Lecture Notes in Computer Science 908
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

Advisory Board: W. Brauer D. Gries J. Stoer

Josyula Ramachandra Rao

Extensions of the
UNITY Methodology

Compositionality, Fairness
and Probability in Parallelism

© Springer

Series Editors

Gerhard Goos
Universitit Karlsruhe
Vincenz-Priessnitz-Strafle 3, D-76128 Karlsruhe, Germany

Juris Hartmanis
Department of Computer Science, Cornell University
4130 Upson Hall, Ithaca, NY 14853, USA

Jan van Leeuwen
Department of Computer Science, Utrecht University
Padualaan 14, 3584 CH Utrecht, The Netherlands

Author

Josyula Ramachandra Rao
IBM Thomas J. Watson Research Center
P. O. Box 704, Yorktown Heights, NY 10598, USA

CR Subject Classification (1991): D.1.3,D.2.2, D.3, F3, G.3
ISBN 3-540-59173-7 Springer-Verlag Berlin Heidelberg New York

CIP data applied for

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, re-use
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer-Verlag. Violations are liable for prosecution under the German Copyright
Law.

© Springer-Verlag Berlin Heidelberg 1995
Printed in Germany

Typesetting: Camera-ready by author
SPIN: 10485587 06/3142-543210 - Printed on acid-free paper

Preface

The UNITY methodology marks an important milestone in research on program
verification. The methodology shows how a simple programming notation and a
small set of carefully engineered operators can be used to reason effectively about
a wide variety of parallel programs. The goal of this treatise is to push these ideas
further in order to explore and understand the limitations of this approach. We
attempt to do this in three ways. First, we apply UNITY to formulate and
tackle problems in parallelism such as compositionality. Second, we extend and
generalize the notation and logic of UNITY in an attempt to increase its range of
applicability. Finally, we develop paradigms and abstractions useful for algorithm
design. We summarize our contributions below.

In designing a system of processes, it is desirable to have a guarantee that
the progress made by each individual process is inherited by the system as a
whole. Such a guarantee would aid in developing parallel programs in a compo-
sitional way. We use UNITY logic to formulate such a guarantee and use formal
methods to derive sufficient (and yet practical) conditions for the guarantee to
hold. These conditions require process interactions to obey certain commutativ-
ity conditions. Our restrictions permit compositional reasoning about progress
properties of parallel programs and provide a rigorous justification for includin
certain syntactic features in parallel programming languages.

The nature of fairness assumed in executing a UNITY program determines
the progress properties that can be proven of the program. Our second contribu-
tion is a uniform framework for the systematic design of proof rules for proving
progress under a spectrum of fairness assumptions ranging from pure nondeter-
minism to strong fairness. Proofs of soundness and relative completeness of the
synthesized rules follow by checking a set of simple conditions. Unlike existing
work in this area, our proofs do not use ordinals.

One special notion of fairness that is being increasingly used by algorithm de-
signers is that associated with tossing a coin. Of late, programmers have started
using probabilistic transitions in designing simple and efficient algorithms for
problems that may not have a deterministic solution. We generalize UNITY
program to permit probabilistic transitions and develop a UNITY-like theory to
design and prove the correctness of probabilistic parallel programs. We illustrate
our theory with examples from random walks and mutual exclusion.

Finally, we propose a new paradigm for the design of probabilistic parallel
programs called eventual determinism. The paradigm provides a means of com-

Vil

bining probabilistic and deterministic algorithms to take advantage of both. The
proofs of such algorithms use the probabilistic generalization of UNITY. We illus-
trate the paradigm with examples from conflict-resolution and self-stabilization.

Our investigations and results reaffirm the promise of UNITY: we conclude
that it provides a versatile medium for posing and solving many of the diverse
problems of parallelism.

Acknowledgements: This book is based on my doctoral dissertation which was
completed at the University of Texas at Austin in August 1992, The work re-
ported here has been deeply influenced by discussions with several people and I
would like to take this opportunity to thank some of them.

I owe an enormous debt of gratitude to my supervisor, Professor J. Misra and
to Professor Edsger W. Dijkstra. I have been greatly influenced by their taste in
research topics and their clarity of thought. In writing this book, I have tried to
achieve their conception of simplicity and elegance while aspiring for their high
standards of rigor and excellence. I have also had the privilege of improving my
work through discussions with Professor C. A. R. Hoare. I will remain indebted
to him for his valuable criticisms and timely words of encouragement.

