the International Conference on Fifth Generation Computer Systems, Tokyo, Japan, December 1988.
S. Friedberg, A. Insel and L. Spence. “Linear Algebra”. Prentice-Hall 1979.
JL. Imbert. “Solved Forms for Linear Constraints in CLP-languages”. In P. Jorrand and V. Sgurev, editors, Proceedings of the Sixth International Conference on Artificial Intelligence: Methodology, Systems and Applications, AIMSA'94, p 77–90. Sofia, Bulgaria. World Scientific. September 1994.
JL. Imbert, J. Cohen and MD. Weeger. “An Algorithm for Linear Constraint Solving: Its Incorporation in a Prolog Meta-Interpreter for CLP”. In Journal of Logic Programming. Special issue on Constraint Logic Programming. Vol. 16, Nos 3 and 4, July–August 1993.
JL. Imbert and P. Van Hentenryck. “On the Handling of Disequations in CLP over Linear Rational Arithmetic”. In F. Benhamou and A. Colmerauer, editors, Constraint Logic Programming: Selected Research, p 49–71, MIT Press, Cambridge, USA. Sept 1993.
J. Jaffar, JL. Lassez. “Constraint Logic Programming”. Technical Report 86/73. Dept. of computer science. Monash University (June 1986).
J. Jaffar, S. Michaylov. “Methodology and Implementation of a CLP System”. In Proceedings of the Logic Programming Conference. Melbourne, 1987. M.I.T. Press.
R.A. Kowalski and D. Kuehner. “Linear Resolution with Selection Function”. Memo 78, University of Edinburgh, School of Artificial Intelligence, 1971.
R.A. Kowalski. “Predicate Logic as Programming Language”, in Proceedings of IFIP 1974, North Holland Publishing Company, Amsterdam, pp. 569–574, 1974.
R.A. Kowalski and M. Van Emden. “The Semantic of Predicate Logic as Programming Language”, in JACM 22, 1976, pp. 733–742.
JL. Lassez and K. McAloon. “Independance of Negative Constraints”. In TAP-SOFT 89, Advanced seminar on Foundations of innovative Software development, Lecture Notes in Computer Science 351, springer Verlag 1989.
JL. Laurière. “Un langage et un problème pour énoncer et résoudre des problèmes combinatoires”. Ph.D. Thesis, University Pierre et Marie Curie, Paris, May 1976.
JL. Laurière. “A Language and a Program for Stating and Solving Combinatorial Problems”. In Artificial Intelligence, 10(1): p 29–127, 1978.
A.K. Mackworth. “Consistency in Networks of Relations”. In AI Jour 8(1): p 99–118, 1977.
J.A. Robinson. “A Machine-Oriented Logic Based on the Resolution Principle”. Journal of the ACM 12, 1, pp. 23–41, January 1965.
N. Singer. “Résolutions incrémentale de contraintes linéaires sur les nombres rationnels”. mémoire de DEA, GIA, Faculté des sciences de Luminy, Marseille, 1993.
G.L. Steele. “The Definition and Implementation of a Computer programming Language based on Constraints”. Ph.D. Thesis, MIT, USA. August 1980.
G.J. Sussman and G.L. Steele. “CONSTRAINTS. A language for Expressing Almost-Hierarchical Descriptions” In AI Journal, 14(1), 1980.
P. Van Hentenryck and T. Graf. Standard Forms for Rational Linear Arithmetics in Constraint Logic Programming. Annals of Mathematics and Artificial Intelligence, 1992.
JF. Verrier. “Résolutions numériques en programmation logique par contraintes”. mémoire de DEA, GIA, Faculté des sciences de Luminy, Marseille, 1992.
D. Waltz. “Generating Semantic Descriptions from Drawings of Scenes with Shadows”. Technical Report AI271, MIT, MA, USA. November 1972.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1995 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Imbert, J.L.J. (1995). Linear constraint solving in CLP-Languages. In: Podelski, A. (eds) Constraint Programming: Basics and Trends. TCS School 1994. Lecture Notes in Computer Science, vol 910. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59155-9_7
Download citation
DOI: https://doi.org/10.1007/3-540-59155-9_7
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-59155-9
Online ISBN: 978-3-540-49200-9
eBook Packages: Springer Book Archive