Chapters 4 and 5 of this thesis represent collaborative work with two of my
colleagues, Ernie Cohen and Charanjit Jutla respectively: it has been a pleasure
to work with them. I would also like to thank my colleagues in the UNITY
group and the Distributed Systems Discussion Group at Austin especially Mike
Barnett, Ken Calvert, Ted Herman, and Dave Naumann.

I gratefully acknowledge the financial support that I received from the Office
of Naval Research, the Texas Advanced Research Program, the National Science
Foundation, and the University of Texas at Austin.

I have been extremely fortunate to have enjoyed the company of good friends
at all stages of my life. In particular, I would like to thank Asoke Chattopad-
hyaya, Vipin Chaudhary, Leena and Manoj Dharwadkar, T. Krishnaprasad, Lyn
and David Loewi, Linda Mohusky, Vijaya and K. Muthukumar and Bikash
Sabata. Finally, I will remain indebted to my parents, my sisters, Surya and
Sundari, and my wife, Sailaja, for their love and emotional support. '

Yorkiown Heights, New York
December 1994 Josyula R, Rao

Table of Contents

1.

Prologue........coiiiiiiiiiiii it it i i i e e 3
1.1 Background and Motivationccciiiiiiiiiinainn 3
1.2 Contributions of this Treatisecovvvveierereienenerennn. 6

1.2.1 The Role of Commutativity in Parallel Program Design .. 6
1.2.2 On the Design of Proof Rules for Fair Parallel Programs . 7

1.2.3 Reasoning About Probabilistic Parallel Programs........ 7
1.2.4 Eventual Determinism: Using Probabilistic Means to Achieve
Deterministic EndscoiviiiiiiiiiiiiiL, 8
1.3 Overview of this Treatisecciviiienerererernneneennns. 9
Preliminariesccooiiiiiiiriniiereorenrnerereneenenss 11
2.1 Notation and Terminologyc.cviverioienereraraneannn 11
2.2 Predicate Transformers and Their Junctivity Properties 12
2.3 Some Useful Predicate Transformerscovuvenn.. 13
2.4 Extremal Solutions of Equations............................. 14
26 Proof Formatoviiiiiiiiii i 15
An Introduction to UNITYc0iiiiiieiiinnnnnnnn.. 17
3.1 The Programming Notation..........coooiiiiineennn, 17
3.1.1 The Declare Sectionccovverererernnennnennn. 17
3.1.2 The Always Section.coviiinirnrriirieennennenn. 18
3.1.3 The Initially Sectioncc.ovviiiiiiinennnann. 18
3.1.4 The Assign Sectionooviveruiinneneierenninnnennn 19
3.2 Executing a UNITY Program et e 24
3.3 The UNITY Programming Theory..........covviveeeneennnnn. 24
3.3.1 Reasoning About Safety.............................. 25
3.3.2 Reasoning About Progress..............covvvinennenn. 27
3.3.3 Remark on Presentation.............................. 30
3.3.4 Substitution Axiomc.iiiiiie i 30
3.3.5 Program Composition in UNITY 30
The Role of Commutativity in Parallel Program Design 33
4.1 The Problem with Composing Progress Properties 36
4.2 Loose Couplingccoviiiivriiinennreniiianeeennnnns 37

4.3 Towards a Theory of Decouplingcovvviiviiininnvnnn. 38

X

Table of Contents

4.4

45
4.6

4.3.1 The Closure of a Programcoovuuvvieansnsennnas 38
4.3.2 Decoupling in Terms of Progress0vvvvvnnnrss 42
4.3.3 Decoupling in Termsof Ensuresc..0o... 45
4.3.4 Decoupling in Terms of Stability 46
4.3.5 A Special Case of Decoupling: Weak Decoupling......... 49
4.3.6 SUMMALY.. ... icniiinnerrercrooncasnrssncasnsssresnncs 52
Existing Definitions of Commutativityc.ovviieveee. 52
4.4.1 Lipton’sDefinitionovviiiiiiininnnnnnneenn. 53
4.4.2 Misra’s Definitioncciiiiiiiiiiiinnnnnn. .. 53
4.4.3 Incomparability of Lipton and Misra Commutativity 54
Putting it All Together.........oovieinnreieiineeeeneinnnns 54
Implications for Research in Programming Languages 57

On the Design of Proof Rules for Fair Parallel Programs 59

5.1 Logics of Programsuvuvuniiierrrernesnsocasasersaas 64
5.1.1 Model of Program Executionovvviviiiininnsn 64
5.1.2 Temporal Logicovviiiiiiiiiiiiiinirirnnenenns 64
513 Thep—Caleulusc.ooiviiiiiiiiiiieiirrrrrncnans 67

5.2 Methodology for the Design of Proof Rules 68

5.3 From Temporal Logicto p~Calculus 69
5.3.1 Minimal Progress..........ccoiiiiriiiiiiniiinnnnanne, 69
5.3.2 Weak Fairnessc.oiiiiienrerercnnnararscnenenens 71
5.3.3 Strong Fairnessvvivvierensvcaneesannsoannns 75

5.4 From p—Calculus to UNITY-Style Proof Rules 80
5.4.1 A Predicate Transformer Approach 80
5.4.2 A Relational Approach..........ooviviiiiiiiiiiinan, 82
5.4.3 Constraints on leads-foand wlt 83
5.4.4 The Predicate Transformerledcovuvvvvvn. 84
5.4.5 Relating leads-toand wlt...............cooviiiiit, 84
5.4.6 SUMMAIY.....viertin e e rrinseeeansenananeeinns 86

55 Proof Rules.......coviiiininiiiiiiiiinininnnsreceneoeneens 86
55,1 Defining Efrom gwWp .8 «vvviviiirrnnniincrrnraccnnnss 86
5.5.2 Minimal Progress........cooviiininircnncennnnnccnens 88
5.5.3 Weak Fairnesscovvniierincrneiorsroceeeranenns 89
5.5.4 Strong Fairnesscviiirrvicicsrirrierccnnacas 89

56 Examples.... ..o iiiiiiiiiiiiiiiiiiiiiesii ittt 90

5.7 On a Notion of Completeness of leads—to 94
5.7.1 Reviewing Completenessccvviiiiinnnninens 95
5.7.2 Constructing a Proof of Progressc..... 96

Reasoning About Probabilistic Parallel Programs 99

6.1 The Programming Modelcoiverviennnriennnnnann, 103
6.1.1 Deterministic Statements.............cviiiiiiaiia... 104
6.1.2 Probabilistic Statements00iiiiiiia.., . 104
6.1.3 Executing a UNITY Programc.vvnviiinninnenn. 104

6.1.4 Executing a Probabilistic Parallel Program 105

Table of Contents Xl

6.2 The Weakest Preconditioncovvviniiiiiiierannrnnnns 107
6.2.1 Deterministic Statements..............covviiiiiinns. 107
6.2.2 Probabilistic Statementsciiiiiiiiiiinnn, 107

6.3 Reasoning About Safetycvviiiiiii it 109

6.4 UNITY and Progress: ensuresand +ccovovvun. 110

6.5 Deterministic Versus Probabilistic Correctness 113

6.6 The Weakest Probabilistic Precondition, 115

6.7 Relatingwp and WPpPviiiiiiiiiiiiinniiiintennnreins 117

6.8 Reasoning About Progress.........ccoviiiiiiiininninnnennnns 118
6.8.1 TheRelationuptocciivvrrriniiiiennnnannnn 118
6.8.2 The Relationentailscccovviiiiiiiinnnninnen 124
6.8.3 The Relation ~ ...ovunivieieiineenininionrnnnnseensn 129
6.8.4 Probabilistically Leads—to: = J 131

6.9 An Induction Principle for Probabilistic Leads-to 134

6.10 Substitution AXiOmovivie it ittt et 135

6.11 On Program Compositionccoviiiiiniiiiiinnn e 135
6.11.1 Compositionby Unioncovviviiiiiinieennnnns 135
6.11.2 Conditional Propertiesovoviiinivnininncnass 138
6.11.3 Superpositionoviiiii i i i e 138

6.12 Comments on Soundness and Completeness................... 138

6.13 Examples....ooviiiiii ittt ittt 139

7. Eventual Determinism: Using Probabilistic Means to Achieve

DeteministicEnds0iiiiiiiiiniriiiiiiieniinaaeens 149

7.1 The Symmetric Dining Philosophers Problem 151
7.1.1 Notation and Variable Declarations 151
7.1.2 The Lehmann-Rabin Algorithm 152
7.1.3 The Chandy-Misra Algorithmot 153
7.1.4 The Eventually-Determinizing Algorithm 155

7.2 The Self-Stabilization Problemooiviien e, 161
7.2.1 Notation and Variable Declarations 161
7.2.2 A Probabilistic Algorithmc.ooovias, 162
7.2.3 The Eventually-Determinizing Algorithm 162

8., Epiloguecoiiiiiiiiiii i i i i i e 165

B.1 Conclusions.vovuiviinnreinsirnnrnneerrneoniananeanns 165

8.2 Topics for Future Researchcooiiriiiiiiiiiiiinnnnn, 166

Bibliographyttt it e e i e e 169

